Asee peer logo

A Fuzzy Logic Control Project For A Real Time Microprocessor Laboratory

Download Paper |

Conference

2000 Annual Conference

Location

St. Louis, Missouri

Publication Date

June 18, 2000

Start Date

June 18, 2000

End Date

June 21, 2000

ISSN

2153-5965

Page Count

6

Page Numbers

5.24.1 - 5.24.6

DOI

10.18260/1-2--8400

Permanent URL

https://peer.asee.org/8400

Download Count

1374

Request a correction

Paper Authors

author page

Greg Smith

author page

Richard E. Pfile

Download Paper |

Abstract
NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

Session 1526

A Fuzzy Logic Control Project For a Real-time Microprocessor Laboratory

Richard E. Pfile Indiana University-Purdue University at Indianapolis Greg Smith Cummins Engine Company

Abstract

An advanced microprocessor course was revised to use the new Motorola M-Core 32-bit RISC processor. A series of laboratories were developed for the course that implements fuzzy logic control of an inverted pendulum. The interface hardware was intentionally kept very simple to force the interface and control functions to be implemented in software. The laboratory provides a platform for exercising many microprocessor/control concepts including using multiple interrupts, reading incremental encoders, implementing PWM control techniques, using an internal timer to calculate rates of change, and interfacing to a commercial fuzzy logic engine.

I. Introduction

A series of laboratory experiments was added to a microprocessor class in which students balance an inverted pendulum using fuzzy logic control. The problem provides a platform for exercising many microprocessor/control concepts including the using multiple interrupts, directly reading incremental encoders, implementing PWM control techniques, using an internal timer to calculate rates of change, and interfacing to a commercial fuzzy logic engine.

Many Electrical Engineering Technology graduates are employed by automation companies where they are required to develop solutions to computer-based automatic control problems. Technology program curriculums typically do offer courses that provide significant depth in solving classical control systems problems, but graduates working in the automation field still need tools to solve control problems. Fuzzy logic is an effective control tool that can be readily implemented in a technology program.1 Students with a fuzzy logic background can solve many control problems as long as they know what the expected behavior is for various inputs. In addition students get experience reading incremental encoders and applying pulse- width-modulation; two concepts commonly used in the automation field. Students also enjoy solving the problem because it is readily verifiable and has a dynamic output. Funding for equipment funding to develop this course was provided by the National Science Foundation grant number 9750497.

Smith, G., & Pfile, R. E. (2000, June), A Fuzzy Logic Control Project For A Real Time Microprocessor Laboratory Paper presented at 2000 Annual Conference, St. Louis, Missouri. 10.18260/1-2--8400

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2000 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015