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A unified method for teaching steady (using Gauss-Seidel) and unsteady 

(using Explicit) numerical methods for conduction heat transfer using a 

spreadsheet (Excel
TM
) is described.  This method makes use of the similarity 

between nodes in numerical heat transfer and cells in a spreadsheet.   

Extensive use is made of the electrical analogy for heat transfer in the 

difference equations.  Students program in the difference equations and the 

boundary conditions in a template provided to them.  Students prepare their 

own macros for the iteration schemes.  The versatility of the spreadsheet 

approach allows spatially and temporally dependent boundary conditions 

which in turn permits almost immediate applications to engineering design 

including optimization.  Steady heat transfer applications have included fins 

for electronic and engine cooling.  Unsteady heat transfer applications have 

included the design of automobile and aircraft disk brakes.  The advantage 

of this approach is that students prepare their own numerical model, which 

enhances understanding of the numerical methods and boundary conditions, 

explore convergence and stability criteria, and move quickly into thermal 

design studies using the numerical tool that they have developed.     

 

Introduction and Background 

 

It is important that students studying heat transfer are introduced to numerical methods early 

since the majority of heat transfer analysis and design in industry is done numerically.  It is also 

important that they understand the nature of heat transfer, the range and complexity of boundary 

conditions and obtain a sense of the physics involved in engineering applications such as fins and 

disk brakes.  One of the shortcomings of using software that solves the conduction equation 

directly is that often students do not understand what the software is actually doing.  

Furthermore, it is difficult to introduce applications with spatially and temporally dependent 

boundary conditions, which often occur in real-world applications. 
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The conventional approach (described in reference 1) is illustrated in Figure 1 for steady 

conduction heat transfer and in Figure 2 for unsteady heat transfer.  

 

For steady conduction heat transfer, LaPlace’s equation is discretized (as shown in Figure 1) and 

a set of simultaneous equations for the temperatures of the nodes or elements is obtained.  These 

equations can be solved in a variety of ways, the most common being a Matrix inversion or a 

relaxation method such as the Gauss-Seidel method.  The Gauss-Seidel method essentially 

involves repeatedly solving for the temperature at each element or node in terms of the 

surrounding temperatures.  This iterative process converges on the steady solution when an 

appropriate convergence criterion is satisfied.  These same difference equations can be obtained 

by an energy balance on each node
1
.  Using this approach the difference equations can be 

determined for different types of boundary nodes
1
.  This approach does not lend itself easily to 

problems in which it is desirable to vary the grid size, nor to problems in which the surface 

boundary conditions vary with position and/or time. 

 

For unsteady conduction heat transfer, the Heat Equation is also discretized (as shown in Fig. 2).  

In the discretization approach shown in Figure 2, the explicit method is used; solving for the 

temperature at the next time step (one time step ahead of the present time) using only the values 

of temperature for all nodes at the present time.  The equation for the temperature at the next 

time step contains a numerical Fourier number which is a non-dimensional time step.  In the 

explicit method, the time-marching temperatures become unstable if the time step (Fourier 

number) choice is too large.   The stability criterion for the Fourier number (and corresponding 

time step) is that it be less than ½ for 1-D solutions and less than ¼ for 2-D solutions. 

 

The solution of these difference equations for steady and unsteady heat transfer can be 

accomplished using a variety of software including spreadsheets.  The spreadsheet approach was 

advocated by Becker
2
 as early as 1986.  A method for using spreadsheets to perform a steady 

analysis of one and two dimensional conductions is described by Eid
3
.  O’Neal

4
 describes a 

steady analysis of a fin and an implicit and explicit method for one-dimensional conduction 

using spreadsheets.  Thomson
5
 performs a spreadsheet analysis of steady two-dimensional 

shapes and a one dimensional transient solution.  In 1992 the author and one of his students 

described the use of Spreadsheets for the numerical solution of one and two dimensional 

unsteady conduction
6
.  Since these early uses of spreadsheets, their use for a variety of thermal 

fluid and heat transfer problems has become wide-spread.  McDaniel
7
 has developed a Thermal 

Fluid Toolbox which allows properties to be obtained in individual cells.  This allows 

applications such as a combined cycle power plant
8
 and many other applications with iterative 

design solutions
9
.  McDaniel recently prepared a spreadsheet for the Computational Aero course 

at the USAF Academy that solves the one dimensional heat equation using both explicit and 

implicit methods.  There are also spreadsheet programs available for heat transfer analysis such 

as EZ-Thermal
9
. The textbook by Holman

10
 contains an Appendix titled “Use of Microsoft 

Excel
TM

 for Solution of Heat-Transfer Problems”.   The present paper presents a unified 

approach to teaching numerical methods for steady and unsteady heat transfer emphasizing the 

use of the electrical analogy.  

 

In the next section it is shown that the equations used in the steady numerical solution (Gauss-

Seidel relaxation method) and the equations used for an (explicit) unsteady numerical solution 
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can be derived and put in the form of the electrical analogy.  In the following sections it is shown 

that this simplifies the numerical solutions and makes it possible to handle a variety of issues 

including uneven grids, spatially dependent boundary conditions, and time-dependent boundary 

conditions using a Spreadsheet template. 

 

Numerical Solutions Using the Electrical Analogy 

 

Steady Solutions 

 

In the early Aerospace days, numerical heat transfer was often done using the electrical analogy.  

The author learned of this approach at North American Aviation in the early 60’s.  This approach 

is useful for setting up the difference equations and boundary conditions for use in a Spreadsheet. 

An electrical analogy for heat transfer in a 1-D wall broken into nodes is shown in Figure 3.  In 

this analogy, boundary nodes and surface nodes do not have a means for storing energy whereas 

internal nodes have a mass associated with them and therefore a thermal capacitance.  The 

thermal capacitance represents the amount of energy per unit temperature change and is the 

product of the specific heat and mass of a node.  The resistances between nodes can be analogous 

to convection, conduction and even radiation.   

 

In Figure 4 an energy balance is done on a node for 1-D steady heat transfer using the electrical 

analogy and L’Hospitals rule assuming no volumetric heat generation.  If volumetric heat 

generation is included the equation becomes:      

 

 

 

 

(1) 

 

 

 

 

In this equation Ti is the node temperature being calculated, Qi is the volumetric heat generation, 

Tj is the temperature of a surrounding node and Rij is the thermal resistance between the “i” and 

“j” nodes.  This equation gives the temperature of a node in terms of the surrounding 

temperatures and thermal resistances and is essentially the Gauss-Seidel equation for a relaxation 

solution of the steady temperature distribution (in my classes I compare the traditional Gauss-

Seidel equation given in Reference 1 to Equation 1 and show that they are essentially the same 

equation).  Although this equation was derived for 1-D, it is also valid for 2-D and 3-D as we 

will see for the unsteady case.  For 2-D and 3-D there are simply more “j” nodes connected to the 

“i” node.  The equation can be used with a grid size that is position dependent and for surface 

nodes as well as internal nodes.  It can also be used for fins, with variable area and boundary 

conditions by simply including a convection resistance to the surrounding fluid. The resistances 

can vary with position or temperature allowing for a distributed boundary condition and/or 

temperature dependent properties. 
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For 1-D and 2-D solutions, this equation can be iterated using a spreadsheet.  Figure 5 is an 

example of a template set up for a 1-D solution using equation (1).  The important columns are 

the column for the temperature at the current iteration, the column for the temperature at the next 

iteration (which contains Equation (1)), and the column for the change in temperature during the 

last iteration (which becomes the convergence criterion).  The macros used for iteration are also 

shown pasted below the template in Figure 5.  These are discussed below.   

 

In teaching this Gauss-Seidel approach for the numerical calculation of steady temperatures, the 

first step is to have students discover for themselves the iterative process involved in using a 

spreadsheet.  This is done by assigning a problem to solve for the surface temperature for a wall 

with combined conduction, convection, and radiation (see Reference 1, section 1.3.2).  Since the 

surface temperature appears to the first and fourth power in the energy balance equation, this can 

only be solved iteratively.  It involves guessing a surface temperature, then recalculating the 

surface temperature from the initial guess.  One cell is used for the initial guess and another cell 

contains the equation for the re-calculation of the temperature using this initial guess.  The 

iteration process can be done in Excel
TM

 using a macro (or program) written in Microsoft Visual 

Basic.  It is not necessary to be proficient in Visual Basic to prepare this macro.  Students can 

use the “record” feature for writing their iteration macro.  To help them understand the iterative 

process, I give them a template that has a macro called “iterate” already imbedded.  This macro 

simply runs the macro called “copy” N times (where the value for N is located in one cell).  

Students must create their own macro called “copy”.  They turn on the macro “record” feature in 

Excel
TM

, copy the cell containing the equation for the temperature being calculated and its 

current value, then use “paste special” to copy the newly calculated value into the cell containing 

their initial or previous guess, then turn off the record feature after saving the macro as “copy”.  

“Paste Special” is required to avoid copying the formula back in to the cell containing the initial 

or previous guess.  I include a “button” they can use to run the “iterate” macro. 

 

After having done an iterative solution for a single temperature, Students are then assigned a 

problem for a numerical solution for a 1-D wall.  That is done on the template shown in Figure 4.  

Again the macro called “iterate” is provided in the template, students must now add a macro 

called “CopyColumn”.  This is done as before by simply turning on record, then copying the 

column containing the temperatures calculated using equation (1), then using “paste special as 

before, then turning off record.    

 

The first 1-D problem that I assign is a wall with fixed temperatures at both sides. Using an 

initial guess of the average temperature between the two boundary conditions, the temperature 

distribution in the nodal network is calculated after a fixed number of iterations and plotted.  A 

typical plot is shown in Figure 6.  This allows students to see the convergence process at work 

and the correct linear temperature distribution appears after a sufficient number of iterations (as 

determined by the convergence criterion).    

 

This is also a good place in the learning process to introduce different boundary conditions.  I 

typically do this for one side of the wall (the right side).  The fixed temperature boundary 

condition has already been done by simply using a fixed temperature for the surface nodes 

instead of equation (1).  The insulated or adiabatic boundary condition is handled by simply 

setting the temperature at the boundary node of the wall to the temperature of the adjoining 
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interior node.  I explain to the class that this automatically sets the temperature gradient to zero 

and therefore the heat flux to zero (the insulated or adiabatic boundary condition).  The 

converged results for this case are also shown in Figure 6.  Students are often initially surprised 

to see that the temperature converges to a uniform temperature at the value of the fixed 

temperature on the opposite (left) wall (see Figure 6).  But after a little thought they understand 

this must be the case.  Next, a convective boundary condition is applied to the right wall. This is 

done by simply adding a convective thermal resistance to the surface node using equation (1).  In 

this case, the right wall temperature converges to a value between the fluid temperature and left 

wall temperature, dependent on the value of the heat transfer coefficient and wall properties.   

 

At this point, students have a numerical tool (a Spreadsheet template) that they have built 

themselves that can solve 1-D steady problems including fins with a variable area and even a 

variable boundary condition along the fin (a heat transfer coefficient that varies with position 

along the fin).  My most recent assignment (at both UCDavis and at the USAF Academy) was an 

analysis and design study of the fin on a Harley Davidson Softail
®
 motorcycle engine.  The 

actual fin is tapered with a thicker base than tip.  The heat transfer coefficients along the fin 

(which are “guesstimated” for cruise conditions) vary with position along the fin and with the 

gap between fins.  I ask students to first ascertain that their numerical solution is working by 

using a straight fin with a uniform convective boundary condition and to compare their 

numerical solutions to the exact solutions for both insulated and convective tip boundary 

conditions.  They are then given hypothetical heat transfer coefficient distributions, a variable 

area (thicker base), and a possible effect of reducing the gap thickness (more fins) and asked to 

optimize the fin shape.  Figure 7 shows some typical results from their numerical solutions.  The 

base heat transfer is also calculated from the temperature gradient at the base and the fin 

effectiveness and efficiency are then calculated for a range of conditions.  The effect of speed on 

the amount of heat that can be taken by the fins is also considered (different values of heat 

transfer coefficients).  Some inspiration is added to the class by showing video clips of the 

Harley- Davidson Softail
®
 along with some audio clips. 

 

Some other steady heat transfer applications that I have assigned include the cooling fins on a 

computer chip, a heated pitot tube in a corporate or commercial jet, the anti-ice leading edge on a 

wing or horizontal stabilizer and the fins on an air-cooled light aircraft engine.  In most cases I 

am able to bring in a piece of the actual hardware we are analyzing which adds to the interest and 

inspiration of the class. 

 

Two-dimensional solutions have also been done using this approach.  In this case, instead of 

copying a column, a matrix is copied.  Two matrices are required, one for the initial guess or 

current calculation and one for equation (1).  These two matrices can both be on the same sheet 

as the primary template or one can be on a second sheet in the template. 

 

Another advantage of doing this in a spreadsheet is that it is quite easy to plot the calculated 

results. 

 

 

 

 

P
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Unsteady Solutions 

 

 The energy balance on a node with energy storage (thermal capacitance) is shown in Fig. 8.  The 

equation for the thermal capacitance was previously given in Fig. 3.  A forward difference is 

used for the rate of change of temperature, thus when the temperature at a particular node is 

calculated the equation uses only temperatures at the current time: 

  

 

(2) 

 

 

 

For a surface node, with no thermal capacitance (see Figure 9) the energy balance gives: 

 

 

 

(3) 

 

 

 

This appears to be the same as equation (1) except that now we are determining the temperature 

at the next time step in turns of the temperature at the current time (whereas in equation (1) we 

were iterating until we met our convergence criteria for the steady temperature distribution).   

 

Equation (2) was obtained using an explicit method (as explained above) and therefore has a 

similar stability criterion to that in the traditional approach (a maximum time step in turns of the 

discrete Fourier number).  For equation (2) the criterion is that the maximum time step must not 

exceed that given by equation (4):  

 

 

 

(4) 

 

 

 

 

 

For the stability criterion, the RC value for each node with thermal capacitance, as defined by 

equation (4), must be calculated and the time step must be less than the lowest (minimum) value 

of the RC in the nodal network.  In some cases this might result in redoing the grid in a region of 

small temperature gradients so as to allow larger time steps.  If any of the thermal resistances or 

thermal capacitances vary with time, the time step may have to be reduced or the initial value 

chosen such that the stability criterion is not violated at any time during the iterative solution.  

These issues also exist in the more traditional approach.  
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These equations, (2), (3) and (4) can be used in 1-D, 2-D and even 3-D solutions.  The boundary 

conditions are handled the same as for the steady solutions, except that it is now possible to 

include not only spatial dependence in the boundary conditions, but also to allow them to vary 

with time.  This is easily done in a spreadsheet by making the resistances a function of time. 

 

Figure 10 shows a template for a 1-D unsteady solution using equations (2), (3) and (4).  The 

important columns in this case are the column for the temperature at the current time, the column 

for the calculated temperature at the end of the next time step using equation (2) and (3), and the 

column for the RC for each node calculated with equation (4).  Similar macros to those used for 

the steady solutions are prepared using Microsoft Visual Basic and the record mode for writing 

macros in Excel
TM

.  In this case the temperatures at the next time step are calculated (equation 

(2)), the time advanced, and the new values pasted (using “paste special”) in the column for the 

previous time.  Again an iteration button is provided to do the series of time steps desired for a 

particular problem.  The maximum time step is calculated using equation (4) and a time step 

some fraction (usually 0.5 or less) of this is used.  The grid size can vary with position.  The 

boundary conditions can also vary with position and time. 

 

As with the steady solutions, the first case assigned to my students is a plane 1-D wall.  We start 

with an initial condition of a uniform temperature in a wall, and set the boundary conditions to 

insulated on one side (the left side) and convection on the other side (the right side).  Students 

are asked to try a time step larger than the maximum time step calculated with the stability 

criterion (equation (4)) and to plot the temperature after several time steps.  Typical results are 

shown in Figure 11.  The oscillations are observed to become larger with time and to “blow up”.  

Students then use a time step approximately half the maximum given by equation (4) and 

determine the temperature after several time intervals.  Typical results are shown in Figure 11.  

These can be compared to the exact solutions to give students confidence in their numerical 

models.  Many applications are then possible. 

 

The most recent application that I have used at UCDavis and at the USAFA Academy for an 

unsteady solution is the disk brake on a corporate jet (the Citation VII –see Figure 12a) during an 

aborted takeoff.  The temperature transient during the aborted takeoff at maximum gross weight 

is determined during the braking stage and during the interval after the aircraft has come to a 

stop.  It is assumed that the takeoff is aborted at V1 (below this speed the takeoff can be aborted, 

above this speed the takeoff is to continue).  I chose this particular application because I have 

served as a pilot in this aircraft and am familiar with the systems and procedures.  I also discuss 

the Boeing 757 (for which I have completed a type course) and use a video for the Boeing 777 

flight tests for an aborted takeoff – these show flames coming from the disk brakes after coming 

to a rest.  In this application, there is heat generation on that part of the disk where the brake pads 

produce friction during braking.  There is also convective cooling.  After coming to a stop, the 

conduction in the disk brake continues causing the temperature at the base of the disk, where it is 

connected to the wheel, to continue to increase.  During this time convection is minimal (free 

convection only).  This problem is interesting because the boundary conditions on the disk are 

not uniform and also change with time.  A typical solution is shown in Figure 12b.  The original 

peak in the temperatures is in the vicinity of where the disk brake pads contact the disk.  The 

most interesting part of the solution is when the temperatures continue to increase for several P
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minutes after coming to a stop at the base of the disk where it connects to the wheel.  This causes 

the tires to heat and can result in an explosion or fire.   

 

Other applications that I have assigned using essentially the same template and solutions include 

fins on an air-cooled light aircraft engine (rapid temperature changes can increase wear and crack 

the cylinders), a heated pitot tube and an anti-icing leading edge heater on a jet aircraft (these 

must be turned on in sufficient time when entering icing conditions), and a disk brake for an 

Acura NSX racing car.  This racing car application was fun and interesting because one of my 

former PhD students (Dr. Robert Butler) is now a race car instructor and has raced his NSX.  He 

provided details on the disk brake and on racing procedures (I also obtained a NASCAR racing 

training video to inspire my class).   An imaginary triangular shaped race track was selected and 

my students were asked to analyze the temperature during three laps.  The track and conditions 

(maximum speeds on the straightway, and minimum speeds in the turns) were selected such that 

after three laps the brakes exceeded their maximum temperature (due to braking into each turn).  

I asked my students to propose a design modification while choosing from options such as extra 

cooling (directed air) on the disk, increasing the thickness of the disk brake, or by increasing the 

diameter of the disk (the most expensive since it requires increasing the size of the wheel well).   

 

In several classes I have chosen the same application for both a steady and unsteady solution.  

For example, for the Harley Davidson SoftTail we first analyzed the fin for steady cruise 

operation (a steady solution), and then analyzed and optimized the fin for the case when the 

Harley Davidson is stopped for a long period of time and can overheat (an unsteady solution).  In 

another class we did steady and unsteady solutions for a fin on an air-cooled aircraft engine.  For 

the leading-edge anti-ice heater on a jet aircraft, we first determined the power requirements with 

all heaters working and with an inoperative heater for steady operation (a steady solution).  Then 

for the unsteady case we determined the power requirements in order to bring the leading edge 

up to temperature in a reasonable time period when entering icing conditions.    

 

Two-dimensional unsteady solutions have also been done using this approach with the electrical 

analogy and a spreadsheet.  As with the steady case, this simply requires a matrix be copied 

instead of a column.  One application assigned was that of impinging jet cooling of a surface. 

 

Summary and Conclusions 

 

A set of four equations have been derived to handle the numerical solutions for both steady and 

unsteady numerical heat conduction solutions.  These equations make use of the electrical 

analogy.  Since each node is connected to adjoining nodes and boundaries with a thermal 

resistance determined by the mode of heat transfer and geometry, these relatively simple 

equations allow a variety of geometries and boundary conditions including those that vary with 

position and time.  Since students program in the difference equations for a node into a cell in a 

spreadsheet and also program in the boundary conditions, their perception of the numerical 

solution method is clear.  The use of a spreadsheet makes it easy for students to program the 

iterative schemes and quickly move on to interesting real-world problems.  In the process, they 

can explore the effects of convergence for steady heat transfer and the stability criterion for 

unsteady heat transfer.   For simple test cases, they can compare their numerical solutions to 

exact solutions.  They can then use the tool they have developed to address real world problems 
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including fins for electronic and engine cooling, disk brakes for aircraft and automobiles, and 

anti-icing equipment.  The similarity in a spreadsheet “cell” and a “node” or “element” in 

numerical methods increases the understanding of the numerical methods.  Furthermore, the use 

of the “record” feature in Excel
TM

 for writing the iteration macros requires that students 

manually perform the steps in their iterative process, thus making it clear what their numerical 

model is actually doing.  The author has found this to be a useful way of introducing students to 

the basics of numerical methods in heat transfer while considering interesting real-world 

applications. 
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Fig. 1  Discretization and Finite-Difference Equations for Steady Heat Transfer (ref. 1) 

 
Fig. 2 Discretization and Finite-Difference Equations for Unsteady Heat Transfer (ref. 1) 
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Fig. 3 Thermal Network for a 1-D Wall 

 

 
 

Fig. 4  Energy Balance on a Node (1-D) With No Thermal Capacitance (Steady) 

P
age 10.89.11



“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2005, American Society for Engineering Education” 

 

 

 

 

 

Fig. 5 Spreadsheet Template and Macros for 1-D Steady Heat Transfer 
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Temperature Profile for a Slab After N Iterations
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Fig. 6 Convergence Illustration for 1-D Steady Heat Transfer 
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http://www.harley-davidson.com/pr/eng/en/engines.asp 
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Fig. 7  Numerical Results for 1-D Steady Heat Transfer in a Fin (modeled after a Harley 

Davidson SOFTAIL
® 
engine) 
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Fig. 8 Energy Balance on a Multi-Dimensional Node for Unsteady Heat Transfer 

 
 

Fig. 9 Energy Balance for a Surface Node (no capacitance) for Unsteady Heat Transfer 
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Fig. 10 Spreadsheet Template and Macros for 1-D Unsteady Heat Transfer 
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Fig. 11 Demonstration of the Solution and  

Instability for Unsteady Heat Transfer in a 1-D Wall 
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Fig. 12a Disk Brakes for Citation VII Corporate Jet 
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Fig. 12b Numerical Results for 1-D Unsteady Heat Transfer in a Disk Brake during an 

Aborted Takeoff (V1 Cut) 
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