
Session F1A3

A Tool for Extraction of Objects from Digital Images

Dulal C. Kar and Dennis Ma
Texas A&M University-Corpus Christi

Abstract

Many image processing tasks require extracting objects from one image and then combining
with another image to create a new one. However, object extraction is a tedious process. A
number of disadvantages can be noticed in the traditional process of object extraction. It takes a
considerable amount of time and effort to outline the edges of an object before extraction and the
process is not very precise, particularly for objects of irregular shapes. There are many
commercial image-editing programs that provide the capability for object extraction. One of the
most popular programs is Adobe Photoshop. Even though Adobe Photoshop provides a fast
edge detection tool, most of the time, the edges found for an object are neither precise nor
complete. Furthermore, Adobe Photoshop requires a lot of computer resource and storage to run.
In this work, a tool that can be used to extract objects from digital images is presented. By using
an extended and modified version of the Sobel edge detection method, the tool detects the edges
of the objects in an image and outlines them in the original image. The user has the option to
select any object from the outlined objects and save it in a file. The tool reduces the time needed
to extract an object from an image. It has a good graphical user interface and extracts objects
from an image with good precision. A user can see the original image and the image of the
extracted object side by side before saving it in a separate file.

Introduction

In many image processing applications [2], [3], [6], it is required to extract objects from one
image and then place and arrange them in another image. However, the manual process of object
extraction from an image is tedious and time-consuming, which requires the user to outline the
desired object precisely before extraction. The difficulty arises mainly due to irregularity in the
shape of the object to be extracted. It is difficult for the user to make sure all the pixels of the
object to be extracted are indeed inside the closed outline. The disadvantages in this type of
manual process of object extraction can be listed as follows:

• The process is very time-consuming and tedious.
• It requires a great precision and skill for the user to outline the object.
• It is difficult to have a clear perspective on the result until the process is finished.

There are some commercial image-editing programs available that have the capability for object
extraction. Adobe Photoshop is one of them. It provides filters and image editing functions to the
user and is very popular among many image processing professionals. However, object
extraction using Adobe Photoshop remains a tedious work on irregularly shaped objects. Even

Proceedings of the 2005 ASEE Gulf-Southwest Annual Conference
Texas &M University-Corpus Christi

Copyright © 2005, American Society for Engineering Education

though Adobe Photoshop provides a fast edge detection tool, most of the time, the edges found
are neither precise nor complete. Furthermore, the Adobe Photoshop requires a lot of computer
resource and storage for its execution. In this paper, a digital image extraction tool that can be
used to automatically extract objects from an image is presented. The tool provides a good
graphical user interface that allows successively the user to select an object to be extracted from
an image and then save it in a file after extraction. The tool operates on a grayscale version of an
image in bitmap format. In the following section, we describe the techniques and algorithms used
by the tool to extract objects from an image. The section on results and discussions deals with
usefulness and limitations of the tool and suggests ways for future improvement on the
techniques and algorithms employed by the tool.

Object Extraction

In order to extract an object from an image, the tool needs to perform several image processing
steps on the image. First it needs to detect the edges of the objects embedded in the image.
After the edges of a relevant object are found, the tool outlines the edges of the object found in
the original image. Then it extracts the object by following some well-defined steps as described
later. In the case where there are multiple objects found in a given image, the user has the option
to see the images of all objects extracted by the tool successively and save each of them to a
specific file. The most important step in this process is the detection of edges of the objects in the
image. In the following, we describe the edge detection process.

Edge Detection Methods

Edges characterize boundaries and therefore, edge detection is a problem of fundamental
importance in image processing [2], [3], [6]. Edges in images are areas with strong intensity
contrasts – a jump in intensity from one pixel to the next. There are many ways to perform edge
detection. However, the majority of the methods may be grouped into two categories, the
gradient-based methods and the Laplacian based methods. A gradient-based method detects the
edges by looking for the maximum and minimum in the first derivative of the image. An edge
has the one-dimensional shape of a ramp and calculating the derivative of the image can
highlight its location. Clearly, the derivative shows a maximum located at the center of the edge
in the original signal. This method of locating an edge is the characteristic of the “gradient filter”
family of edge detection filters, which includes the Sobel method [1]. A pixel location is
declared an edge location if the value of the gradient exceeds some threshold. As mentioned
before, a pixel on an edge pixel has a higher pixel intensity value than those surrounding it. So
once a threshold is set, one can compare the gradient value to the threshold value and detect an
edge whenever the threshold is exceeded.

When the first derivative is at a maximum, the second derivative is zero. As a result, another
alternative to finding the location of an edge is to locate the zeros in the second derivative. This
method is known as the Laplacian method [1], [4]. We compare the two well-known edge
detection methods i.e., the Sobel method and the Laplace method, for the purpose of object
extraction from an image. Figure 1 shows the effect of the methods on a test image and
correspondingly Table 1 lists their features in terms of sensitivity on the presence of an edge and
noise.

Proceedings of the 2005 ASEE Gulf-Southwest Annual Conference
Texas &M University-Corpus Christi

Copyright © 2005, American Society for Engineering Education

 (a) Original image (b) Edge detected by Sobel c) Edge detected by
 method Laplacian method
 Figure 1. Comparison of edge detection method.

Table 1. Features of Laplace and Sobel edge detection algorithm

 Laplace Sobel
Noise Level More sensitive to noise level Better than Laplace edge detection

method. Not only does it give a cleaner
look, it also smoothes out the edges.

Completeness Provides a very complete
edge of an object

Weak edges depending on the
background of an image.

After comparing the methods, it is found that the Laplace edge detection method is very sensitive
to noise, which can cause some problem for the tool to find a valid object edge. Therefore, the
Sobel edge detection method is chosen as the primary method of detecting edges for this work
since the algorithm produces a clean, smooth image after processing. However, the Sobel
method produces an output image with feeble or weak edges. To solve the problem of weak or
indistinguishable edge problem, we devise an inverse-and-combine method as described later.

Sobel Method of Edge Detection

The proposed tool makes use of the 2-D Sobel operator that performs a 2-D spatial gradient
measurement on an image stored in a 2-D array. By using the 2-D Sobel operator [1], it finds the
approximate absolute gradient magnitude at each point in an input grayscale image. As shown in
Figure 2, the tool uses a pair of 3x3 convolution masks, one estimating the gradient in the x-
direction (columns) and the other estimating the gradient in the y-direction (rows). The
magnitude of the gradient G is then calculated using the formula:
 22

yx GGG +=
where Gx is the gradient calculated in the x-direction using the mask in Figure 2(a) and Gy is the
gradient calculated in the y-direction using the mask in Figure 2(b).

Proceedings of the 2005 ASEE Gulf-Southwest Annual Conference
Texas &M University-Corpus Christi

Copyright © 2005, American Society for Engineering Education

For fast processing, the evaluation of the square root function is avoided by using the following
approximation:

 yx GGG +=
The Gx mask highlights the edges in the horizontal direction while the Gy mask highlights the
edges in the vertical direction. The mask is slid over the image, manipulating a square of pixels
at a time.

Figure 2. Convolution masks used by Sobel method.

The mask changes the center pixel's value after the convolution operation on the image pixel
array, and then the Sobel mask is shifted one pixel to the right and the process continues to the
right until it reaches the end of the row. It then starts at the beginning of the next row. The
process continues until it covers the entire image. After the process, the resulting output can be
used to detect edges.

However, we observe some weaknesses of the Sobel method when we apply the method to
delineate an object’s boundary. For the purpose of illustration, we consider the effect of the
Sobel method on geometric objects as shown in Figure 3. It seems that the Sobel method is
sensitive to the sliding direction of the mask. A particular sliding direction of the mask over a
given image seems to have a weak response to this method. As shown in Figure 3(b), the image
obtained after the Sobel method tends to have only part of the edges. Also, depending on the
background and object color contrast, for images with lighter background compared to the object
itself, upper-left edges stand out much more clearly than the other edges. For images with darker
background, lower-right edges stand out much more clearly than the other edges.

In order to get all the edges of an object in complete form, we apply a three-step process. First,
the original image (see Figure 3(a)) goes through the Sobel edge detection method as stated
above, which detects the edges of either upper-left or lower-right corner. For the purpose of
discussion, we refer this output image as Sobel image 1. Other edges may appear very faint or
may not appear at all in Sobel image 1. To recover the other edges or to enhance the presence of
the other edges, we obtain an inverse of the original image (see Figure 3(c)). The inversion of an
image is very straight-forward. To inverse an image, each pixel value is subtracted from the
maximum pixel value of 255. Next we apply the Sobel method on the inverted image and
correspondingly, an example output is shown in Figure 3(d). We refer this output image as Sobel
image 2. Finally, the two output images, Sobel image 1 and Sobel image 2, are synthesized to

-1 0 1

-2

0

2

-1

0

1

1 2 1

0 0 0

-1 -2 -1

a) Mask for Gx b) Mask for Gy

Proceedings of the 2005 ASEE Gulf-Southwest Annual Conference
Texas &M University-Corpus Christi

Copyright © 2005, American Society for Engineering Education

complete the process of edge detection. We refer the combined image as the resultant Sobel
image of the original image, which is used as a guide for extraction of objects (See Figure 3(e)).

 Figure 3. Edge detection by Sobel method.

Outlining Object Boundary

The pixels of the resultant Sobel image are maintained in a two-dimensional array. After edges
of the objects in an image have been detected, the next step is to identify the first object, the one
closest to the origin (row 0, column 0). A boundary tracing algorithm checks the pixels in the
array to identify a closed boundary which is an indication of an object embedded in the image.
The following explains how the tracing algorithm works. It is to be noted that a pixel in two-
dimensional image has eight neighboring pixels as illustrated in Figure 4. Accordingly, the
boundary tracing algorithm checks these eight neighboring pixels of a given pixel for
connectivity and moves to the next pixel for further tracing. With the starting point always at the
bottom-left corner of an image, the algorithm moves to direction 6 first to find an unmarked
pixel on an edge that guarantees the outermost pixel of the edges. If moving onto direction 6
does not provide any pixel on an edge, then the algorithm continues searching for a pixel in
direction 7, 8, 1, 2, 3, 4, and 5 successively. However, after a successful search in direction 6, it
starts with direction 2 first, then 3, then 4, and so on. If it finds a pixel in direction 7, then
direction 5 becomes its next starting direction. Finally, if it finds a pixel in direction 2, then it
goes in direction 6 again. Thus, the algorithm ensures that the rightmost pixel is reached when
the pixel search is going upward and the leftmost pixel is reached when the pixel search is going
downward.

b) Sobel image 1 a) Original image
+

e) Resultant image

c) Inverted image d) Sobel image 2

Proceedings of the 2005 ASEE Gulf-Southwest Annual Conference
Texas &M University-Corpus Christi

Copyright © 2005, American Society for Engineering Education

3
24

1 54 3 2

5 * 1
86

6 7 8
7

b) Eight tracing a) A pixel (*) and its
 directions eight neighbors

Figure 4. Tracing pixels for outlining an object’s boundary.

After searching through the pixels of the detected edges, the algorithm forms a loop by marking
the pixels for the boundary of the object and stops at the point of the first pixel detected on the
boundary. However, the algorithm can fail to mark the boundary of an object properly if the
object has a very thin edge extending out in the resultant Sobel image. In this case, the tracing
algorithm will not be able to identify the boundary of the object. Because, it will not be able to
form a closed loop enclosing the object. The proposed tool stops in this situation and display a
message to the user.

Filling

After an outline of the object has been produced, the next step is to fill the object. The approach
to fill an object used in this work is very straight-forward. For a given pixel, the algorithm
checks pixels in its four directions, up, down, left, and right, then cycles through each direction
towards the border of the image. To detect whether a pixel is inside an object or not, the
algorithm uses a counter which is incremented when an edge is encountered. If the edge counter
is found to be 4 after checking all four directions, which means the pixel is surrounded by the
object boundary and the pixel is then assigned a filled value 0. Otherwise, the pixel is set to a
white value of 255. The process is illustrated in Figure 5.

 +
a) Outlined b) Filled object c) Original image d) Extracted object

Object

Figure 5. Object extraction process.
Proceedings of the 2005 ASEE Gulf-Southwest Annual Conference

Texas &M University-Corpus Christi
Copyright © 2005, American Society for Engineering Education

Extraction

Figure 5 illustrates the final process of object extraction. After having the filled object in place,
extracting the original data for the filled area is very straightforward. This is done by checking
the original image and the filled image at the same time. Wherever a filled pixel is encountered
in the filled image, the algorithm places the exact pixel value of the original image to the output
image. Otherwise, it sets the pixel to the value of the white color. After extraction of the first
object from the original image, the edges of the extracted object in the corresponding resultant
Sobel image are erased by setting them to white color. The resultant Sobel processed image is
cycled through the same outlining, filling, and extraction steps to retrieve the next object
available in the image. The process goes on until there are no more objects to extract from the
image.

Results and Discussions

As stated earlier, the tool is based on the algorithms and methods discussed above. In order to
use the tool for an image, the image must be in bitmap format. The tool converts any color image
to its corresponding grayscale image for the purpose of applying the Sobel method of edge
detection and uses all the steps discussed above for detecting edges, outlining the boundary of an
object, filling the object area, and then extracting the object. The steps are shown in Figure 6 on
a real image rather than the image with geometric shapes as discussed above.

 +
 a) Original image b) Sobel image 1 c) Sobel image 2 d) Resultant image

 e) Outlined image f) Filled image g) Extracted object

 Figure 6. Object exaction by the tool from a real image.

Proceedings of the 2005 ASEE Gulf-Southwest Annual Conference
Texas &M University-Corpus Christi

Copyright © 2005, American Society for Engineering Education

After extraction of each object, the tool allows the user to save the image of the object in a file. A
close look at the extracted object in Figure 6 shows that the boundary of the object is little off
from the boundary of the original object in some areas. However, this imperfection of the image
object can easily be corrected manually with minimum effort. The important feature of the tool is
that it does not loose any part of the object itself. The idea of object extraction on a grayscale
image can be easily extended to the colored version of the image. In this case, the tool has to
select the corresponding colored pixel (in red, green, and blue colors) from the original image for
each pixel in the grayscale version of the extracted object.

There are some limitations in this process of object extraction. In the case of an image embedded
with overlapped objects, the tool recognizes all overlapped objects as a single object.
An object with an open or broken boundary in the resultant Sobel image cannot be extracted by
the tool due to the fact that the tool cannot outline such an object in a complete loop and the
object is considered incomplete. However, if it is an incomplete object with thick edges, the tool
would simply present the edges as objects. It may be possible to reconstruct the incomplete
object by devising a more sophisticated algorithm available in current literature [5], [7]. The
background light seems to have some effect on the effectiveness of the tool as well. Even though
the tool can detect an object embedded in an image with dark background, but when it does the
extraction of the object from the original image, it leaves the area of the extracted object as white.
In the subsequent processing of the image with the whitened area in it, the tool considers the
whitened area under dark background as an object, therefore, producing an output object with
white pixels. This minor problem can be corrected by using some filtering or filling technique on
the resultant Sobel image. On the other hand, a light background is ideal for the tool, since it
does not cause much of color variance.

Conclusion

In this work, a tool for extraction of objects from an image is presented. It provides an acceptable
level of precision in outlining the boundary of an object in an image. It is a small, fast, and easy
to use tool that provides an effective way to extract objects from an image file. Furthermore, the
tool provides a user-friendly interface, letting the user to preview the images of the extracted
objects before and after processing. Objects can be selected and deselected at ease for extraction.
The tool allows the user to save a specific extracted object in a file. The tool reduces the time
needed to extract an object from an image manually.

References

1. Fisher, B., 2005, “Feature Detector,” URL: http://www.cee.hw.ac.uk/hipr/html/sobel.html.
2. Gonzalez, R. C., Woods, R. E., 2002, Digital Image Processing, Addison-Wesley Publishing Company,

Reading, Massachusetts.
3. Petrou, M., Bosdogianni, P., 1999, Image Processing: The Fundamentals, John Wiley & Sons Publishing

Company, New York.
4. Tanimoto, S., 2005, “Digital images,” URL: http://www.cs.washington.edu/research/metip/about/digital.html.

Proceedings of the 2005 ASEE Gulf-Southwest Annual Conference
Texas &M University-Corpus Christi

Copyright © 2005, American Society for Engineering Education

http://www.cee.hw.ac.uk/hipr/html/sobel.html
http://www.cs.washington.edu/research/metip/about/digital.html

5. Chalasani V., Beling, P., 1999, “Road extraction from digital images using linear programming and cost
functions,” Proceedings of the Fourth International Conference on GeoComputation, Mary Washington
College, Fredericksburg, Virginia.

6. Baxes G., 1994, Digital Image Processing: Principles and Applications, John Wiley & Sons Publishing
Company, New York.

7. Qahwaji R., Green R., 2001, “Detecting faces in noisy images,” Proceedings of the ISCA 16th International
Conference on Computer Applications, Seattle, Washington.

DULAL C. KAR
Dr. Kar currently is an Associate Professor of Computer Science at Texas A&M University-Corpus Christi. His
research interests include digital signal and image processing, data communications and computer networks, and
information assurance. Dr. Kar is a member of Association for Computing Machinery.

DENNIS MA
Dennis Ma obtained his MS degree in computer science from Texas A&M University-Corpus Christi in 2003.
Previously he attended Iowa State University for his BS degree in electrical engineering. His research interests in
digital image processing includes image enhancement, object recognition, and object extraction.

Proceedings of the 2005 ASEE Gulf-Southwest Annual Conference
Texas &M University-Corpus Christi

Copyright © 2005, American Society for Engineering Education

