Asee peer logo

An Approach to Integrating Systems Engineering into Senior Design

Download Paper |

Conference

2016 ASEE Annual Conference & Exposition

Location

New Orleans, Louisiana

Publication Date

June 26, 2016

Start Date

June 26, 2016

End Date

June 29, 2016

ISBN

978-0-692-68565-5

ISSN

2153-5965

Conference Session

Mechanical Engineering Capstone Design

Tagged Division

Mechanical Engineering

Tagged Topic

Diversity

Page Count

12

DOI

10.18260/p.26569

Permanent URL

https://peer.asee.org/26569

Download Count

581

Request a correction

Paper Authors

biography

George Youssef San Diego State University Orcid 16x16 orcid.org/0000-0003-2029-7692

visit author page

Dr. George Youssef received his Ph.D. in Mechanical Engineering from University of California Los Angeles in 2010 and joined the faculty at San Diego State University after four years appointment at California State University Northridge. His research interest is in the general area of solid mechanics with focus on nontraditional materials such as polymers, composites, and smart materials. His research contribution in dynamic properties of shock-loaded materials, interfacial strength of direct bond wafers, environmental degradation of polymers, and biomechanics of walking. Dr. Youssef has several publications in archival peer-reviewed journals. His research has been supported by National Science Foundation, Department of Defense, and private industries. Dr. Youssef was recognized in 2014 by San Fernando Engineers Council as Distinguished Engineering Educator and is one of the 2016 Society of Automotive Engineers (SAE) Ralph R. Teetor Award winners.

visit author page

author page

Vladimir Arutyunov California State University Northridge

Download Paper |

Abstract

Senior design projects are essential capstone experiences to Mechanical Engineering students that allow them to integrate and apply the knowledge they attained in all of their prerequisite courses. Generally, senior students are required to engineer a system that can be purely mechanical or interdisciplinary such as a biomedical, automotive, or aerospace system. Traditionally, Mechanical Engineering curricula focus on the specifics of each component or subsystem with no regard, or at best little regard, to the overall system requirements. On the one hand, the undergraduate thermofluid sequence of courses emphasizes the fundamentals of thermodynamics, fluid mechanics and heat transfer. While, the details of thermofluid system design are usually taught at the senior or graduate level. On the other hand, design and mechanics courses focus on teaching students the aspects of analyzing certain mechanical elements components such as shafts, pulleys, and gears. Overall systems design courses are only available in limited graduate programs nationwide. This educational approach creates a gap in students’ understanding of system level requirements; thus, issues usually arise at the interfaces between subsystems in senior design projects. The current approach in senior design courses to remedy the system interface problem is Edisonian, while engineering practice is moving towards a systematic approach to design and realization. In this paper, a basic and effective approach to integrate the fundamentals of Systems Engineering into the engineering design processes is discussed. The approach consists of developing a dynamic System Level Diagram (SLD), where students transpose the system and interface requirements onto a 2-dimensional block diagram. The SLD is constructed by arranging each component and interface using flowchart methodology, where the number of components is based on the design problem while the interfaces are defined based on physical aspects such as the underlying physics, available local and distributed manufacturing facilities, and structural boundary conditions. This systems approach was adopted by graduating mechanical engineering senior design students who elected to compete in the Society of Automotive Engineers (SAE) Aero Design Competition, during which they developed a system level diagram for their system. They initially developed a layout of the RC aircraft system, then continuously updated the system level diagram throughout the design and the realization processes. The system level diagram was proven to be instrumental during the synthesis, tradeoff, analysis, fabrication, assembly, and testing phases of the project. The system diagram was also used for management, supply chain, and quality assurance aspects of the project. Overall, students reported substantial gain in their design skills and system level understanding.

Youssef, G., & Arutyunov, V. (2016, June), An Approach to Integrating Systems Engineering into Senior Design Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana. 10.18260/p.26569

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2016 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015