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Abstract

This paper describes a junior-level, three-credit-hour, one-semester, required course in
Mechanical Engineering (ME) at Tennessee Technological University. The authors have
integrated the analytical (classical) study of vibrating systems with extensive use of digital
simulation of the differential equations of motion. This course is a result of combining a
traditional three-credit hour, one-quarter vibrations course with a one-hour, one-quarter digital
system simulation course. Simulation, employing a sophisticated computation system, lends
reality to the solution process and matches the procedures used by practicing engineers in that
ME speciality.

I.  Introduction

On the quarter system, the ME faculty taught a classical vibrations course emphasizing one and
two degrees of freedom systems and their mathematical solutions. A follow-on, one-credit hour
digital simulation laboratory (requiring the vibrations class as a pre-requisite) emphasized the
numerical solutions of differential equations using such higher-level programs as SL-1
(developed by Xerox in the late 1960’s), CSMP (developed by IBM in the late 1960’s), ACSL1,
and now MATLAB®2; this evolution followed the introduction of each new package designed to
solve differential equations.  In 1989, during the university transition to the semester system, the
faculty combined these two courses into the course described in this paper.  MATLAB on a
VAX mainframe system was started in 1992 with the migration to the PC version in 1996.  The
current prerequisites for the combined course are beginning courses in computer programming
(FORTRAN or C), engineering dynamics, and ordinary differential equations. System simulation
is accomplished using MATLAB’s ordinary differential equation (ODE) solvers, primarily
ODE23 and ODE45, in a just-in-time, balanced presentation mode. In the current curriculum,
this is the ME students’ introduction to MATLAB and also serves as the foundation for its later
use in other ME courses.

II.  Course Content

The major student outcomes of the course are that the student must be able to a) derive the
system differential equations for single (one) and multiple degree-of-freedom vibrating systems
{sdf and mdf systems}; b) solve for the analytical solutions for single degree-of-freedom systems
for free and forced responses; c) solve analytically for the natural frequencies and mode shapes
for multiple degree-of-freedom systems, with primary emphasis on two degree-of-freedom
systems; d) demonstrate a fundamental capability of using MATLAB to manipulate matrices and
solve coupled ordinary differential equations; e) design a simple vibration absorber system; f)
utilize MATLAB’s differential equation solvers to solve for time-domain free and forced
responses of one and two degree-of-freedom systems; and e) use MATLAB’s
eigenvalue/eigenvector matrix functions to solve for the natural frequencies and mode shapes for
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higher-order systems.  In addition, the MATLAB skills developed in this course are used later in
required Dynamics of Machines and Automatic Controls courses.  SIMULINK®3 (Dynamic
System Simulation Software) and the CONTROLS SYSTEMS toolbox are the MATLAB
programs of choice in the Controls class. Simulink is introduced briefly in this class when time
allows. A typical semester outline is shown in the Appendix. The references to text sections in
the syllabi and in the handouts are for the current text of James, Smith, Wolford and Whaley.4

There are other excellent texts for this course. Three of them are cited in the references.5, 6, 7 The
authors have used Rao and Inman in past years.

Another very important consideration in an integrated course where classical solution techniques
as well as modern numerical techniques are taught is the careful balance of the two concepts
throughout the course. If that balance is not maintained, the students may over emphasize the
MATLAB part of the course to the detriment of the classical (differential equation)
solutions/techniques; the course can easily become a MATLAB programming course rather than
using MATLAB to facilitate the mathematical solutions. To that end, all weekly homework
assignments have both analytical problems, usually from the text, and also MATLAB ODE
solutions to problems appropriate to that text chapter.

III.  MATLAB Use

In order to get the student’s started with MATLAB, the authors generated handouts on how to
use the university’s computer labs where MATLAB 5.2.1 is installed, a basic MATLAB primer,
and a handout on how to utilize the ODE solvers such as ODE23. In addition, the students are
referred to demos that come with the software and also to demos and tutorials at the vendor’s
website http://www.mathworks.com/demos.  With these handouts about the TTU labs, the
demos, and the excellent "on-line help" part of the program (including the full manuals available
for viewing or downloading at the vendor’s web site), we have not found it necessary to have the
students purchase a separate MATLAB reference although there are several good ones on the
market.6 In addition, about 30 percent of the students have a student version of MATLAB on
their personal computers at home, and a very good user’s guide comes with the software. 2

At least three class periods are devoted to hands-on and instructor supervised student work in the
computer labs. Parts of these lab periods are used for instructor demonstrations. A two-lab
tutorial is used to "walk them" through the basic MATLAB matrix computational functions and
simple plotting routines. In the third lab, they are given instructor-written sample programs to
experiment with. The most advanced of these is a program (with a corresponding derivative m-
file program) to solve for the position and velocity of the unforced, undamped, one degree-of-
freedom problem (spring-mass system). The program also calculates the analytical solutions and
compares them to those numerically calculated from ODE23. The students run the program in
lab for various initial conditions and system parameters. This handout is intended to not only
demonstrate how ODE23 works but also to demonstrate many other facets of MATLAB in one
sample program. A copy of the program written in MATLAB version 5.2.1 is item #1 in the
sample handout section of the Appendix. Most students use this program as a template for more
advanced programs assigned later in the course. A MATLAB vibrations toolbox (33 programs),
a companion to Inman’s text, is available as an educational tool from Prof. Joseph Slater of
Wright State University at ftp://ftp.cs.wright.edu/pub/vtoolbox/. The instructors are not using the P
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toolbox because a major goal of the course is for the students to develop basic MATLAB
programming skills for later use in the ME curriculum; using the toolbox is just "too convenient"
and allows them to get results without understanding MATLAB programming.  In addition, once
the students have the "template program" provided in lab and understand ODE solvers, it is not
conceptually difficult to modify the template to yield solutions for many typical free and forced
vibrations problems.

A special advantage of simulation is to solve problems that require mathematical techniques
(primarily solving nonlinear and higher order than two differential equations) beyond those
acquired by undergraduate students. One example of this is solving nonlinear vibrating systems.
The following sdf vibrating systems can be easily modeled using MATLAB to demonstrate the
advantages of simulation for single degree-of-freedom (sdf) non-linear systems:

a) the simple pendulum (linear and nonlinear models)
b) coulomb damping (dry friction) in sdf systems
c) velocity-squared (fluid) damping in sdf systems
d) Van der Pol’s equation (viscous and negative damping)

Some of the nonlinear problems MATLAB solutions are completed by the instructors and
demonstrated in class, and others are generated by the students. In analytically solving problem
a) above, the single pendulum, we invoke the "small angle approximation" to linearize the
differential equation; the assumption is that for θ << 1,  sin (θ) can be replaced by θ when θ is
measured in radians.  Students invariably will ask how "big" can θ be before this assumption of
smallness is violated. A comparison of the outputs from the two programs will allow them to
discover the answer for themselves.

Another excellent example of the use of simulation to help students understand difficult concepts
is in solving for the time responses for transient inputs. Generally, students understand the step
and ramp responses for one degree-of-freedom systems but have much more difficulty grasping
the impulse response mathematical subtleties. Another difficult concept for them is the use of
convolution for the response to a general pulse shaped input. In the last part of Handout #3, we
try to help them, via MATLAB simulation, "discover" that the shape of a very short duration
pulse does not affect the position time history i.e. only the area under the pulse matters, and that
if the pulse duration is short enough compared to the system dynamic response, the output will
approximate that of an impulse. In that handout, a triangular pulse was used. In some semesters,
we use a rectangular pulse instead.

Another example where MATLAB is helpful is when solving for the time responses for multiple
degree-of-freedom (mdf) systems, that is with degrees of freedom of two or greater (sets of
coupled second-order differential equations), since analytical solutions are possible but very
time-consuming and may require using a computer anyway to solve higher order polynomials
with complex roots.  One example of these problems (for a system with 2 masses, 3 springs, and
2 dampers) is shown in handout #4 in the appendix. Other examples are the double pendulum,
building horizontal motion, and vehicle suspension systems.
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Usually the last MATLAB assignment possible in a one-semester course is to computerize the
calculation of the natural frequencies and mode shapes for multiple degree-of-freedom systems.
By utilizing a standard second-order matrix formulation of the equations of motion, we must
solve for the eigenvalues of the dynamic matrix, D, where D = M-1K where K represents the
system stiffness matrix and M represents the system mass matrix; the eigenvalues are the squares
of the system natural frequencies. One must solve also for the eigenvectors of D since they are
the associated mode shapes. The MATLAB eig function easily computes the eigenvalues and
eigenvectors of D. Students find this technique very convenient/helpful after "cranking out"
natural frequencies and mode shapes "by hand" for numerous two and three degrees of freedom
problems. Some students master the SYMBOLIC toolbox enough to solve for the eigenvalues
(square of the natural frequencies) as a product of k/m.

IV.  Student Learning Problems/Challenges Encountered

The authors discovered some re-occurring MATLAB student learning issues especially when
using ODE solvers. They were:

• A difficulty in thinking primarily in matrix functions/operations instead of scalar
operations and understanding which MATLAB operations are scalar in nature versus
array (matrix) ones. This issue was compounded by the fact that the current ME
students are not required to take a formal matrix algebra course; the curriculum is
being revised for next year to incorporate matrix techniques in earlier courses.  This
dimension difficulty is particularly true when they try to compare analytical solutions
to numerically-solved ones. For the analytical solution (say x(t) versus t), a row
vector t is usually generated by an implied loop of the type t=0.0:tmax/200:tmax,
which generates a t row vector with 201 evenly-spaced numbers from 0 to tmax and
then a row vector solution for x(t) can be computed using the t row vector. On the
other hand, the ODE solvers, while in the iterative calculation mode, use scalar values
of the independent variable, t.  But when finished calculating, the ODE solvers return
to the main program a column of t values and a matrix of the state variable values (a
column for the values of each state variable) at each time increment; one of these
columns is the set of numerical values for x(t). Unfortunately, the returned t and state
space values are not at the same time spacings as the analytical solutions since the
ODE solvers choose their own calculation step-sizes.  All of above concepts become
very confusing to junior-level students, and these differences must be reviewed for
much of the course. The new Editor/Debugger in version 5.2 helps them see the
dimensionality of variables much better than the techniques used with version 4.2.

• An unfamiliarity with/inexperience in formulating the higher-order differential
equations (n-th order) into the n first-order (state space) equations required by the
ODE solvers. For example, a two degree-of-freedom vibrations problem has two
second-order differential equations and must be formulated into four first-order
differential equations for the ODE solvers. It takes much of the semester for students
to become comfortable with doing this.

V.  Student Skills Developed P
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By combining vibration theory with MATLAB simulation, the students develop considerable
skill in numerically solving coupled differential equations, which is the primary skill developed
to complement the theoretical applications in this course. This requires them to think about
whether the systems are "stiff" and select the proper ODE algorithm. However, there are many
side benefits that they encounter in the process of solving differential equations via MATLAB.
For example, they become comfortable thinking in a "complex matrix world" instead of always
in a "real scalar world" by mastering many matrix manipulation skills; these include evaluating
complex-valued matrices functions and finding matrix inverses, eigenvalues, and eigenvectors.
Their skill in developing 2-D plots increases tremendously also. Some students develop
considerable symbolic computational skills by doing some of their homework with the
SYMBOLIC toolbox functions. We have found that the graduates of this course are ready to
work with many of the other MATLAB toolboxes in their later undergraduate courses. For
example, they use SIMULINK and the CONTROL SYSTEMS toolbox in the automatic controls
course. In later kinematics courses, they use MATLAB skills to develop personal "toolboxes" to
solve commonly-encountered problems, especially those in which matrix calculations are
helpful. In machine design classes, one use is for the simplification of tedious fatigue factor
calculations where previously empirically-derived chart lookup skills were needed; this is no
longer necessary when they use 2-D curve fitting functions. In addition, when the students are
given programming language choices in thermal science courses, they are now choosing
MATLAB to solve fluid mechanics and heat transfer problems.

VI.  Conclusions

The authors have been successfully teaching an integrated vibrations/digital simulation course
for nine years; MATLAB has been the simulation language of choice since 1992.  Balancing the
classical solution of vibration systems with the application of a simulation package such as
MATLAB continues to be a challenge for the instructors as well as for the students.
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Appendix (Typical Syllabi and MATLAB Handouts)

Typical Course Syllabus

Class Material
Vibration and Simulation

ME 305 - Fall 1998

Text: Vibration of Mechanical and Structural Systems with Microcomputer Applications by James, Smith, Wolford,
and Whaley (2d edition)

Tentative Topics (in order)* MATLAB Usage+          Material to Study/Use

Introduction Book 1-1
Degrees of Freedom Class Notes
Math (differential equations and matrices) Review Handouts and Book 1-3
Dynamic review Handout
Introduction to MATLAB 2 lab/HW Handouts
Harmonic Motion 1-2
Single Degree-of-Freedom Systems
Writing Differential Eq. of Motion (1dof) 2-2
Solving Differential Eq. of Motion (1dof) 1 demo/HW 2-3
Measurement of System Damping HW 2-4
Coulomb Damping of 1dof 1 demo 2-5
Equivalent Springs 2-7
Rayleighs’s Energy Method 2-8
Test One
Harmonic Excitation of 1dof Systems HW 3-1
Rotating Unbalance 3-2
Critical Speed of Rotating Shafts 3-3
Support Excitation HW 3-6
Simulation of Forced Response of 1dof Systems SIMULINK demo/HW Handout
General Periodic Inputs/Steady State Response 1 demo 3-7
Vibration Isolation 3-8
Test Two P
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Transient Vibration 4-1
Nonharmonic Force Excitation 1 demo/HW 4-2
        (step, ramp, impulse, and pulses) 
Free Vibration of Multiple dof Systems SIMULINK demo/HW 5-1 Handout
Differential Eq. Of Motion 5-2
Coordinate Coupling 5-4
Test Three
Natural Frequencies and Mode Shapes 1 demo/HW 5-5
Forced Vibration of Multiple dof Systems 1 demo/HW 6-1
Equations of Motion 6-2
Simulation of Forced 2dof Systems 6-3
Vibration Absorber HW 6-4
Final Exam 

+ MATLAB usage (lab is a supervised lab session, demo indicates done by instructor in class or handed out in class,
and HW indicates an outside-of-class MATLAB assignment)* Topics do not necessarily represent individual class
periods

Sample MATLAB Assignments

1. One Degree-of-freedom Lab Assignment (Undamped Free Response)

Main Program m-file (this line not part of numdf98 m-file)
% Free vibration of an undamped 1 dof system (Matlab version 5.2.1)
% Analytical and numerical solutions
% File called numds99.m
% input the data values from the keyboard
%
x0=input(’enter the initial displacement in ft ’);
v0=input(’enter the initial velocity in ft/second ’);
k=input(’enter the spring stiffness in lbf/ft ’);
m=input(’enter the mass in slugs ’);
tmax=input(’enter the time range in seconds ’);
%
% Calculate the analytical solution
%
t=0:tmax/200:tmax; % sets the time vector t for 201 spaces
omega_n=sqrt(k/m); % calculates the natural frequency
A=sqrt(x0^2+v0^2/omega_n^2); % calculates the amplitude
phi=atan2(x0,v0/omega_n); % calculates the phase angle
x=A* sin(omega_n*t+phi); % calculates the amplitude time function row vector
%
% numerical solution follows using ode23
%
save omega omega_n % saves omega_n in a file omega.mat

% so that we can read omega_n in
% the function dif1s99

tspan=[0,tmax]; % sets the time span on integration
initial=[x0;v0]; % sets an initial conditions column vector

% in ascending order of derivatives
[t_num,x_num]=ode23(’dif1s99’,tspan,initial);

% evaluates x and t numerically.
% The differential equation is defined
% in file dif1s99.m
% Note that now t_num and x_num are vectors P
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% plot the two solutions on one graph
% then plot the velocity found numerically on another graph

%
figure(1) % assigns a number to the first figure
xn=x_num(:,1); %extracts the position vector from x_num

% it’s the 1st column of x_num
plot(t,x,t_num,xn,’*’) % plots the analytical solution x vs. t

% then the numerical displacement
% which is in the 1st column of x_num

title(’Free vibration of an Undamped 1 Dof System’)
xlabel(’Time, s’),   ylabel(’Displacement both x and x-num*’)
gtext([’The Peak Value (A) is  ’,num2str(A),’ ft’]) % adds text with the cursor on a graph

% num2str changes data to printable characters
grid % puts a grid on figure 1
disp (’Hit any key to continue ’);   % displays text on the screen

% as a reminder to get out of pause
pause; % gives us time to see the first plot
figure(2) % sets up the second figure for velocity
vn=x_num(:,2); %extracts the velocity from x_num

% it’s the 2nd column of x_num
plot(t_num,vn); % plots the velocity evaluated numerically
title(’Velocity of a Free, Undamped, 1 dof System’);
xlabel(’Time, s’);  ylabel(’Numerical Velocity, ft/second’);
grid % puts a grid on figure 2

figure(3) % sets up the third figure for phase plane plot
plot(xn,vn); % plots the position versus velocity (phase plane)
title(’Phase Plane Plot of a Free, Undamped, 1 dof system’);
xlabel(’Displacement, ft’);  ylabel(’Velocity, ft/second’);
grid % puts a grid on figure 2

Derivative  Program m-file (line not part of dif1f98 m-file)
function u_prime=dif1f98(t,u)
%
% Defines the differential equations for a free,
% Undamped,  one degree-of-freedom system
% x_dot_dot+omega_n^2 x=0
% That is solved numerically in numdf98.m
%
load omega % omega_n is defined in numdf98.m

% and saved in the omega.mat file
% Define the rows of u as u(1) = x and u(2) = x_dot, the ascending order assignment
% And u_prime(1)=x_dot=u(2) by definition
% Then, u_prime(2) = x_dot_dot = -omega_n^2 x = -omega_n^2 u(1)
u_prime(1)=u(2); % the velocity definition
u_prime(2)=-omega_n^2*u(1); %the differential equation
u_prime=[u_prime(1);u_prime(2)]; %the derivative vector to be solved by ode23

2. One Degree-of-freedom Handout (Damped Free Response)

Homework on MATLAB (Fall 1998)
Second Order Differential Equation Solutions using MATLAB

In this homework set, we will generate/use a MATLAB program using the ODE23 function to solve a general
second-order differential equation of the type:
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o
Fxkxcxm =++ .

&&

allowing the constants m, c, k, and Fo to vary.  This equation can be rewritten into a common form as shown above.

mtFxxx nn /)(.2
.. 2 =++ ωωξ

In addition, in your program, allow the initial condition on x (xo) and dx/dt (vo) to be inputs. This is the typical
output equation for a generalized input to any second-order system such as a spring-mass-damper system.

Part a: Generate a main program (m-file) and a derivative m-file program to solve this general problem (use
ODE23) for the first equation shown above.  Input m, c, k, Fo, and tmax from the MATLAB command window (CW).
The tmax value can be adjusted to get the full response.  Since we will be solving all three possible cases
(underdamped, critically damped, and  overdamped) using Ode23,  you will not need to program all three analytical
solutions. There would be three different ones depending on the value of zeta, ζ. Just program the one for the
underdamped cases as the analytical solution, understanding that for the other two cases, you will get incorrect
answers. For all these cases, enter Fo as zero. Your programs should be well-commented and should generate plots
of x and dx/dt versus time. Compute the values of zeta (ζ) and ωn for each case. The plots should be well-labeled,
titled, and provide sufficient information to know which case you are plotting.  From these plots, also pick off the
peak x values and the damped period (τd measured) if they make sense.  For example, in the overdamped and critically
damped case, τd is meaningless since there are no oscillations. Compare the measured value of the damped period
with the calculated value from the equation in the text for the applicable cases.

1. After debugging your programs, run the four test cases shown below:

Case 1 Undamped 2 3 4
xo 1 1 1 2
vo 0 0 2 -1
m 1 1 1 4
c 0 6 2 5
k 9 9 9 4
τd measured

τd calculated

xmax meas.

Turn in your programs and the plots for the four cases shown.

Part b: In this part, you are to generate a very lightly damped case, say about ζ = 0.06, for initial conditions of your
choice using your program developed in Part a.  From your output, verify that Equation (2-31) on page 68 in the text
is correct. That is compute the zeta from your measured data for two peaks. Again set Fo equal to zero.  Use at least
two damped cycles in your calculations.

Part c: In this part, we will generate what is referred to as a step response for some typical cases.  This is
accomplished by entering Fo as 8. We will obtain the analytical solutions in Chapter 4.  If there is a steady-state
solution (which will occur if there is some damping present), it is of value Fo/k (see Equation 4-12, page 234).  Only
measure τd if there are oscillations. The xmax meas value is the peak value from your plot.

Case 1 Undamped 2 3 4
xo 1 1 1 2
vo 0 0 2 -1
m 1 1 4 4
c 0 4 1 10
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k 4 4 4 4
τd meas.

xmax meas

Turn in the program, data and plots for the four cases.

3. Transient Analysis of One-Degree-of-Freedom Systems (midway in the semester)

Homework on MATLAB (Fall 1998)
Second Order Differential Equation Solutions for Some Common Transients

In this homework set, we will generate/use a MATLAB program using the ODE23 function to solve the spring-
mass-damper systems for some common transient inputs (step, ramp, and rectangular pulses):

)(. tFxkxcxm =++&&

allowing the constants m, c, k, to vary.  This equation can be rewritten as shown:

mtFxxx nn /)(.2
.. 2 =++ ωωξ

In addition, allow the initial condition on x (xo) and dx/dt (vo) to also be inputs. Generate main program (m-file) and
a derivative file programs to solve the following transient input problems (use ODE23) for the first equation shown
above.  Input xo, vo, m, c, k, tmax, and other needed inputs from the command window. We are going to concentrate
on underdamped systems at rest (both initial conditions are zero) for this homework set. Attached are the analytical
solutions for all three cases and non-zero initial conditions. Your programs should be well commented and should
generate plots of x (t) versus time unless otherwise specified.

Case I (Step response): Generate a MATLAB program to solve the equation for a step input of size Fo (as shown in
Figure 4-1b) ; the analytical solution for xo=vo=0 is Eq. 4-13 in the text. Use m=16,c=0.6, k=16, and Fo =16. You
can use the data in Figure 4-4 to check your result.  Compare your MATLAB result to that generated by Eq. 4-13
(since it is underdamped) on the same graph or use the equations in the attachment. When generating the analytical
solution in the main program, you will probably need to use the dot commands (.*t, for example) since the t variable
will be a vector.

Case II (Ramp response): Generate a MATLAB program to solve the equation for a ramp response {F(t) = Fo t};
there is not an analytical solution for xo = vo= 0 in the text (see the attached handout). Use m=2, c=0.2, k=2, and Fo

=4. The displacement x(t) will have a transient term (which will die out), and a steady-state linear term of

which will survive. Plot your x (t)  and the steady state response on the same graph.

Case III (Pulse-type responses): The objective of this case is to generate a MATLAB program to solve for
triangular pulse type inputs (as shown in Problem 4-4 and below) and ultimately approximate the impulse response.
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The analytical impulse response is for a relaxed system(xo=vo=0) and is Eq. 4-5 in the text with C (the area of the
pulse) equal to 1. Use m=6, c=0.5, k=6, for all test runs. Compare your MATLAB results to that generated by Eq 4-
5.  Only the fastest pulses (cases 4 and 5) will give outputs that look close to that of Eq. 4-5. All the triangular pulses
are of height Fo and length t1 and have an area of 1 (that’s why C=1). See the hint below as one way to generate the
triangular pulse in your derivative m-file program.

Case 1 (long pulse) 2 3 4 5 (short pulse)
Fo 0.25 0.8 2 10 20
t1 8 2.5 1 0.2 0.1

Turn in your programs and the plots for all cases.

Hint: Here's a controls/system modeling hint (trick) that makes the simulation for case III easier (and more
sophisticated).  Of course, you could use IF statements in your derivative m-file program and build a function which
is the triangular pulse, but it is usually better to make use of the mathematical and systems functions already
available in MATLAB. A rectangular pulse of height 1.0 that goes from t=0 to t=t1 only (see figure below).

This function can be modeled using a MATLAB sign (signum in mathematics) function where:




<−
>=

01
01

)(
xif
xif

xsign

Use MATLAB help sign to read more about this function. Then a step function (part I) can be defined as Step
=Fo*sign(t) since we don't care about negative time (that is, our t will always be greater than 0). Then the rectangular
pulse of height 1.0 and duration t1, F, as shown above can be defined after working with the two sign functions a
little as:

F = [sign (t)-sign ( t - t1)] / 2

Check it out. When 0<t<t1,  F is [1-(-1)]/2=1 and when t>t1 F is [1-1]/2=0 - just the property that we want. Then the
triangular pulse can be modelled by multiplying a ramp function by the rectangular pulse F as

Triangular Pulse=Fo (t / t1) F

4. Handout on Two Degree-of-freedom Systems (assigned late in the semester)

Homework on MATLAB (Fall 1998)
Higher-Order Differential Equation Solutions

Free, Step, and Sinusoidal Responses

In this homework set, we will generate a MATLAB program to solve a two-degree-of-freedom spring-mass-damper
system, specifically Problem 5-1 in the text with a damper between each body and the wall and a potential force on

tt10

1
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body two, for the free response, for a common transient, the step input, and the steady-state response for some
typical sinusoidal inputs.

The two equations of motion are shown below.

)()(

0)(

122232222

212111111

tFxxkxkxcxm

xxkxkxcxm

=−+++

=−+++

&&&

&&&

Note that the two second order differential equations are coupled.  Allow the system constants k1, k2, k3, c1, c2, m1,
and m2,  to vary.  In addition, allow the initial conditions on x1, {(x10) and dx1/dt (v10)} and on x2 {x20, and dx2/dt
(v20)} to be inputs. Generate a main program (m-file) and a derivative file program to solve this system of equations
for a general input, F(t).  Your derivative program m-file derivative vector will now be of fourth order since we are
solving two coupled second-order differential equations. Remember that ode23 requires a column vector first order
differential equation.  Input x10, v10, x20, v20, the system parameters c1, c2, k1, k2, k3, m1, m2, tmax, and any other
needed inputs from the command window. We are going to concentrate on underdamped systems for this homework
set. Your programs should be well commented and should generate plots of x1 (t) and x2 (t) versus time unless
otherwise specified. Hint: the most common method of specifying the four state variables (to allow us to generate
the four first-order differential equations for MATLAB simulation) is to let y1=x1, y2=dx1/dt, y3=x2, and y4=dx2/dt.

Then the four first order differential equations to program in your derivative m-file are:
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Case I (Free response): Generate a MATLAB program to solve the equations for initial conditions only {F(t)=0}.
Use m1=4 slugs, m2=8 slugs, c1= c2=1.5 lbf-sec/ft, k1=4 lbf/ft, and k2=2 lbf/ft, k3=4 lbf/ft. Generate a solution for
x1(t) and x2 (t) for initial conditions of x10=1 ft, v10= -1 ft/sec, x20 = 2 ft, and v20 = 2 ft/sec.

Case II (Step response) Modify your program  above to solve the equation for a step input in F(t) of variable size.
We will use Fo = 16 lbf with the system at rest (all initial conditions equal to zero). Use the same system parameters
from Case I. Plot your x1(t)  and x2(t) on different graphs. As a check on your simulation, the steady-state constant
values for x1 and x2 should be as defined as below:

k1

m1
m2

x2x1

k3k2

c2c1

F(t)
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These steady-state results were obtained from the differential equations by setting all derivatives equal to zero and
solving for x1ss and x2ss.

Case III (Steady-state sine response)  Modify your program above to solve the equation for a sine wave input in F(t)
of variable size and frequency. We will use Fo = 16 sin (ωt) for ω= 0.5, 1, and 3 radians/second with the system at
rest (all initial conditions equal to zero). Use the same system parameters. Plot your x1(t)  and x2 (t) on different
graphs. As a check on your simulation, the steady-state amplitude values for x1 and x2 should be as defined below:
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The above equations can be derived from the concepts/techniques in Chapter 6.  The undamped natural frequencies
of this system can be shown to be about 0.78 radians/second and 1.28 radians/second. Turn in your programs and the
plots for all three cases.
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