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A GIS Based Laboratory in Transportation Engineering:  

Self-Efficacy as a Predictor of Students’ Learning 
 

ABSTRACT 

 

The focus of this paper is to identify an exploratory model that links students’ performance in a 

Geographic Information Systems (GIS) laboratory to students’ perceptions and beliefs related to 

this experience. Self-efficacy, perceived motivation and perceived difficulty, were examined as 

significant predictors of students’ performance outcomes. Structural equation modeling approach 

was adopted in this study. 

 

The results indicate that both perceived motivation and perceived difficulty are significant 

predictors for students’ academic self-efficacy. Higher self-efficacy produced the desired 

outcome as a result of better alignment of the complexity of the laboratory activity with the level 

of students’ expectations. This outcome is of great interest as the GIS laboratory was set as a 

distributed learning activity implemented as stand-alone laboratories in several courses 

throughout the civil engineering curricula. The data used for the analyses were obtained from a 

four-semester study of student performance in the GIS laboratory. 

 

INTRODUCTION 

 

Web-enhanced instruction, ranging from basic communication support to fully immersive 

learning environments made promising developments in higher education lately (1). One 

important benefit of web-enhanced instruction is its ability to provide rich learning contexts that 

can help students activate cognitive processes required to solve real-life professional problems 

(2). These learning contexts are also more suitable to support an active and involved learner (3). 

These learners will develop a deeper comprehension of the ideas and concepts presented in the 

educational context, and will also be able to transfer the learned skills to new situations (4). 

 

Previous research on multimedia instruction, however, showed that despite clear strengths of 

these learning contexts, not considering various aspects of students' perceptions engaged in 

multimedia instruction can reduce the effectiveness of the instructional process (e.g. 5-9).  First, 

student-oriented factors such as usability (8) or perceived usefulness (9) have proved important 

for improving students' learning experiences. Second, as web-based modules became integral 

part of blended learning environments, their major strengths, flexibility and self-pacing, are 

reduced by their corresponding weaknesses. Some of these weaknesses are the lack of instructor 

interaction or technology-related challenges students face when using web-based tools (7).  

 

Over the past several decades, the education and practice of engineering was certainly part of this 

integration of web-enhanced and active learning strategies in the learning process.  
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For example in transportation engineering, the instructional context for this study, the task of 

educators shifted from the basic requirement of exposing students to the knowledge base for their 

field to that of providing students “with the tools necessary to solve new problems that arise” 

(10). One such tool in transportation engineering is Geographic Information Systems (GIS).  The 

use of GIS was identified as one of the top skills required for civil engineers. However, courses 

in transportation engineering currently offered at US universities are behind in offering the 

needed support for students to learn GIS-related skills (11). This clearly presents the need for 

inclusion of GIS in civil engineering curriculum and more specifically for transportation 

professionals.  

 

The major goal of the study is to identify and test an exploratory model that links students’ 

performance to their perception and beliefs based on a multi-semester implementation of a GIS 

transportation laboratory. 

 

IMPLEMENTATION OF A GIS-BASED LABORATORY FOR CIVIL ENGINEERS 

 

At Missouri University of Science and Technology (MS&T), civil engineers are exposed to 

Geographic Information Systems (GIS) through a series of stand-alone laboratories built around 

a distributed learning model customized for specific areas: environmental, geotechnical, 

surveying, transportation and water resources (12, 13). The major goal of this learning model 

was to help students build GIS-related skills by contextualizing the software application in 

various civil engineering fields. That is, learning outcomes changed from mere understanding of 

GIS mechanics to building higher-level cognitive skills needed to make this tool useful for 

various civil engineering applications. Learning of this tool became then a cumulative result of 

its use in individual courses part of civil engineering curricula. The online tutorial, the core 

instructional tool for these GIS-based laboratories, provides a high level of detail and richness of 

content such as built-in videos that can play while users are engaged in the learning exercises 

(14). An example of the GIS environment is presented in Figure 1.  

 

Implementation of the GIS-Based Laboratory in Transportation Engineering 

 

The main goal of the transportation module of the GIS laboratory was to introduce traffic safety 

using the ArcGIS software. An iterative process using several implementation cycles helped the 

instructor to refine the structure of instructional tasks based on student-centered feedback as 

described in the following subsections. The iterative refining process covered four semesters, 

Fall 2009, Spring 2010, Fall 2010 and Spring 2011.  

 

Nature of Instructional Activities 

 

The nature of instructional activity in the GIS laboratory changed throughout the four 

implementation cycles. During first two semesters the GIS laboratory was a stand-alone 

instructional activity placed at the beginning of the course with minimal classroom support from 

the teaching assistants. The assumption was that students will fully use the GIS online tutorial to 

pace their learning process. To test the validity of this assumption, the researchers used a quasi-

experiment that included a treatment group of students exposed to an instructor-led short 

introduction.  
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This introduction focused on explaining both the role of the GIS data analysis in transportation 

engineering and the specific goals of this GIS laboratory. Findings from this first implementation 

showed clearly that the focused introduction on GIS applications in transportation helped 

students’ learning (15).  

 

 
 

Figure 1. Example web-based screen showing the embedded video for query building. 

 

Therefore, the instructor decided to move the GIS laboratory toward the end of the semester by 

linking it to the highway design project, the major hands-on activity in the course. This new 

structure of the instructional activities was implemented during the last two semesters of the 

period analyzed in this study (Fall 2010 and Spring 2011). 

Structure and Complexity of Instructional Tasks 

 

The structure and complexity of the instructional tasks changed over the implementation cycles. 

Four major task structure factors that defined the complexity of the instructional tasks throughout 

this study are presented in the following part of this section. 
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Students’ Familiarity with the Topic and the Context of GIS Laboratory. The basic design of the 

online tutorial used in the GIS-based laboratory focused on supporting a self-guided and self-

paced learning process using a progressive scaffolding approach (13). However, when the basic 

design was implemented, students were not able to fully benefit from this progressive scaffolding 

approach. That is, during the first two semesters when this design was implemented, the GIS-

based laboratory was administered very early in the course when students were not familiar with 

traffic safety issues, the major focus of this laboratory. To address this issue, starting with the 

second semester (Spring 2010) the laboratory started with a more detailed introduction that 

covered traffic safety topics as well as the role of GIS software in analyzing safety information.  

 

Finally, to significantly increase students’ familiarity with the topic, for the last two semesters of 

this study, Fall 2010 and respectively Spring 2011, the GIS-based laboratory was anchored (16, 

17) in the context of a major activity of the course, the semester-long highway design project. As 

the laboratory moved toward the end of the semester, students had the opportunity to get familiar 

with various aspects of traffic safety both from the lecture and from the highway design project. 

Therefore, the mini-lecture on traffic safety issues developed in the previous semesters served as 

a reinforcement of the importance of this topic for transportation engineers rather than to merely 

increase awareness.  

 

GIS Dataset Size and Diversity. The initial implementation of the GIS-based laboratory (Fall 

2009) in the transportation engineering course used a complex dataset with about 21,000 records 

of highway crashes that covered an entire state and various types of roads. The sheer size of this 

database posed significant challenges for students to download and save on the local computer, 

which often created delays in the flow of the laboratory activity. These delays generated student 

frustrations and lowered the effectiveness of the instructional process. In addition, students that 

were not able to complete the entire task during the three hours allocated for GIS laboratory, had 

to deal with these frustrations again since the database files saved on the laboratory computers 

were automatically discharged at the end of the day. 

 

During the second implementation of the laboratory covered in this study, Spring 2010, the 

dataset size was reduced to about 5,900 crashes and covered only major highways within a given 

state. In addition, the length of the laboratory changed from three to two hours, due to a general 

departmental decision to address the increased need for laboratory space across campus. This 

requirement placed a more specific constraint on the number of tasks students could perform in 

the laboratory. The major focus was on changing the instructional flow to reduce the activity 

time while keeping the major goals of the GIS-based laboratory. The initial instructional flow 

involved a two-step sequence where students had to conduct a set of tasks in the online tutorial 

and then repeat them for a similar set of tasks (near-transfer tasks). The new instructional flow 

required students to perform these tasks only once, and use specific online tutorial modules as 

worked examples to complement the information needed to complete these tasks.  

 

Finally, during the last two implementations that are the focus of this paper, the database size 

was reduced to about 250 crashes that covered a specific segment of a highway. This change 

reflected the shift in the context of the GIS-based laboratory that moved from being a stand-

alone laboratory activity in the beginning of the semester to becoming a final part of a semester-

long highway design project.  
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To support the authenticity of this laboratory’s tasks, the traffic safety dataset was therefore 

limited to the segment of the highway that was the students’ focus in a highway redesign project 

throughout most of the semester. However, it has to be mentioned that the reduction of the 

dataset size did not significantly changed the diversity of the traffic safety data to be analyzed. 

Therefore, the instructional tasks to be completed were similar in number and complexity with 

the ones implemented in the second semester, as described above.  

 

Clarity and Extensiveness of Instructional Materials. For the first semester of this study (Fall 

2009), the laboratory materials were scattered across several mediums. The instructional 

materials related to initial tasks driven by the online tutorial resided online, while the materials 

related to the transfer tasks resided in Blackboard, the course content management system. 

However, these materials did not include any formal information related to traffic safety issues. 

During the second stage (Spring 2010), the laboratory materials included traffic safety issues 

along with a short introduction on the importance of GIS software for this topic and the main 

deliverables for the final report.  

 

Finally, for the last two stages of this study, Fall 2010 and Spring 2011, when the GIS-based 

laboratory followed the highway design project, the laboratory materials included some 

additional information that previously had proved to be challenging for students. One such 

addition was a short introduction to queries including their definition, structure and syntax. This 

introduction proved to be a good help for this diverse group of students, with many lacking basic 

programming skills associated with database use.  

 

Nature of Face-to-Face Support. Following the patterns described, the face-to-face support 

offered by the instructor and the graduate teaching assistants evolved during the four semester of 

implementation. It started as a very limited technical assistance and evolved into a formal 

instructional support activity. That is, the face-to-face support during the last two semesters 

included mini-lectures designed to introduce various laboratory topics and their major tasks. 

However, besides the face-to-face support, students had to rely throughout all four phases of this 

study on the online tutorial for the conceptual support and scaffolding needed for each specific 

task.  

 

STUDENT PERFORMANCE IN THE GIS LABORATORY 

Assessment Constraints  

 

In traditional course settings, an instructor uses a series of assessment tools and strategies to 

evaluate student performance. However, from an assessment perspective, the proposed GIS 

laboratory for transportation engineers has three major characteristics that differentiate it from 

the traditional course activities. First, the GIS-based laboratory is a two-hour instructional task, 

relatively short compared to more traditional topic-driven instructional activities in a course and 

therefore assessment can be only tied to lower level of cognitive processes (remember, 

understand). Second, this laboratory takes place only once during the course and therefore the 

instructor does not have the option of using formative assessment strategies. Finally, this GIS 

laboratory is part of a networked set of instructional activities part of the civil engineering 

curriculum.  P
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The assessment then should also be able to predict this GIS laboratory’s potential impact on 

students’ long-term performance in future similar GIS-based laboratories and related activities.  

 

Considering the above-discussed three characteristics, this GIS- laboratory in transportation was, 

from an assessment perspective, closer to a training workshop than to a regular course-based 

activity in higher education. It was then appropriate to use training-related assessment strategies 

to evaluate the outcomes of this activity. Self-efficacy, in this regard, has proved to offer both a 

proxy for trainees’ behavior, work performance, and an important training outcome in itself (18, 

19). Davis and colleagues (20) indicated that self-efficacy also has a strong relationship with 

significant predictors of deep learning such as structural knowledge (21). 

 

Self-Efficacy as Predictor for Performance 

 

Self-efficacy has been defined as an important step toward a unifying theory of behavioral 

change (19). It determines the level of effort learners will extend in future activities and the 

degree to which this effort will be sustained when learners will face obstacles and challenging 

experiences such as associated with e-Learning (22). That is, learners with high self-efficacy will 

participate in a given task more readily, will work harder, and persist longer when they encounter 

difficulties.  

 

In educational settings, self-efficacy has also proved to be a good predictor of students’ learning 

and motivation in subsequent tasks (22, 23). The information used to appraise self-efficacy 

resides in past and current performance, and the feedback associated with these performances. In 

addition, students’ success has proved to increase self-efficacy while failure has proved to 

decrease it (23). According to Stajkovic and Luthans (18), self-efficacy has a positive and strong 

relationship to work performance.  

 

Self-efficacy, however, does not compensate for lack of prior knowledge and skills and therefore 

it will not produce high performance scores when these factors are lacking. This is especially 

true when positive feedback (e.g. “…you can do this!”) is used to increase students’ self-efficacy 

and, consequently, to determine their increased engagement in a given task. If the student lacks 

prior knowledge and skills needed to complete a task, this increase in self-efficacy will be 

temporary when subsequent efforts turn out unsuccessful (23). Self-efficacy was also found to 

have a complex mediating relationship with the learning antecedents and learning outcomes (24). 

However, when the focus was on using online learning and tutoring modules, the results in the 

research literature are mixed.  For example, in an engineering course where e-learning modules 

were used, self-efficacy showed a significant low to medium positive correlation with students’ 

learning but was not a significant predictor of post-test scores (25). In another study, where 

students used web-based worked examples, self-efficacy did not mediate between the use of 

web-based modules and achievement as predicted. It rather served as a complementary measure 

of learning performance predicted by the students’ use of web-based worked examples (26).  

 

Theoretical and empirical analyses of major determinants of self-efficacy in both educational and 

work environments found both internal and external determinants of self-efficacy. Of these, 

motivation and task complexity have proved to be both significant and low variability 

determinants of self-efficacy (18, 27).  
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Students’ motivation in relation to the performed instructional task proved to have a positive 

relationship with self-efficacy, while task complexity proved to have a negative relationship to 

self-efficacy. If motivation is mainly an internal factor influenced by students’ perception of the 

overall instructional environment, task complexity has both an external and an internal 

characteristic. Along with clear external factors such as complexity of instructional components, 

dynamic aspects and level of informational cues (28), task complexity also has an internal aspect 

due to students’ perception of the components. This perception results from the interaction 

between the external factors of task complexity and students’ experiences with same, or similar, 

type of tasks (18, 29). 

 

Considering the changes in the nature and complexity of the instructional activity in the GIS 

laboratory as well as the nature and constraints of the associated assessment process, a predictive 

model that would identify the main factors (predictors) of student success in the GIS laboratory 

was desired. One potential outcome of this paper is to produce a predictive model that could 

serve as a starting point for monitoring the success of implementation for similar instructional 

activities.  

 

RESEARCH GOALS 

 

Considering the fact that the instructional process in the GIS laboratory was similar to that of a 

short-term training, the authors were first interested if overall self-efficacy and its determinants, 

perceived motivation and perceived task difficulty, were significant predictors for students’ 

performance outcomes. Second, the authors were interested in finding if the major change in the 

instructional process, the association of the GIS laboratory topic with the major task in the 

course, the highway design project, produced significant change in students’ self-efficacy. 
 

MODELLLING STUDENT PERTORMANCE IN THE GIS LABORATORY  

 

Based on the results from the analysis of factors that influence students’ performance, 

researchers propose a path analysis model that builds on the predictive power of academic self-

efficacy and two of its determinants, perceived motivation and perceived task difficulty, on 

students’ performance outcomes.  

 

Path Model Variables 

 

Data associated with path variables were collected throughout the four semesters using an 

unannounced exit survey administered online in the lab in the week following the GIS 

laboratory.  

 

Student Performance 

 

Five multiple-choice and fill-in-the-blank assessment items tested their recall of traffic safety 

issues covered in the GIS laboratory. Students had no prior preparation associated with this test. 

Of these five assessment items, two were common for all semesters and three were equivalent in 

difficulty, but different for the stand-alone (first two semesters) and context-driven approach 

(last two semesters). This adjustment reflected the nature of the analyses required by the crash 

datasets used for the two slightly different laboratory strategies.  
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Raw assessment score were computed as a percentage of sums of correct answers (0 for wrong 

answer and 1 for correct answer) to total possible points. The average score for the four 

semesters was 65.44 % and ranged between a minimum of 20% and the maximum possible of 

100%. Since students had no opportunity to prepare for the test, the test performance scores were 

compared to the retention rates as measured in memory retention experiments, rather than to the 

traditional pass or fail percentages used in higher education assessment. The mean percentage 

scores for retention rates after one week vary from 46% for more complex items, such as fill-in-

the blanks, to 75% for simple items such as multiple-choices (29, 30). Therefore the mean score 

for the GIS laboratory was situated within the acceptable ranges of retention. 

 

Self-Efficacy 

 

A self-efficacy scale validated in the educational literature was used for this study (32).  The 

scale has nine self-efficacy statements and uses a five-point Likert evaluation scale (1-Totally 

Disagree to 5-Totally Agree). The internal reliability for the self-efficacy scale was strong. For 

the four-semester dataset, Cronbach’s alpha value was .88, above the accepted indicator of a 

good internal reliability for a scale that is .70. The final value for the self-efficacy resulted as a 

mean value of the scores for the nine statements and, for the dataset used in this study, ranged 

between a minimum value of 1.68 and a maximum value of 4.89. 

 

Perceived Motivation 

 

Three semantic-differential questions (boring/interesting; dry/motivational; dull/lively) using a 9-

point evaluation scale (1-low to 9-high) measured students’ perceived motivation in the GIS 

laboratory (33). The three motivation questions had a consistent internal reliability across all 

student groups as confirmed by Cronbach’s alpha value of .83. Therefore, the final value for the 

perceived motivation resulted as the average score of the three semantic-differential questions 

with potential values ranging from “1” for low perceived motivation to “9” for high perceived 

motivation.   

 

Perceived Difficulty 

 

Perceived difficulty was used as a proxy measure for perceived task complexity. It was measured 

with four semantic-differential questions (easy/hard; simple/complicated; effortless/labor 

intensive; painless/painful) using a 9-point evaluation scale ranging from “1” for low to “9” for 

high (33). The four difficulty questions had a consistent internal reliability across all student 

groups with a Cronbach’s alpha value of .81. Therefore, the final value for the perceived 

difficulty resulted as the average score of the four semantic-differential questions and for the 

dataset used in this study ranged between a minimum of 1.75 and a maximum of 9.0. 

 

Proposed Path Analysis Model 

 

The GIS laboratory was implemented as a face-to-face classroom activity with online tutorial 

support. Previous research findings suggest that self-efficacy potentially has a mediated effect 

between its determinants, perceived motivation and perceived difficulty, and students’ 

performance outcomes (24, 25).  
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To test if in this case a mediating effect or only an indirect effect (34) can be observed, the two 

determinants of self-efficacy, perceived motivation and perceived difficult were regressed on 

students’ performance outcomes, and no significance, F(2,114) = 1.23, p = .30 was found.  

 

Since perceived motivation and perceived difficulty are not significant predictors for students’ 

performance outcomes, we proposed a model that builds on an indirect effect of self-efficacy and 

its determinants on the students’ performance outcomes. Figure 2 shows the associated path 

analysis conceptual model that describes this indirect effect.  

 

 
 

Figure 2. Proposed Conceptual Model for the GIS Laboratory Activity 

 

As suggested by previous research, perceived motivation is predicted to have a positive 

correlation (+) with self-efficacy, while perceived difficulty is predicted to have a negative 

correlation (-) with both self-efficacy and perceived motivation. In addition, self-efficacy is 

predicted to have a positive correlation (+) with performance outcomes. The model also shows 

the measurement errors, e1 and e2, associated with the two endogenous variables, self-efficacy 

and respectively performance outcome.  

 

Participants 

 

Participants in this research were mostly juniors and some seniors enrolled in an introductory 

Transportation Engineering course. From the 113 students that participated in this study, 24 were 

enrolled in Fall 2009, 28 in Spring 2010, 34 in Fall 2010 and respectively 27 in Spring 2011. 

Overall, the self-reported GPA score for the 107 students that provided this information varied 

from 1.9 to 4.0 with a mean of 3.1. A one-way ANOVA analysis found no significant difference 

for the GPA scores across the four semesters. To further test the homogeneity of students’ 

characteristics throughout the four semesters an entry survey was administered on the first day of 

class. Table 2 summarizes the basic statistics for the variables used to analyze group 

homogeneity.  

 

The expected motivation and difficulty associated with the course were measured with the 9-

point semantic-differential scales used for the path model variables previously described. Self-

reported computer skills (Excel, AutoCAD, PowerPoint) were measured with a 10- point scale 

(“1”- novice to “10” -expert). Finally, for the entry assessment eleven multiple-choices test 

questions that covered basic algebra, geometry, physics and surveying problems, were 

administered. The final score was computed as a percentage of the maximum potential score for 

all test items.  
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Table 2. Homogeneity of Students’ Characteristics 

 

 Variable Basic Statistics 

Entry 1 2 3 4 M SD 

1. Expected motivation (1-9) - -.02 .20* -.03 5.83 .95 

2. Expected difficulty (1-9)  - -.13 .07 5.93 1.04 

3. Computer skills (1-10)   - -.06 5.84 1.12 

4. Entry assessment (%)    - 70.38 15.73 

          Note: * p < .05 

 

A one-way ANOVA analysis for each of the four entry variables above-described indicated that 

there was no statistically significant difference among the four groups of students included in this 

study. Therefore, at the entry point the students enrolled in this course from fall semester 2009 to 

spring semester 2011 were homogeneous and could be combined in one group for the scope of 

this study. 

 

RESULTS FORM THE PATH MODEL ANALYSIS 

 

Path analysis, a form of Structural Equation Modeling (SEM), allows to specify a priori, for 

inferential purposes, the relation between students’ performance outcome, academic self-efficacy 

and two of its major determinants, perceived motivation and perceived task complexity (35). The 

sample size for this study was within the limits of cases/parameter ratio 28:1, being significantly 

higher than the minimal value recommended in the literature, 5:1. AMOS (v.18) was the 

software platform used to test the proposed path model presented in Figure 2.  

 

Results from Basic Statistical Analysis 

 

Table 3 presents the basic statistics for each of these measured variables including the 

endogenous (dependent) and exogenous (independent) variables. 

 

Table 3. Path Model Analysis: Basic Statistics for Path Variables 

 

 Variable Basic Statistics 

Exit 1 2 3 4 M SD 

1. Perceived motivation - -.21* .33** -.06 5.05 1.40 

2. Perceived difficulty  - -.45** -.12 5.01 1.57 

3. Self-efficacy   - .18* 3.63 .69 

4. Recall test    - 64.87 19.03 

Notes: * p < .05 (2-tailed); ** p < .01 (2-tailed) 

 

The correlation analysis results confirm the two predictions made in the proposed path model. 

First, perceived motivation shows a statistically significant positive correlation to self-efficacy 

while perceived difficulty shows a statistically significant negative correlation to self-efficacy. 

Second, self-efficacy shows a statistically significant positive correlation to the recall test scores.  
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The Overall Model 

 

The minimum discrepancy measured by chi-square was not significant, χ
2
 (2) = 2.12, p = .35, 

which indicates that there is an adequate close fit between the hypothesized model and the 

perfect fit model. A more sensitive measure linked to this statistics is the ratio of the minimum 

discrepancy to the degrees of freedom, which for the proposed model was CDMIN/DF = 1.06 

and confirmed the adequacy of model fit as this value is smaller than 2.0 as recommended in the 

literature (36). Figure 3 summarizes the resulted path coefficients, their statistical significance as 

well as the variance explained by each of the two target variables, self-efficacy and respectively 

performance outcome. 

 

 
 

Notes:  
       Significance of Standardized Path Coefficients * p < .05; ** p < .01; 

       
1
 Squared Multiple Correlations (explained variance); 

 

Figure 3. Path Coefficients for the proposed model of GIS Laboratory 

 

Goodness-of-Fit Measures 

 

All major goodness-of-fit statistics recommended in the literature (35, 36) indicated a good fit 

for the proposed models, as follows:  

a) Goodness-of-fit index, GFI = .99, and adjusted-goodness-of-fit, AGFI = .95, are equal 

or higher than .95,  

b) Comparative fit index, CFI = .99, higher than .95, the recommended value, and   

c) Root mean square error of approximation, RMSEA = .02, smaller than .06, a value 

recommended by the literature (36).  

 

In addition, Holter critical sample size statistic, Holter (p = .05) = 322, is higher than 200 which 

is indicative of a model that adequately represents the sample data used (35).  

 

THE IMPACT OF THE NATURE OF LABORATORY IMPLEMENTATION 

 

To test if the nature of the laboratory implementation produced a significant shift in the three 

predictors of the performance outcome proposed in the path model, a series of one-way ANOVA 

analyses was carried out.  
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The between-groups factor used was the nature of laboratory implementation, with two levels: 1) 

independent laboratory, for Fall 2009 and Spring 2010, and 2) anchored laboratory, tied to the 

semester-long design project for the implementation of the laboratory (Fall 2010, Spring 2011). 

The dependent variables tested against the nature of the laboratory implementation were the 

perceived difficulty, perceived motivation and respectively self-efficacy.  

 

This analysis revealed a significant effect for the nature of laboratory implementation for: a) self-

efficacy, F(1,113) = 13.93, p < .001 and respectively one of its predictors, b) perceived 

difficulty, F(1,113) = 33.19, p < .001. No statistically significant difference was observed for 

perceived motivation.  

 

Figure 4 displays sample means, which indicates that self-efficacy (a 1 to 5 scale), significantly 

increased, while perceived difficulty (a 1 to 9 scale) significantly decreased when the laboratory 

was anchored in the context of the highway design project.  
 

 
Figure 4. The impact of the nature of laboratory implementation on two of the predictors of 

student performance outcomes 

 

DISCUSSION AND CONCLUSIONS 

 

While this study focused on the implementation and refinement of an online learning 

environment developed for transportation engineering the process, findings and lesson learned 

described below are valid for any instructional field interested in optimizing the impact of online 

modules on students’ learning. 

  

Very often online learning modules for undergraduate instruction, in our case the GIS module, 

are developed by teams of faculty and graduate students. That’s why they are first tested with 

groups of graduate students and, at best, also tested with small groups of undergraduate students 

outside of the actual classroom environment. This approach oversimplifies the learning 

environment and therefore produces biased views on major factors such as complexity of the task 

or motivation that impact the learning process. To address this shortcoming we engaged in a 
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series of formative implementations of the online environment that allowed us to measure such 

factors and make changes according to these findings. However, in our case, the tested online 

modules were not strongly tied to a significant grading measure. Therefore we decided to use 

self-efficacy as an indicator for students’ learning outcomes. Along with the fact that this 

variable was proved in prior research as being a strong proxy for students’ learning outcomes 

another advantage of using self-efficacy is the fact that it is easy to measure using a self-

reporting survey. Therefore, for each cycle of implementation we measured these variables and 

made changes that reduced the complexity and increased students’ self-efficacy. Most of these 

changes are likely to be valid in other cases of initial implementations of a new online learning 

module. For example, avoiding the unnecessary complexity of the instructional tasks, providing 

additional in-class support and integrating the online module with a major task in the course are 

likely to produce positive changes in students’ self-efficacy. 

 

The potential impact of these factors was also supported by the findings from the path analysis 

model proposed in this study. From the overall model, the path coefficients indicate that both 

perceived motivation and perceived difficulty are significant predictors for students’ academic 

self-efficacy and explain about 24% of its variance. As expected, perceived motivation has a 

positive relation with self-efficacy, while perceived task complexity has a negative relation with 

self-efficacy. The model then confirmed that the instructional design interventions increased 

students’ trust in their ability to learn the topic introduced in the GIS laboratory. A better 

alignment of the complexity of the laboratory activity with the level of students’ expectations 

produced the desired outcome, a higher self-efficacy. Higher self-efficacy typically results in 

higher chances that students will successfully engage in similar future activities. This outcome is 

of high interest, as the GIS laboratory was set as a distributed learning activity implemented as 

stand-alone laboratories in several courses throughout the civil engineering curricula (12, 13). 

 

Finally we wanted to test if self-efficacy that we used as a proxy for students’ performance is in 

our case linked to the actual performance measures as suggested by previous educational 

research. We found that academic self-efficacy was a significant, but weak predictor of 

performance outcome, as it explains only 4% of its variance. In our study, one potential cause of 

this weak predictive power can be explained by the nature of the measurement of performance 

outcome. That is, performance outcome was measured in an unannounced test, one week after 

the completion of the laboratory activity, and therefore it indicates pure memory recall rather 

than typical outcome of a well-prepared assessment activity. Another potential cause for this 

weak relation can be the relative short time of the instructional activity, which did not provide 

students with enough opportunities for feedback on their performance. Therefore, students did 

not have enough support to make a strong link between their perception of how well they think 

they know the topic at hand and the actual results of assessment activities associated with that 

topic. 

 

Further research is needed to test this model when the assessment strategies used to measure 

students’ performance outcomes builds on opportunities to provide students with feedback on 

their learning progress.  
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