
Paper ID #26263

A Literate Programming Approach for Hardware Description Language In-
struction

Dr. J.W. Bruce, Tennessee Technological University

J.W. Bruce is with the Department of Electrical & Computer Engineering at Tennessee Technological
University in Cookeville, Tennessee USA

Dr. Bryan A. Jones, Mississippi State University

Bryan A. Jones received the B.S.E.E. and M.S. degrees in electrical engineering from Rice University,
Houston, TX, in 1995 and 2002, respectively, and the Ph.D. degree in electrical engineering from Clemson
University, Clemson, SC, in 2005. He is currently an Associate Professor at Mississippi State University,
Mississippi State, MS.

From 1996 to 2000, he was a Hardware Design Engineer with Compaq, where he specialized in board lay-
out for high-availability redundant array of independent disks (RAID) controllers. His research interests
include engineering education, robotics, and literate programming.

Dr. Mahnas Jean Mohammadi-Aragh, Mississippi State University

Dr. Jean Mohammadi-Aragh is an assistant professor in the Department of Electrical and Computer Engi-
neering at Mississippi State University. Dr. Mohammadi-Aragh investigates the use of digital systems to
measure and support engineering education, specifically through learning analytics and the pedagogical
uses of digital systems. She also investigates fundamental questions critical to improving undergraduate
engineering degree pathways. . She earned her Ph.D. in Engineering Education from Virginia Tech. In
2013, Dr. Mohammadi-Aragh was honored as a promising new engineering education researcher when
she was selected as an ASEE Educational Research and Methods Division Apprentice Faculty.

c©American Society for Engineering Education, 2019

A Literate Programming Approach for
Hardware Description Language Instruction

INTRODUCTION

Digital devices are ubiquitous in modern life. Over the last several decades, nearly all aspects of
society are dependent on digital devices from entertainment devices to convenience devices to
economy-critical and life-critical devices. A big reason for the proliferation of digital devices
into every part of our lives is that digital systems have increasing capabilities at shrinking costs
[1]. This seemingly contradictory march has often been characterized by Moore’s Law, named
after Gordon Moore, co-founder of Fairchild Semiconductor and CEO of Intel.

A critical challenge to continue this progress is management of digital circuit complexity. The
days of hand-tuned digital circuits designed by single engineer are long gone. Modern digital
circuits are far too complex for a single person to grasp and understand. To aid the modern
digital circuit designer, hardware description languages (HDLs) such as ABEL [2], VHDL (now
described by IEEE Standard 1076), Verilog (now described by IEEE Standard 1364), and others
have been introduced. These HDLs can be used to describe both behavior and structure of a
digital circuit. Therefore, HDLs are documentation tools that possess characteristics similar to
traditional computer programming languages. The introduction and use of modern HDLs,
predominantly Verilog and VHDL, are a hallmark of modern computer engineering curricula [3].
Because of the concurrent nature of digital devices, these HDLs allow for description of
concurrent operations, similar to programming languages like Haskell and Ada. Most traditional
engineering students have no exposure to such languages and often find HDLs challenging at
first. Confusion can be compounded when learning Verilog, as Verilog is syntactically similar to
the sequential procedural C programming commonly taught to engineering students.

Donald Knuth proposed literate programming (LP) [5] in 1984. LP is an approach to
programming computers in which the programmer (author) composes the program in a form that
is readable by humans. In short, the program should be like literature. This “literate program” is
an essay that contains both explanation for human readers and executable statements for
compilers. A quick glance at the current state of computer programming paradigms will reveal
Knuth’s efforts in LP were not widely adopted. It has been suggested that the failure of adoption
of LP is due, in part, to the lack of sophistication of early LP tools [7].

In this research, the authors employ a modern software tool for LP in a senior-level/introductory-
level course on digital systems design. The course reviews and revisits digital logic design topics
from an introductory course, while adding complexity and incorporating practical aspects not
covered in an prerequisite digital devices course. All student design output is captured in VHDL
for simulation, verification, and synthesis to a modern FPGA. Student attitudes toward the LP
were collected via a survey. Student performance on VHDL assignments and in the course
appear to be similar to previous offerings of the course without LP.

BACKGROUND

Much time and effort has been spent detailing the challenges of teaching traditional computer
programming languages. In spite of the pressing need for capable, creative, and above all
competent programmers, educators struggle to effectively train students in these essential
computing skills. McKraken’s comprehensive examination of first-year CS students [4] reports
that only approximately 20% of the surveyed students could solve programming problems
expected by their instructors. In addition, the importance of programming continues to grow. Not
only are CS and ECE students expected to master the art of programming, but student mastery of
domain-specific languages such as MATLAB, R, Maple, Mathematica, and one or more HDLs is
now required to be successful in all engineering disciplines.

Composing one’s thoughts in a computer language – be it a traditional programming language or
a HDL – has much in common with writing human languages. The syntax, structure, and
vocabulary are different, and often more limited, but many of the same mental pathways are
exercised. Many approaches to teaching computer languages seem to completely disregard
writing when composing in a computer program. For example, computer programming textbooks
present a program’s idea in well-crafted prose, then instructors coach students in developing flow
charts, UML diagrams, and design documents. But, in the end, all this of this writing is
completely cast aside when the actual program is written, resulting in a mono-spaced mess only a
compiler could love, as shown in Figure 1.

We assert that good writing leads to good thinking, and good thinking leads to good programs. In
order to improve education of HDLs, writing must be reintroduced into writing HDL
descriptions. This approach follows the philosophy of Literate Programming (LP) proposed by
Donald Knuth in 1984.

Literate Programming

Knuth coined the term literate programming (LP) [5], in which an author composes an essay
containing both explanation for readers and executable statements for compilers. LP mandates
that a document consisting of intermingled code and prose be the creative output, and differs
radically from the traditional software development model. Traditional software development
views comments as an optional accompaniment to the code, and makes no attempt to connect the
scattered comments into a coherent whole. The premise behind LP is that you do not document a
program. Instead, LP has you write a document that contains a program [6].

Using LP, educators can provide their students with an executable text – high-quality prose with
detailed explanations, figures, diagrams, hyperlinks, etc. Simultaneously, students can read,
learn, compile, execute, and explore ideas. Knuth’s LP paradigm is also consistent with cognitive
load theory [12], which states that keeping related concepts close, temporally or spatially, can
improve the ability of students to grasp difficult ideas [13][14].

Figure 1: Representative VHDL code

-- Title: Parallel to Serial Converter (PAR2SER)
-- Project: ASEE 2019

-- File: par2ser.vhd
-- Author: <foo@bar.engr.com>

-- Description : -- Implements a simple 8-bit parallel to serial conv

-- Modification history : -- 2019/02/19 : created

library ieee;
use ieee.std_logic_1164.all;
entity PAR2SER is
 port (DIN : in std_logic_vector (7 downto 0); -- input register
 MODE : in std_logic_vector (1 downto 0); -- mode selection
 CLK, RESET : in std_logic; -- clock and reset
 SDOUT : out std_logic); -- output data
end PAR2SER;

-- purpose: Implement main architecture of PAR2SER
architecture BEHAVIOR of PAR2SER is
 signal IDATA : std_logic_vector(7 downto 0); -- internal data
begin -- BEHAVIOR
 -- purpose: Main process
 process (CLK, RESET)
 begin -- process
 -- activities triggered by asynchronous reset (active high)
 if RESET = ’1’ then
 SDOUT <= ’0’;
 IDATA <= "00000000";
 -- activities triggered by rising edge of clock
 elsif CLK’event and CLK = ’1’ then
 case MODE is
 when "00" => -- no operation
 null;
 when "01" => -- load operation
 IDATA <= DIN;
 when "10" => -- shift left
 SDOUT <= IDATA(7);
 for mloop in 6 downto 0 loop
 IDATA(mloop+1) <= IDATA(mloop);
 end loop; -- mloop
 when others => -- no operation otherwise
 Null;
 end case;
 end if;
 end process;
 end BEHAVIOR;

Knuth’s initial literate programming implementation, called WEB, incorporated ideas of LP
along with his work in digital typography in TeX. WEB used macros and preprocessor directives
to create a meta-language that would render a WEB file into two separate outputs: a human-
readable document and source code for compilation. First, the WEB source document (see
Figure 2a) consists of a series of cryptic formatting instructions, some of which allow the
inclusion of Pascal code, the only programming language supported by WEB. These cryptic
TeX-based formatting commands raised a high barrier of entry and discouraged adoption.
Second, Knuth’s choice of an additional source document means that the formatted human-
readable document (in Figure 2b) and the source code (in Figure 2c) had to be created by LP
tools, WEB’s utilities tangle and weave, respectively. Neither rendered text or source code could
be edited directly. Making minor edits to the formatted document in Figure 2b required finding
the text in the source document in Figure 2a which produced it, editing the offending lines, then
regenerate the formatted document to verify that the correct edit was performed. Likewise,
modifying the source code in Figure 2c requires a similarly laborious process. Minor textual
edits become major chores. Finally, traditional development tools such as debuggers and
profilers are extremely difficult to deploy for WEB documents and their associated programs.

Figure 2: Knuth's WEB system for LP transforms the input source document in (a) to the
formatted output in (b) and the source code in (c) as illustrated by the large arrows.[5]

Later LP implementations addressed the first problem in Knuth’s approach: weaknesses in
language support and formatting. Some variants support additional programming languages:
CWEB (for C), FWEB (Fortran, C, and C++), xmLP (XML), pyWeb, FunnelWeb, nuweb, and
noweb (any language). Other tools provided simpler formatting syntax: nuweb uses LaTeX;
noweb a simpler set of literate programming directives and also allows use of LaTeX; pyWeb
uses restructured text. Pieterse’s survey reviews other literate programming approaches [7].
However, the second problem exists by Knuth’s design: choosing a source document from which
LP tools produce both source code and a formatted document prevents direct modification of
either the source code or the formatted document, isolating authors from the writing they must
do. For these reasons, no LP tool has gained widespread acceptance in the programming
community or for sustained pedagogical use. This last point is substantiated by noting that most
education-focused research using LP tools took place in the 1990s. Efforts in this area include
using LP tools to grade homework submissions [8], teach programming [9], or write better
comments [10]. The work in [9] and [10] report some success, but both cite student complaints
about the difficulty of using LP tools.

More recently, documentation generated directly from code has became widespread.
Documentation generators, such as Doxygen and JavaDoc, produce a document directly from
formatted comments within source code, thus overcoming WEB’s second problem. These
document generation tools are widely used by programmers, with thousands of programs
employing these tools or variants. While tools like Doxygen, JavaDoc, and others, were inspired
by LP principles [11], they only document the program’s external interface such as the
application programming interface, or API. Today’s popular document generators doe not easily
allow elaboration about the internal workings of a program – the primary goal of LP.

CodeChat – a modern LP approach

One of the authors of this paper has developed a modern tool – CodeChat tool [15] – that
attempts to address both of WEB’s failings while still incorporating the main premise of LP. The
CodeChat tool combines the strengths of both documentation generators and LP tools. CodeChat
builds a formatted document directly from source code, using human-readable ReStructuredText
[16] as markup contain in the language’s native comments. Figure 3 shows the user view of
CodeChat.

CodeChat contains a synchronization mechanism which matches source code with the
corresponding web output, making editing of either straightforward. CodeChat users simply edit
a programming language source file in the left pane. The user places very intuitive
ReStructuredText markup in the language’s comment lines. The CodeChat tool parses the source
code file, locates the markup, and renders the program and annotations into human-readable
form in real-time into the right-hand pane. The rendered output can be generated in many
different formats, including HTML, TeX, LaTeX, and DocBook. This single-view paradigm is
understood by today’s computer users within a few moments of use. CodeChat provides an easy-
to-use and viable platform for LP techniques in programming, and is an ideal tool for conducting
research into the use of LP in programming education pedagogy. CodeChat supports LP in more
than 200 programming and scripting language “right out of the box.”

LP for HDL education

The introduction and use of modern HDLs, predominantly Verilog and VHDL, are a hallmark of
modern computer engineering curricula [3]. Because digital devices operate concurrently, HDLs
allow for description of concurrent operations, similar to programming languages like Haskell
and Ada. The complexity of hardware descriptions coupled with HDL similarities to sequential
programming languages has led the authors to propose the idea of introducing LP into HDL
education. Using LP to improve HDL education has not been widely investigated. One early
attempt involved an approach very similar to Knuth’s WEB approach [18][19] using a Prolog
logic program to generate a human-readable form and a Verilog HDL file. The main thrust of
this effort was to capture the formal operational semantics of the description and animate the

Figure 3: CodeChat, the LP tool used in this study, transforms traditional computer
programming source files (on the left) into a variety of more human-readable forms such as
web-browser rendered HTML (on the right). Transformation is synchronized to editing and
performed in real-time.

behavior of parallelisms. The approach taken in [18] and [19] will clearly suffer from the failings
of Knuth’s efforts with regard to a maintainability, tool-chain integration, and user familiarity.

The goal of LP is to get the students to view their HDL descriptions as being a product for
human consumption instead of tool-chain consumption. Furthermore, the more expressive nature
of human language and the student’s experience with human language should allow the students
to more clearly express the behavior and interactions of the digital hardware. Using LP in HDL
education also reinforces the spirit of why HDLs were created in the first place – to describe
hardware behavior. An HDL description should describe – in as human-readable terms as
possible – what the hardware design “looks like” or “how it behaves”. The HDL description is,
first and foremost, an essay written to fellow designers describing digital hardware. This
description also happens to be in an “executable form” thanks to the HDL tool chain.

APPROACH

The lead author teaches a split-level (senior and introductory graduate) course in digital system
design. The course reviews and revisits digital logic design topics from an introductory course,
while adding complexity and incorporating practical aspects not covered in the earlier course. All
of the coursework is captured in VHDL. The course concludes with a small design project. The
first half of the course focuses on instruction in VHDL syntax, and is accompanied by lab
periods in which students write descriptions – mostly structural – of simple hardware designs in
VHDL. Students compose appropriate test benches to exercise and validate their designs. The
second half of the course delves into timing and system design issues along with a more
behavioral approach to hardware description. Weekly lab assignments have the student design
ever-larger components that may be used in their design project.

This paper examined a cohort of 36 students enrolled one section of the course during a recent
fall semester. The cohort was composed of ten electrical engineering majors who took the class
as an elective, and twenty-six computer engineering majors for whom the course is required. The
course offering described here was similar to previous semesters with nearly identical topical
coverage and pacing using the same text, lecture materials, and lab facilities. Due to faculty
staffing changes, the previous iterations of the course were taught by another faculty member
who did not employ LP methods. The course is offered once per academic year in a single
section prohibiting a convenient control group.

The course was composed of lecture periods (twice a week; one hour each) and a weekly lab
session (a single two hour session each week) with a graduate teaching assistant to help the
students. Lecture periods were sprinkled with collaborative active exercises. Student were
encouraged to work in teams on the lecture active exercises and on lab tasks. The instructor often
had to expressly direct the collaborative effort as most students would choose to work alone if
given the choice. The complexity of VHDL and the overhead of tool chain processes largely
prohibited the use of the industrial-strength synthesis tools in-class for the active exercises.
Active exercises were mostly centered around the design approach for a particular problem, with
students writing “pseudo-code” VHDL. Homework and lab activities consisted of students
writing VHDL descriptions annotated with explanations in the CodeChat tool. The addition of
LP annotations to their VHDL was the only significant change to VHDL coding assignments

compared to previous semesters. In previous semesters, students wrote formal lab reports to
describe their design approach and results. The CodeChat tool allowed students to include
hyperlinks, figures, tables, equations, FSM diagrams, timing waveforms, etc. directly in their
HDL descriptions. See Figure 3. Since the code itself was descriptive, and each design’s test
bench could be annotated with results obtained from the VHDL tools. Students were not required
to submit a formal lab report. Each design task had a deliverable of VHDL files that were to be
liberally annotated with descriptions, explanations, figures, timing diagrams, and observations.

DATA & DISCUSSION

It is desired to ascertain whether LP had an impact on the students’ ability to successfully learn
VHDL to capture digital systems behavior. The class population was composed of computer
engineering and electrical engineering majors. The course is required for the former, and serves
as a technical elective for the latter. While computer engineering and electrical engineering are
very similar, the computer science and programming skills and experience of the computer
engineering majors usually is much more substantial than those of electrical engineering
students. Does this difference in background affect a student’s view of LP as it is used in a
digital systems design course?

An ideal, but often difficult to deploy, approach to testing the efficacy of LP in the digital
systems design course would be formal experiment with control and treatment groups of students
taught under similar educational conditions during the same academic period. This was not
possible do to existing scheduling and faculty workloads. The experience described here did not
employ a control group. Only one section of the course is offered annually. Another approach is
for the instructor to create control and treatment groups within the same lecture and lab
population. This approach is problematic as students would feel that they are being asked to do
assignments that are viewed as more difficult, challenging, or otherwise detrimental to their
grade. Control and treatment groups could be formed by student self-selection, but groups of
comparable sizes, abilities, and motivation are very suspect with this scheme. Given the
circumstances, a decision was made to apply the treatment to the entire cohort.

Comparison of cohorts in previous versions of the same course is always difficult. Every
semester is different with two distinct groups of students are involved. In general, the same
course in a different semester means students are evaluated under different conditions with
different exams, etc. The cohort examined here completed the digital systems design course with
exam, project, and course scores reasonably identical to scores in the previous versions. The
instructor’s observation was that the students in the class described here demonstrated abilities
and knowledge equal to the students taught without LP in previous semesters. Other faculty have
reported their sense of the students abilities in the topics and skills from the course to be similar.

At the conclusion of the course, students were asked to respond to a self-assessment concerning a
wide variety of course activities. Survey questions were Likert-scale. Table 1 show the survey
question relevant to this paper.

Survey Statement Choices

Q1 I would rate my knowledge of HDL and digital
systems design knowledge at the start of the course

Poor (0), Fair (1), Satisfactory
(2), Very Good (3), Excellent (4)

Q2 I would rate my knowledge of HDL and digital
systems design knowledge at the conclusion of the
course

Poor (0), Fair (1), Satisfactory
(2), Very Good (3), Excellent (4)

Q3 Writing detailed and descriptive comments in my HDL
descriptions helped me to learn.

Strongly disagree (-2), Disagree
(1), Neither disagree or agree (0),
Agree (+1), Strongly agree (+2)

Q4 I would have rather had traditional Q&A questions
instead of writing documented HDL descriptions for
course homework

Strongly disagree (-2), Disagree
(1), Neither disagree or agree (0),
Agree (+1), Strongly agree (+2)

Q5 My digital design efforts in this class would have been
better summarized with a formal report/paper

Strongly disagree (-2), Disagree
(1), Neither disagree or agree (0),
Agree (+1), Strongly agree (+2)

Q6 Putting my design ideas into words helps me to see
errors in my design and improves my overall output

Strongly disagree (-2), Disagree
(1), Neither disagree or agree (0),
Agree (+1), Strongly agree (+2)

Table 1: Relevant student survey questions administered after the course

Two first two questions asked students were asked to rank their knowledge and abilities of
digital design concepts and hardware description languages. Students could choose a response
from the following list: “poor, “fair”, “satisfactory”, “very good”, or “excellent”. The responses
were mapped to the values zero (poor) through four (excellent). The questions had the student
rate their knowledge of digital system design and HDL at the start of the course (Q1) and at the
end of the course (Q2). Table 2 gives the statistics of the two questions self-assessed abilities by
major.

Knowledge of DSD and HDL CmpE EE Entire cohort

Q1 (mean, std. deviation, median) 0.29, 0.59, 0 0.00, 0.00, 0 0.21, 0.51, 1

Q2 (mean, std. deviation, median) 2.12, 1.22, 2 1.86, 1.07, 2 2.04, 1.16, 2
Table 2: Self-reported knowledge of digital system design and HDL before (Q1) and after (Q2)
the course.

A small number (four out of sixteen) of computer engineers reported have some knowledge of
the subject before the course started, while electrical engineering majors all reported knowing
effectively nothing about the course topics. At the end of the course, most students of both
majors reported their knowledge as being “satisfactory” or better. The difference between a
student’s response (Q2-Q1) would indicate the course affect on their knowledge. Computer
engineering and electrical engineering majors reported a mean delta of 1.82 and 1.86,
respectively, between Q1 and Q2.

Students were also asked to rate how well they agreed with several statements about the effect
that LP contributed to their learning. Students were given the choice of “strongly disagree”,
“disagree”, “neutral”, “agree” and “strongly agree”. In these survey questions, these choices
were mapped to values -2 (strongly disagree) to +2 (strongly agree). The numeric values chosen
allow that the sign of the response grossly indicate whether the response is negative, neutral, or
positive. Students were allowed to also choose “not applicable”. N/A responses were discarded.

Q3 asked a student about the efficacy of the LP approach used in the course. They were asked
how much they agreed to the statement “Writing detailed and descriptive comments in my HDL
descriptions helped me to learn”. Q4 asked a student if they would have preferred the traditional
homework set of problems to work instead of VHDL assignments using the LP approach.
Specifically, students responded to the question “I would have rather had traditional Q&A
questions instead of writing documented HDL description for course homework”. Q5 was posed
to judge whether the student simply wanted to avoid “writing”. Students were asked if they
would have preferred usual formal lab report required in the prior course offerings and in many
of the prerequisite lab courses. Q5 asked a student how much they agreed with “My digital
design efforts in this class would have been better summarized with a formal report/paper”. Later
in the student survey, students were asked to give their opinion on the LP paradigm again. In Q6,
the survey question was worded so as not to invoke the actual lab experience with the tools, the
teaching assistant, the assignments, etc, but simply about the idea of using writing to make better
HDL descriptions. Students were asked how much they agreed with the statement “Putting my
design ideas into words helps me to see errors in my design and improves my overall output”.
Table 3 give the data summary of the survey results. No student marked “Not Applicable” in
their response of Q3-Q6.

LP and writing in HDL CmpE EE Entire cohort

Q3 (mean, std. deviation, median) -0.41, 1.33, 0 0.00, 0.00, 0 -0.29, 1.27, 0

Q4 (mean, std. deviation, median) -0.18, 1.19, 0 0.29, 1.25, 0 -0.21, 1.18, 0

Q5 (mean, std. deviation, median) -0.65, 1.17, -1 -1.29, 0.76, -1 -0.83, 1.09, -1

Q6 (mean, std. deviation, median) -0.06, 1.09, 0 0.29, 0.95, 1 0.04, 1.04, 0
Table 3: Self-reported knowledge of digital system design and HDL before (Q1) and after (Q2)
the course.

The results from Q3 indicate that computer engineers were slightly more negative than neutral
about the LP approach. Electrical engineers were exactly neutral as a group. Of course,
individual students reported “strongly agree” and “agree”, but there were roughly equal numbers
of students reporting “strongly disagree” and “disagree”. The CodeChat tool was created by one
of the authors. The tool is not as polished as commercial or mature open-source software
applications. The tool itself works as advertised and is quite stable. Students never reported
dissatisfaction with tool functionality. However, installation of CodeChat tool as problematic.
To aid in CodeChat development, the CodeChat tool uses a wide variety of open-source libraries
and supporting frameworks. Several of these software packages had varying compatibility issues
with student laptops. Students were quite vocal in expressing their frustration with the

installation process at the beginning of the semester. The students’ unhappiness was
compounded as installation on one student’s laptop would be smooth and flawless, and another
student with an identical computer would experience installation problems. Ultimately, several
installation problems were a result of students not following the detailed installation instruction
provided by the instructor. Eventually, the instructor was able to assist every student and get the
tool operational. However, this initial negative experience likely colored the student's impression
of the CodeChat tool and the LP paradigm.

In Q4, computer engineers were indicated a slight preference for homework based on LP-infused
VHDL over a set of traditional homework problems. Electrical engineers indicated an even
strong preference for LP and VHDL, although neither group was overwhelming in their
preference.

Not surprisingly, Q5 responses indicate that both majors are more emphatic about preferring the
LP approach to VHDL compared to writing a formal lab report. As with Q4, the preference
among the electrical engineers was stronger than the computer engineers.

Q6 was worded to try to elicit the student response about LP without ascribing it to the course
and lab experience in support of Q3. Both majors were effectively neutral in their views, with
electrical engineering majors being slightly positive on average, and computer engineers as a
group were nearly neutral. Note that response in Q6 are a bit more positive than the very similar
question Q3. Students appear to recognize that writing and natural language may help them
express their designs, but the LP approach or negative feelings due to CodeChat installation
drive their opinions a bit more negative when the writing involves commenting their HDL.

A Mann-Whitney U test was chosen as a non-parametric test to compare the two populations
[20]. Table 4 shows the results of the Mann-Whitney test. No significant differences between
the two populations are observed on questions Q1-Q6.

Survey Statement U value P value

Q1 I would rate my knowledge of HDL and digital systems design
knowledge at the start of the course

45.5 0.374

Q2 I would rate my knowledge of HDL and digital systems design
knowledge at the conclusion of the course

52 0.634

Q3 Writing detailed and descriptive comments in my HDL
descriptions helped me to learn.

71 0.465

Q4 I would have rather had traditional Q&A questions instead of
writing documented HDL descriptions for course homework

56 0.824

Q5 My digital design efforts in this class would have been better
summarized with a formal report/paper

41 0.240

Q6 Putting my design ideas into words helps me to see errors in my
design and improves my overall output

71 0.465

Table 4: Results from Mann-Whitney U test. Threshold value for data is 28.

Other studies have reported similar student satisfaction results when introduced to the LP
paradigm. Students were somewhat ambivalent about the effectiveness of LP to improve their
HDL in the digital design course. One theory is the computer engineers are more comfortable
with the topics covered in the course and with programming languages and documentation than
the electrical engineers. The design tasks in the course were not overly complex, so computer
engineers may have felt the LP paradigm was simply too much overhead and work for the
reasonably simple technical HDL that followed. Electrical engineers are less comfortable in the
course described here, and the LP approach may allowed them to better express themselves. If
this is a valid view, one might expect that student enthusiasm to increase as assignments and
designs get more complicated. Such a result would also agree with literature that computer
programmers tend to comment more heavily in complicated code, or code that they do not
initially understand [21], [22]. In essence, developers tend to elaborate in more descriptive and
detailed comments when the coding is difficult. LP would provide the developer with a more
suitable mechanism for human-digestible descriptions.

Students, especially the computer engineering majors who have more experience with computing
languages, may have also suffered from the mistaken impression that any computer activity time
spent not creating “working code” is a waste of time. With more experience, they will realize
that documentation of computer code or VHDL descriptions leads to a much higher
maintainability and, ultimately, shorter overall development cycles and lower costs [21], [22].

Anecdotal observations by the instructor and other faculty are that student comprehension and
performance seemed largely unchanged compared to previous semesters. The next step would be
to form a controlled experiment wherein one group will use traditional editors or IDEs to
develop largely undocumented HDL descriptions. A treatment group would use tools and LP
approach described here. Incorporation of formal product metrics such as defect production and
development time would also give more objective measures to the quality of student output.
Finally, student performance on other course measures or later academic outcomes might
indicate a difference.

CONCLUSIONS

The authors taught a senior-level course on digital systems design required by their computer
engineering program. A number of electrical engineering students were enrolled in the course as
an elective. In the course, digital logic design topics from an introductory course are reviewed
and explored again in detail using VHDL. The authors introduced Knuth’s literate programming
paradigm, which treats a program as an essay, intermingling VHDL code with explanation in a
very human-readable and friendly document. his stands in contrast to traditional programming
pedagogy where difficult-to-understand code is isolated from its explanation. The hope is that LP
would aid student learning, and improve the quality of the student output. Situations in
scheduling prohibited a true control and treatment group approach for this study. The study as
described here indicates that student learning and academic performance appears unchanged
from more “traditional” teaching approaches. Computer engineering students reported being
neutral to very slightly negative about use of LP, with electrical engineering students reporting a
slightly positive view of the approach. The authors have reason to believe that the logistics of the
LP tool installation biased students toward the negative. Arguably, the population size was small

and the study was limited. It is hoped that other researchers will apply LP to HDL education at
their institutions. Additional study is required with more students. The instructor’s experience
using LP to teach HDL should also create a more positive and effective learning environment in
future attempts.

REFERENCES

[1] Moore, Gordon E. “Cramming more components onto integrated circuits”. Electronics, April 1965.
[2] Lee, Kyu Y., et al. “A High-Level Design Language for Programmable Logic Devices”. VLSI Design. Vol. 6,

no. (6): 50–62. (June 1985)
[3] ACM/IEEE, Computer Engineering Curricula 2016: Curriculum Guidelines for Undergraduate Degree

Programs in Computer Engineering, Dec. 2016.
[4] McKracken, M. et al. “A Multi-national, multi-institutional study of assessment of programming skills of first-

year CS Students”, SIGCSE Bulletin, vol. 33, no. 4, pp. 125-180, Dec. 2001.
[5] Knuth, D. Literate Programming, CSLI. p. 99, 1984.
[6] Skaller, M. J., in a Charming Python interview. Retrieved from

http://gnosis.cx/publish/programming/charming_py-thon_8.html.
[7] Pieterse, V., Derrick G. K., & Boake, A. “A case for contemporary literate programming”, SAICSIT, 75, 2-9,

Stellenbosch, Western Cape, South Africa, 2004.
[8] Hurst, A. J. “Literate programming as an aid to marking student assignments”, Proceedings of the 1st

Australasian conference on Computer Science education, 280-286, 1996.
[9] Childs, B., Dunn, D., & Lively, W. “Teaching CS/1 Courses in a Literate Manner,” Proceedings of the TeX

Users Group Conference, St. Petersburg, Florida, July 24-28, Volume 16, No. 3, p. 300-309, 1995.
[10] Shum, S. & Cook, C. “Using Literate Programming to Teach Good Programming Practices,” Proceedings of

the twenty-fifth SIGCSE symposium on Computer Science education, p. 66-70, 1994.
[11] See http://rant.gulbrandsen.priv.no/udoc/history.
[12] Sweller, J. “Cognitive load during problem solving: Effects on learning,” Cognitive science, 12(2), 257-285,

1988.
[13] Sweller, J., & Chandler, P., “Why some material is difficult to learn,” Cognition and instruction, 12(3), 185-

233, 1994.
[14] Sweller, J., Van Merriënboer, J. J., & Paas, F. G., “Cognitive architecture and instructional design,”

Educational Psychology Review, 10(3), 251-296, 1998.
[15] B. A. Jones, M. Jean Mohammadi-Aragh, A. K. Barton, D. Reese, and H. Pan, “Writing-to-Learn-to-Program:

Examining the Need for a New Genre in Programming Pedagogy,” Proceedings of the 122nd ASEE Annual
Conference and Exposition, Seattle, WA, USA, June 2015.

[16] See http://docutils.sourceforge.net/rst.html
[17] Jones, B. A., & Mohammadi-Aragh, M. J. “Employing Literate Programming Instruction in a Microprocessors

Course”, Proceedings of 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana, June 2016.
[18] Bowen, J.P. “Combining Operational Semantics, Logic Programming and Literate Programming in the

Specification and Animation of the Verilog Hardware Description Language.” IFM (2000).
[19] Bowen, J.P., Jifeng, H., and Qiwen, X. “An animatable operational semantics of the Verilog hardware

description language” Proc. Third International Conference on Formal Engineering Methods, Sept. 2000.
[20] de Winter, J.C.F. and D. Dodou, “Five-Point Likert Items: t test versus Mann-Whitney-Wilcoxon”, Practical

Assessment, Research and Evaluation, v. 15 n.11, 2010.
[21] R.S. Pressman, Software Engineering: A Practitioner’s Approach 5/e, Mc-Graw Hill, 2001.
[22] S. McConnell, Code Complete, 2/e, Microsoft Press, 2004.

http://rant.gulbrandsen.priv.no/udoc/history
http://docutils.sourceforge.net/rst.html

	INTRODUCTION
	BACKGROUND
	Literate Programming
	CodeChat – a modern LP approach
	LP for HDL education
	APPROACH
	DATA & DISCUSSION
	CONCLUSIONS
	REFERENCES

