Asee peer logo

A Heuristic to Aid Teaching, Learning, and Problem-Solving for Mechanics of Materials

Download Paper |

Conference

2011 ASEE Annual Conference & Exposition

Location

Vancouver, BC

Publication Date

June 26, 2011

Start Date

June 26, 2011

End Date

June 29, 2011

ISSN

2153-5965

Conference Session

Innovations in Teaching: Mechanics

Tagged Division

Mechanics

Page Count

10

Page Numbers

22.48.1 - 22.48.10

DOI

10.18260/1-2--17330

Permanent URL

https://peer.asee.org/17330

Download Count

571

Request a correction

Paper Authors

biography

C.J. Egelhoff U.S. Coast Guard Academy

visit author page

C.J. Egelhoff is currently Professor of Mechanical Engineering at the United States Coast Guard Academy, where she has taught since 1997. She is a former practicing engineer in industry and a former Public School Educator. Her research focuses on: modeling blood flow in humans, developing computing tools for the design/manufacturing of semi-trailer frame rails, kinematics and dynamics of mechanisms and machines, learning from engineering disasters, and recruiting/retention of women and minorities into engineering. She earned a B.A. in Education from the University of Northern Colorado, a M.S. in Petroleum Engineering from the University of Wyoming, and a Ph.D. in Mechanical Engineering from the University of Idaho. She is a licensed Professional Engineer.

visit author page

author page

K.L. Burns U.S. Coast Guard Academy

Download Paper |

Abstract

A HEURISTIC TO AID TEACHING, LEARNING AND PROBLEM-SOLVING FOR MECHANICS OF MATERIALSThe Mechanics of Materials course is fundamental to all areas of solid engineering mechanics. Itis a required course in such programs as Mechanical, Civil, Naval Architecture and MarineEngineering, Industrial, Chemical, and Biomedical Engineering. It often functions as a decision-provoking course, whereby students determine whether or not they persist in majoring inengineering or choose to exit engineering as a major. The course is generally considered“difficult” by students; although the math required is not particularly advanced, the content andvocabulary (unchanged in practice for decades) are new to students. Educators across severalengineering disciplines over the past few decades have attempted to improve learning through avariety of efforts such as: (a) development of physical demonstration models for classroom use,(b) development of computer programs to assist, encourage and facilitate independent learningby students, (c) concept inventory studies to uncover the underlying cause of learning thecontent, (d) development of active learning strategies for use in the classroom, (e) project-basedtasks for students to learn by doing and (f) peer teaching/learning. Among our own efforts toimprove learning, we observed that students often miss the global connections of the many topicsin the course, that students get “lost” in the midst of problem solutions, and that students havedifficulty storing their knowledge in their memories. All too often, we have known brightstudents who were unsuccessful in recalling basic problems only a few weeks after completingthe course. Through our multi-year efforts, our goal is to help students make the concept andproblem-solving connections using somewhat basic sketches they can recreate from memorysimply using paper and pencil. In this paper we describe a basic concept map developed atUSCGA to use as an instructional aide which organizes the problem-solving process whileshowing the “big picture” components of the whole course. Our work began by having studentsdevelop their personal concept maps as a means to learn or to demonstrate their understanding ofthe course content. Those activities revealed a road-block to use as instructional aides for avariety of reasons. First, the personal concept maps were so personal that the instructor had tointerview virtually every student to uncover the intended meaning. Second, the personal mapsshowed so little commonality that they were not useful in facilitating communication amongstudents. Most importantly, student concept maps did not show the global connection of alltopics taught in the course and the problem-solving process, which was a primary goal of ours.Therefore, we created a “common” concept map which we use to teach and review Mechanics ofMaterials. This map has become a focal point for class lecture and tutoring. It is sufficientlysimple so that anyone could re-create its basics as a hand-drawn sketch. In this paper, we presenta literature review, we include the “common concept map”, we detail several ways in whichwe’ve used the heuristic, and finally describe preliminary results assessing its efficacy.

Egelhoff, C., & Burns, K. (2011, June), A Heuristic to Aid Teaching, Learning, and Problem-Solving for Mechanics of Materials Paper presented at 2011 ASEE Annual Conference & Exposition, Vancouver, BC. 10.18260/1-2--17330

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2011 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015