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1. Abstract 

 

 A typical Autonomous Ground Robotic Vehicle (AGRV) uses a combination of sensors to 

monitor movements and the surrounding environment.  Placing multiple sensors on an AGRV may 

allow for complexity in sensor data, but far more important is integration of the information from 

these multiple sensors to perform a given task optimally. One popular choice of sensors includes a 

Laser Measurement System (LMS) and a vision system.  Good examples of robots using LMS and 

vision are vehicles entering the annual Intelligent Ground Vehicle Competition (IGVC) and 

competing in the 2005 Grand Challenge sponsored by the Defense Advanced Research Projects 

Agency (DARPA).  This paper focuses on one method of integrating non-stereoscopic vision 

(camcorder) information with laser distance measurements.  First, background information on one 

such AGRV mechanical structure and a sensor suite is provided.  This platform allows testing of 

algorithms using real hardware.  The paper also explains the AGRV processes and image 

management.  The core presentation concerns the method used for integrating LMS with vision.  

Once integrated, LMS and vision act as one set of data with one format, yet the method exploits all 

the information available from both.  Finally, the paper illustrates one way to use this processed 

information for finding paths through a field of obstacles and road edges.  

  
2.   AGRV PLATFORM 

 

 The Center for Applied Research and Technology (CART) at Bluefield State College 

designed and built an AGRV the students called “V2”.  Being a little larger than an electric 

wheelchair and weighing slightly less than 300 pounds, the vehicle has a control system that gives 

the robot superb maneuverability.  A full suite of sensors allow the robot to sense many aspects 

about its environment.  The particular sensor suite for the AGRV allows algorithms to mimic human 

decision making.  Therefore, our vehicle provides an excellent platform for studying various 

autonomous algorithms such as the ones presented in this paper.  This section will present the 

hardware design of for the vehicle in three parts:  the mechanical system, the electrical system, and 

other design concerns. 
 

2.1     Mechanical System    

The overall mechanical design focuses on simplicity, durability, 

compactness, maintainability, and most importantly, safety.   The vehicle is 

designed to operate and navigate safely in both indoor and outdoor 

environments.  This small and versatile design provides the opportunity to test 

and develop the human-like system on a fully functional platform.   

The mechanical design can be divided into three separate categories:  P
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vehicle frame, drive system, and vehicle body. 

 

Vehicle Frame 

 The vehicle frame is constructed of steel tubing.  Steel tubing was chosen due to its light 

weight, durability, and ability to house wiring.  The tubing acts as a conduit to conceal and organize 

connections as well as to shield vulnerable lines from RF noise.  The rectangular design allows the 

frame to be strong while creating a protective carriage that houses the batteries, chargers, and other 

various components.   

Drive System 

Our ARGV uses two 24-volt DC motors to power two drive wheels independently. The motors 

attach to the drive wheels at 90-degree angles and pivot vertically through brackets 

welded to the frame.  The brackets prevent any horizontal movement reducing stress 

on the motors.  The motors attach to the suspension system and travel with the wheels 

independently.  The angles that the motors are mounted also vary as the vehicle 

travels across uneven ground.  This ensures that a motor will not hit the ground when 

its respective wheel enters a hole.  The two rear wheels are free to rotate and change 

direction as the vehicle changes course.  The rear wheels are mounted on a pivoting arm that allows 

the wheels to travel vertically, independent of the main drive wheels.  The pivoting arm allows 30 

degrees of rear wheel travel in both directions.   

Vehicle Body 

 The vehicle’s body framework is constructed of aluminum tubing.  The 

exterior of the body consists of aluminum panels with lexan inserts around the 

entire surface.  The panels are held in place with quarter-turn fasteners that can be 

removed by hand very quickly.  Due to the number of panels and their positions, 

components can be added or removed easily.  The body protects components 

from water and the internal heat that the vehicle generates.  It is equipped with fans that cool and 

circulate the air inside the vehicle.  Shelving inside the vehicle’s body allows for component 

positioning and spacing, assisting in cooling the interior of the structure.  

  

2.2    Electrical System 

In the pursuit of a more human-like autonomous vehicle, a complex electrical system was 

designed to better imitate the human decision-making process.  This imitation requires many 

sensors, multiple computers, a great deal of simultaneous processing, and various levels of 

redundancy.   The system consists of four parts:  the power system, sensors, computers, and vehicle 

control.   

Power System 

 Two 12-volt deep cycle marine batteries connected in series provide the 

power to the controller, motors, vision computer, and LMS.  Two smaller 12-

volt batteries power the sensors, emergency stop contactor, and a DC-DC 

converter.  The on-board laptop is equipped with two batteries for its own 

power.  The DC-DC converter provides +12V, -12V, and 5V for the various 

requirements of the electronics.  After performing a power consumption 

analysis, the team balanced the power consumption across all batteries.  In 

normal operation, the vehicle operates for six hours on a fully charged set of batteries. 

P
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 The vehicle is equipped with its own onboard charging system.  The charging system consists 

of one 24-volt charger and two 12-volt chargers. The on-board laptop also has its own charger.  

Once switched to a charging mode, all batteries and electronics are isolated. 

Sensors 

 The platform structure supports seven different types of sensing devices.  This variety of 

sensors was chosen to provide various levels of data and redundancy similar to human senses.  The 

following list the sensors onboard our ARGV, a brief summary and their respective data: 

• Stereoscopic Camera – The stereo camera mimics human eyes.  Not unlike 

humans, we can take process two slightly different images and create one image 

with depth information.  Camera data contains the entire environment:  lines, 

potholes, obstacles, etc.  Another option is to use a single camcorder in place of 

the two stereoscopic cameras.  For the algorithms presented in this paper, we used 

the single camcorder option. 

• LMS – The LMS uses a laser to scan 180 degrees of the environment the   vehicle 

is traveling towards.  The LMS data contains the precise distance and angle of all obstructions in the 

plane of the laser. 

• DGPS – The Differential Global Positioning System (DGPS) receiver uses 

global positioning satellites to obtain a position fix.  It then uses a reference station 

and/or WAAS satellites to obtain corrections that improve accuracy.  The DGPS 

data contains position (latitude, longitude), heading, and velocity. 

• Digital Compass – The digital compass detects the earth’s magnetic fields.  The 

digital compass data contains very accurate heading when moving slowly or 

stationary. 

• Encoders – The encoders detect movement of the motor shaft with great 

precision.  Data from the encoders contains position, velocity, and azimuth. 

• Diffuse Sensors – By emitting light that reflects from a surface back to the 

sensor, the frequency can  be analyzed and compared to a programmed 

frequency.  The sensors can be programmed to detect a particular frequency (color) 

on the ground. 

• Proximity Sensors – By emitting light that reflects from a surface back to the 

sensor(s), the proximity sensors can find obstructions. 

 

 

Computers 

 The computing system is 

divided into two parallel systems.  

A central computer is responsible 

for planning paths, for 

controlling the vehicle, and for 

interfacing to all sensors except 

for the vision.  The second 

computer system dedicates itself 

Figure 2.1 Computer Integration P
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to vision.  A third, off-board, computer was also implemented to provide remote control, monitoring, 

and convenience.  Figure 2.1 shows the two onboard computers as well as the off-board computer.  
 

Vehicle Control  

 Our ARGV uses a closed-loop proportional 

control system.  The team designed and built an 

interface that provides the controller with analog 

signals from the computer’s digital signal.  Encoders 

monitor the motors and provide feedback to the 

control algorithm.  Figure 2.2 shows a block diagram 

of the control system.  

2.3    Other Design Considerations 

Safety 

Safety was an important concern in all aspects of the design, fabrication, and operation of the 

ARGV.  This was accomplished through many different processes and was infiltrated throughout our 

design process.  Especially important are the two manual pushbuttons located at the rear of the 

vehicle which, when pressed, disconnect power to the motors thereby effectively stopping the 

vehicle.  In addition to these emergency stops, we included a remote e-stop system consisting of a 

transmitter and an onboard receiver.  Fuses, circuit breakers, and disconnect switches protect all of 

the components from overloads, noise spikes, and short circuits.  

Reliability 

We have stressed the reliability of the ARGV by using redundancy.  Different sensor groups 

have redundant functions.  Both the stereo camera and the diffused sensors detect the presence of 

lanes.  The stereo camera algorithm also doubles with the LMS and proximity sensors in detecting 

objects.   

 

Durability 

The solid mechanical design makes the vehicle very durable.  Its framework houses and 

protects components.  The exterior shell of the vehicle prevents water and debris from coming in 

contact with the electrical system.  Components on the exterior of the vehicle are waterproofed and 

designed to withstand minimal damage.  The vehicle can be operated under normal circumstances 

without fear of accidentally damaging vital components or affecting the vehicle’s overall 

performance. 
 

3.   IMAGE PROCESSING ALGORITHM 

 

Each pixel in each captured image contains information in the form of three 8-bit binary 

numbers for red, green, and blue ( )
ppp BGR ,, .  One way to characterize each pixel graphically is to 

create a color vector in 3-dimensional space with pure red, pure green, and pure blue as orthogonal 

axes.  Figure 3.1 illustrates such a color box where one can draw color vectors for pixels.  The 

magnitude of this color vector represents the overall brightness of the pixel and the direction of the 

vector represents the relative color in the pixel.  Written in vector form with c as the pixel column 

and r as the pixel row, the pixel color vector becomes: 

kBjGiRP
rcrcrcrc PPPRGB

rrrr

,,,,
++=  

 

Figure 2.2 Control System 

P
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where ( )kji rrr
,,  are orthogonal unit vectors. 

 The algorithm filters spurious noise by using regions 

containing 2m  pixels in each region.  There are  

 

2m

pixelsofnumberTotal
 

 

regions in each image.  Averaging the 2m  pixel color vectors in 

each region creates a regional color vector: 
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where j is the column number of the region and k is the row number of the region.  One can compute 

the regional color vector equation above for each j and k to find the color vector for each region: 
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The result is a regional color vector: 
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The regional color vector 
kjRGBR
,

r
 contains averaged color distributions for the 2m  pixels in the 

region specified by j and k. 

 In general the AGRV will only have to recognize and navigate through and around certain 

known objects and surfaces such as sand, bridges, grass, tarps, construction barrels, and path 

markings.  Suppose there are n such surfaces and objects.  Each of these surfaces and objects has its 

own color vector as long as there is uniform distribution of color throughout the surface or object 

image.  The algorithm assumes each region of each image must fall on or close to one of these n 

hypothesized surfaces or objects.  Each has a possibility of being the correct one, so the 

hypothesized regional color vectors are given by: 

 

nnL
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Figure 3.1 Color Cube 
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Any number of hypotheses is possible as long as no two vectors are collinear.  The amount of 

separation of the hypothesized color vectors relate directly to the accuracy possible from this 

algorithm. 

The algorithm described in this section exploits the property that the same pixel in shade or 

bright sun would have the same general direction in color space even if the magnitudes were very 

different.  Therefore, the important quantities of interest are the angles between the hypothesized 

vectors and the actual regional color vector.  The dot product between these vectors gives this angle: 
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The algorithm chooses the hypothesis with the smallest angle Lθ  for each region.  Also, probabilities 

of occurrence can also be accounted for—for example grass could have a greater probability than 

sand.  Since the actual angle is not important, the decision can also be made using only the cosine of 

the angle: 

L

RGBRGB

RGBRGB
r

HR

HR

Lkj

Lkj ≡
•

= rr

rr

,

,
cosθ  

 

For each region, the algorithm chooses the hypothesis with Lr  closest to one. 

 

4.   INTEGRATION OF LMS AND VISION 

 

 Due to the particular hardware design of this robot platform as described in Section 2, laser 

and vision data formats are very different.  The LMS mounts in front nine inches above the ground 

and sweeps horizontally 180 degrees from right to left.  The video camera mounts on a post five feet 

high and points to the front and down at an angle of 45 degrees.   As discussed before, this 

arrangement of camera and laser system is not so peculiar to just this robot since many autonomous 

robots use similar sensor placements.  

This section explains the process of integrating these two sets of data and describes how to 

place the combined data on a map.  The map, as illustrated in Figure 4.1, is a top-view two-

dimensional rectangular coordinate frame containing a horizontal semicircle five meters in radius 

and centered at the front of the robot. 

 The LMS computes distances and angles to objects that lie in a plane above the ground in 

front of the robot.  For example, in the figure, LMS has 

detected the presence of two construction barrels, indicated by 

the two small red curves.  The LMS sends this data to the 

navigation computer in the format of a 1 by 181 vector of 

distances.  Each vector element represents a distance to an 

object at an angle equal to the index (j) of the element 

 

 

 

 

Figure 4.1 Dynamic Memory Map 

P
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LMS Distance (j) for j=0 to 180 

 

where LMS Distance(j) is an element of the LMS vector of data. The range of distances for this 

particular LMS covers 0 to 8.192 meters.  The LMS’s ability to measure distances up to 8.192 

meters is more than adequate for the map’s maximum size of five meters.  At a top speed of five 

miles per hour the robot needs only to look ahead a maximum of five meters in order to have more 

than two seconds travel time.  Given our vehicle dynamics, a travel time of two seconds gives the 

robot enough time to react to an object by adjusting its heading and speed. 

LMS data represented by the vector LMS Distance translates directly to the map described 

above.  No distortions in the LMS data exist, so the data can be placed on a “bird’s eye” view of a 

rectangular coordinate frame in front of the LMS.  The figure shows sample LMS data plotted on 

concentric semicircles with radii in one meter increments.  Since the algorithm can plot the LMS 

data directly onto the semicircle map, converting the data to another format is not necessary. 

 Vision, on the other hand, is not as straightforward as LMS.  The rectangular picture box on 

the computer screen translates to a footprint in the shape of an “Aladdin’s Lamp” on the ground due 

to radial distortion and due to the height and angle of the camera.  For comparison, one could 

superimpose this footprint onto the map’s semicircle in the figure.  The challenge would then be 

clear: the algorithm must translate the pixel position on the computer screen to the pixel position on 

the footprint on the map.  Each pixel on the computer screen has an (x, y) coordinate.  The “x” value 

of a pixel must lie on some vertical curve on the map with one end of the curve at the bottom of the 

map and the other end at the top.  At the far left side of the picture the curve is concave to the left 

and on the far right the curve is concave to the right.  In the same manner, the “y” value of a pixel 

from the computer screen must lie on some horizontal curve on the map with one end of the curve at 

the left and the other end at the right.  The bottom curve is concave down and the top curve is 

concave up.   

 The following method of integration converts the obstacle pixel values of each vision frame 

to a 1 by 181 vector of distances with each element representing the distance to an obstacle at an 

angle equal to the index (0 to 180 degrees) of the element in the vector.  This converted format is 

exactly the same format as the LMS format described above.  Converting vision format to LMS 

format allows the algorithm to place both the LMS and vision data directly onto the same semicircle 

map. 

 Curve-fitting analyses using MATLAB show that vision pixels translate to the map on 

parabolic curves.  For example, a row of pixels on the computer screen translates to a vertical 

parabola on the map.  The axis of the vertical parabola is parallel to the y axis.  Likewise, a column 

of pixels translates to a horizontal parabola on the map with its axis parallel to the x axis.  Therefore, 

each pixel translates to the map on a pair of parabolas:  a vertical parabola and a horizontal parabola.   

For this AGRV application, the horizontal parabolas are nearly straight lines, so with little 

loss of accuracy the algorithm assumes straight lines for the horizontal parabolas.  Making this 

simplifying assumption saves computer time.  Test results justify using this simplification in this 

particular case; however, such a simplification would not be necessary in general.   
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The following equations relate the pixels to the map: 
 











=

+=

+






 −
=
















 −=

−

map

map

map

mapmapmap

mapmap

pixelmap

x

y

yxr

ax
c

ab
y

pixelsinwidthimage

metersinwidthlinepixelsinwidthimage
xx

1

22

2

2

tan

2

ϑ

 

 

where ( )
pixelpixel yx ,  is the pixel location of the obstacle or marking on the computer screen, and 

( )
mapmap yx ,  represents the location of the obstacle or marking on the map.   The distances and angles 

( )
mapmapr ϑ,  form a vector similar to the LMS vector: 

 

Vision Distance (j) for j=0 to 180 
 

where mapr  becomes the element Vision Distance(j) 

and mapϑ  the index j.  The parameters a, b, and c 

determine the shape and orientation of the parabola.  

Curve-fitting analyses give the following equations for 

the parameters a, b, and c: 
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Given the coordinates of a pixel ( )
pixelpixel yx ,  on the 

computer screen, the algorithm described above 

computes the position ( )
mapmap yx ,  on the map.  By 

converting vision format to LMS format, the algorithm 

can now place vision data on the same map as LMS.  

The path-finding algorithm of Section 5 uses this map 

containing both vision and LMS data. 

Test results show that this integration method 

works very well.  Objects sensed by both camera and 

LMS translate to the same location on the map.  The 

algorithm will also place markings seen by the camera 

but not the LMS on the map such as the road edges 

shown in blue on Figure 4.1.  Although the numbers 

are specific to the camera, the lens, and the position of P
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the camera, the general form of these equations works for many different cameras, lenses, and 

locations.  The tests include two different types of cameras and two types of lenses.  The only 

parameters to calculate in changing cameras or lenses are a, b, and c parameters.   

 

5.   PATH DETERMINATION 

 

 At this point we have a “birds-eye” view of all obstacle locations and markings the robot 

“sees.”  The area the robot “sees” is a semicircle in front of the robot with a five-meter radius 

centered at the front of the robot.  Information for obstacles and markings derives from processing 

and integrating data from LMS and vision as described in Section 4.  The format of the information 

is a 1 by 181 vector of distances at each degree of angle starting at zero degrees on the right and 

ending at 180 degrees on the left.  The next task is to navigate intelligently around obstacles and 

markings using this vector of processed sensor data. 

 The idea is to mimic the human decision making process when navigating through a field of 

obstacles and markings.  Humans will set a long range plan in mind for moving from one point to 

another.  For example, a driver will aim the car in the general direction toward the middle of the 

road at some distance in front of the car, with the distance depending on speed; however, if an 

obstacle or marking is encountered in-between, the driver will slow down and navigate the obstacle 

or marking.  In the same way the robot will attempt to find an open corridor to a point five meters 

down the path.  If a path wide enough for the robot is not found, the robot will lower its “aim” 

distance and again attempt to find a path.  If the robot cannot find a path even at close distances, 

then, just like the human, it will back away and try again somewhere else.  The flowchart depicts the 

decision process the robot uses in navigating.   

Using this flowchart as a guide, the robot first checks a reaction area just in front of the robot 

for objects and markings that somehow were missed before at longer range.  If something is 

encountered the robot will react to it by slowing down and maneuvering around it.  This action is 

analogous to a human driver’s action when a child runs in front of his car, or when a pot hole that he 

had not seen before suddenly appears in front of the car.  The robot uses a reaction area in the shape 

of a semi-ellipse centered at the front of the robot.  Although the size of the reaction area is kept 

small with respect to the size of the path planning semi-circle, the size, position, and shape of this 

reaction area are variable, depending on speed and other factors.  If the robot finds something in the 

reaction area, then the threshold (maximum look-ahead distance) starts at close range (two meters).   

Otherwise, if the reaction area is clear, the threshold starts at the long range of five meters. 

The navigation algorithm next finds all possible path corridors that are wide enough for the 

robot up to the threshold.  The algorithm marks each candidate path corridor with a left angle and a 

right angle.  For example, Figure 5.1 shows one candidate path corridor using a threshold of five 

meters.  The corridor in this example is wide enough for the robot all the way to the five-meter 

threshold and is marked by a left angle and a right angle ( 2a  and 1a ).   The number of candidate 

corridors could range from none to many.  If no candidate corridors exist at that threshold, the 

threshold is dropped by one meter and the search repeated.  When the threshold drops to zero, then 

no paths are possible so the robot backs out of the situation and tries the algorithm again from an 

entirely different viewpoint.   

If the algorithm finds at least one candidate corridor at any threshold, the algorithm chooses 

the best corridor and  suggests appropriate robot commands such as a change in heading and speed.   

“Best” is defined as the corridor closest to straight ahead.  The optimal heading of the robot is not P
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necessarily toward the center of the gap at the end of the corridor.  For example, if a human driver 

wants to turn onto a side road he may initially 

aim for the center of the side road opening, but 

will eventually aim more toward a point in front 

of the side road opening as he gets closer.  The 

robot algorithm calculates a change of heading 

in a similar way.  As the robot approaches the 

opening, it will adjust the heading depending on 

distance to the opening and angle of the opening 

with respect to heading.  The algorithm uses the 

following function to calculate change of 

heading: 
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where 1a  is the left angle, 2a  is the right angle, and  
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Note when the opening is at a sharp angle relative to heading then HΔ  is closer to the most distant 

point of the opening since R <<1 or R>>1.  If the opening is perpendicular to the heading, then 

values 1=R  and HΔ  will be halfway between the angles 1a  and 2a  (the robot would head toward 

the center of the gap).   Speed of the robot is greatest at long range, but decreases as the robot 

approaches the gap.  This simple but effective approach gives the robot “good dynamics” in 

maneuvers and allows smooth transitions during changes in heading. 

 

 

6.   CONCLUSION 

 

 This paper presented one method for integrating non-stereoscopic vision information with 

laser distance measurements for an AGRV.  By properly integrating the data from these two sensors, 

the AGRV can make smart decisions based on all information.  The exact nature of this data depends 

on the position and orientation of these sensors on the robot.  The Bluefield State College CART 

robot team designed and built an AGRV robot that serves as an excellent platform for testing 

algorithms such as this one.  The ARGV structure and sensor placement is similar to the most 

successful vehicles competing in the IGVC and the DARPA Grand Challenge.  The lessons learned 

from the results of this integration scheme will be useful in the development of future vision and 

laser measurement-based decision making algorithms for the AGRV community. 

 

 

 

Figure 5.1 Candidate Path Corridors 
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