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Abstract  
 
The approximation of thermodynamic properties of compressed liquids at a given temperatures 
and pressures is currently based on the saturated liquid properties at the given temperatures only. 
For example,  it is a common practice to approximate specific volume, v(T, p), by saturated 
liquid specific volume, vf(T), the specific internal energy, u(T, p), by saturated liquid specific 
internal energy, uf(T), the specific entropy, s(T, p), by saturated liquid specific entropy, sf(T), 
and the specific enthalpy, h(T, p), by hf(T) + vf(T)[p-psat(T)]. Errors resulting from these 
approximations will be analyzed in this paper.  This paper will show that these approximations 
are not very accurate at all ranges of temperatures and pressures.  The paper will establish limits 
on the range of pressures and temperatures that these approximations could be used with 
reasonable accuracies.  The paper will also show that the approximations based on constant 
entropy yield much higher accurate results than those based on a constant temperature.  For 
example, the approximation of u(s, p) by uf(s)  is much more accurate that the approximation of 
u(T, p) by uf (T). The paper will go through analysis showing how the saturated liquid properties 
could be used to achieve a more accurate approximation of thermodynamic properties in the 
compressed liquid region.    
 
 

Introduction  
 
Background 
It is a common practice to approximate thermodynamic properties of fluids in the compressed 
liquid region, using the saturated liquid data of specific volume, internal energy and entropy at a 
given temperature and pressure are approximated by   

 
v(T, p) ≈ vf (T)       (1) 
u(T, p) ≈ uf (T)       (2) 
s(T, p) ≈ sf (T)       (3) 

 
in most Thermodynamic textbooks 1, 2. Also, specific enthalpy is defined as  

h = u + pv       (4) 
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and in a differential format 
      

dh = du + pdv + vdp       (5) 
 

Integrating along constant temperature, the following relationship results 
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To approximate the enthalpy in the liquid region, most Thermodynamic textbooks 1, 2 use the 
argument that u and v are independent of pressure in the compressed liquid region. Therefore, 

                            (7) ) ) 0pdv
v(p)

v

)(

f

== ∫∫ T

pu

u
T

f

du

 
Thus equation (6) reduces to  
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Integrating equation (8) the following approximation is obtained  
 

h(p, T) – hf(T) = vf (T)  [ p – psat (T)]     (9) 
 

Then equation (9) becomes as described in the thermodynamic textbooks as, 
 
   h(p, T) =  hf (T) + vf (T) [( p - psat(T) ]   (10) 
 
Kostic 3, 4 observed that the recommended pressure correction (second term in equation (10) for 
enthalpy of liquid water is accurate at low temperatures but erroneous at high temperatures and 
pressures. He also noticed that pressure correction is not necessary for intermediate pressure and 
temperatures. In fact he has argued that adding the correction term  

 
v∆p = vf (T) [ p – psat (T) ]     (11)    
      

will contribute larger errors. 
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Table 1. Specific Internal Energy and Enthalpy of Liquid Water at 260 ˚C3  

 
State p h (T, p) ∆hf happ ∆happ v(T, p) u(T, p) ∆u vf (p-psat)

[Mpa] [kJ/kg][kJ/kg] [kJ/kg] [kJ/kg] [m3/kg]
Sat 4.688 1134 0.0 1134.4 0.0 0.0013 1128 0.0 0.0
Comp 5 1134 -0.1 1134.7 0.3 0.0013 1128 -0.5 0.4
Comp 10 1134 -0.7 1140.4 6.0 0.0013 1121 -7.3 6.7
Comp 15 1133 -1.0 1146.4 12.0 0.0013 1115 -13.8 13.0
Comp 20 1134 -0.9 1152.8 18.4 0.0013 1109 -19.8 19.3
Comp 30 1134 -0.1 1166.0 31.6 0.0012 1097 -31.0 31.7
Comp 50 1138 3.8 1194.4 60.0 0.0012 1078 -50.3 56.2

[kJ/kg]

 
 
 

Table 1 is a reproduction of the enthalpy and internal energy data points presented by Kostic in 3, 

4 for water at 260 ˚C. In this table happ is the approximation of h (T, P) from equation (10) 
 

∆u = u(T, p) - uf(T)      (12) 
     v∆p = vf(T) [ p – psat(T) ]     (13) 
     ∆hf = h (T, p) – hf (T)      (14) 
     ∆happ = happ - hf      (15) 

 
Table 1 shows that along the 260 ˚C isotherm, h(T, p) = hf (T) is a better approximation than that 
obtained from equation (10). 
 
Table 1 also shows that internal energy, u, for water at 260 ˚C varies with pressure. For example 
uf at 260 oC is equal to 1128.4 kJ/kg. However for the same temperature but at 50 MPa the 
specific internal energy is 1078.1 kJ/kg. Therefore the internal energy is not only a function of 
temperature, but also a function pressure in the compressed liquid region. 
 
The focus of this work is to determine if the behavior described by Kostic is unique to water or if 
this behavior extends to other substances. We would like to determine whether v(T, p), u(T, p), 
and s(T, p) are independent of pressure in the compressed liquid region. In addition we are 
interested to determine the range of pressures and temperatures where thermodynamic properties 
of substances in the compressed liquid region could be approximated by equations (1), (2), (3), 
and (10).  In this work, we will also derive equations for the approximation of u(T, p) and h(T, 
p), using the saturation properties. 
 
Fundamental Equations 
Fundamental relation for specific internal energy, in differential form, is usually expressed as a 
function of entropy, s, and specific volume, v  
 

du = Tds – pdv      (16) 
 
the specific enthalpy is defined as  
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 h = u + pv       (4) 

 
in differential form 
 
  dh = du + pdv + vdp      (17) 
 
substituting equation (16) into equation (17) results in 
 
  dh = Tds + vdp      (18) 
 
Helmholtz free energy is defined as  
 
  f = u –Ts       (19) 
 
in differential form 
 
  df = du –sdT – Tds      (20) 
 
substituting equation (16) into equation (20), the Helmholtz free energy can be expressed as a 
function of temperature, T, and volume, v 
 
  df = -sdT – pdv      (21) 
 
Gibbs function is expressed as  
 
  g = h – Ts       (22) 
 
in differential form, 
 
  dg = dh – Tds – sdT      (23)  
 
Substituting equation (17) into equation (23) Gibbs free energy can be expressed as a function of 
temperature, T, and pressure, p 
 
  dg = -sdT + vdp      (24) 
 
Today, it is a common practice to use Helmholtz free energy to formulate thermodynamic 
properties. For example Keenan, et.al. 5, Karimi, Lienhard 6, and Wagner 7 have used Helmholtz 
free energy to formulate the properties of water. Since Hemlholtz free energy is usually 
expressed as a function of T, and v, in differential format Helmholtz free energy can be 
expressed as  
 

df = v
dv

ff ddT
T Tv
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Comparing equation (21) with equation (25) results in the following relations 
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therefore, properties such as internal energy, enthalpy, and Gibbs free energy can be calculated 
directly from Helmholtz free energy, using equations (4), (19), (22), (26), and (27).  
 
Literature Review 
Kostic investigated the approximation of enthalpy in the compressed liquid region for water 3, 4. 
He suggested that the approximation formulas included in current thermodynamic textbooks 1, 2 
(equations 1, 2, 3, and 10) are not accurate for high temperatures and pressures. He used the 
National Institute of Standards and Technology (NIST) [9] thermophysical properties software to 
generate the property values for v(T, p), u(T, p) and h(T, p) and compared them with the values 
resulting from the approximation equations. NIST website 8 provides scientific and technical 
databases covering a wide range of substances and properties. The digital database used in the 
calculations has thermophysical property for 74 different fluids. Thermodynamic properties 
generated by NIST software are based on the Wagner’s 7 IAPWS (International Association for 
the Properties Water and Steam) formulation for water, Setzman and Wagner’s 9 equation of 
state for methane, Miyatomo and Watanabe’s 10 thermodynamic properties model for propane, 
and Tillner, et.al’s 11 equation of state and auxiliary model for ammonia. 
 
Since the calculation of some thermodynamic properties involves finding roots of complex 
functional relationships, we wanted to check whether the results are dependable. For a few 
isotherms we used the NIST software to generate data for enthalpy in the compressed liquid 
region.  
 
Figure 1 shows the variation of specific enthalpy with pressure at given temperatures. These 
figures show that enthalpy exhibits linear behavior in the compressed liquid region. Figure 1 
shows these variations for low temperatures (4 ˚C, 20˚C and 50˚C). For low and high 
temperatures, enthalpy increases with pressures. 

 
Analysis 

 
Approximation of Properties in the Compressed Liquid Region 
Previously it was shown that the equation for the enthalpy, 

 
h(T, p) = hf (T) + vf [ p – psat(T) ]    (10) 
 

is not always accurate for the approximation of enthalpy in the compressed liquid region.  
It was shown that along an isotherm the change of enthalpy should be evaluated from the 
following relationship 
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Figure 1. Variation of specific enthalpy with pressure for water at low temperatures 

 
 

From Kostic’s observations 3, 4 it was shown that the assumption that  is not always 

valid in the compressed liquid region. Therefore,  

) 0=∫
P
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h(T, p) = hf (T) + +v)∫
)( pu

u
T

f

du f (T) [ p – psat (T) ]  (28) 

 
Instead we can show that in the compressed liquid region 

  
 u(s, p) ≈ uf(s)        (29) 
 v(s, p) ≈ vf(s)       (30) 
 

and, 
 

h(s, p) = hf (s) + vf (s) [ p – psat (s) ]    (31) 
 

Using the fundamental relation, 
 

Tds = dh – vdp      (32) 
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Along an isentrop ( isentropic line )  
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Integrating the equation (33) form Psat to P ; 
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When we integrate the enthalpy along the isentrop, equation (34) becomes, 

  h(s, p) – hf(s) =      (35) ∫
P

Psat

dpps ) ,(v

 
To solve the right side of the equation (35) we have to know a relationship between v and p. To 
find this relationship we generated specific volume data as a function of pressure. Table 2 shows 
that the variations of specific volume and internal energy with pressure are very small along an 
isentrop. However, Table 3 shows much larger variations of internal energy along an isotherm.  

 
 

Table 2. Variation of specific volume and internal energy of water with pressure along an 
isentrop where s = sf (200˚C) = 2.3304 [J/kgK] 

P T(s, p) v(s, p) % change in v u (s, p) % change in u
 [Mpa] oC  [m3/kg]  [kJ/kg]

sat 1.5549 200.00 0.0011565 0.00 850.47 0.00
comp 10 201.39 0.0011503 -0.54 850.49 0.00
comp 20 203.00 0.0011433 -1.15 850.62 0.02
comp 30 204.55 0.0011367 -1.74 850.77 0.04  

 
Table 3. Variation of specific volume and internal energy of water with pressure along an 

isotherm T = 200[˚C] 
P v(T, p) % change in v u(T, p) % change in u

 [Mpa]  [m3/kg]  [kJ/kg]
sat 1.5549 0.0011565 0.00 850.47 0.00

comp 10 0.0011482 -0.72 844.31 -0.73
comp 20 0.0011390 -1.54 837.49 -1.55
comp 30 0.0011304 -2.31 831.10 -2.33  

 

In Table 2 the percentage change for specific volume (% change in v) is the error between the 
specific volume at given entropy and pressure v(sf, p), and  specific volume at saturation point, 
vf(sf) calculated as: 
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Similarly percentage change for internal energy (%change of u) is the change between specific 
internal energy at given entropy and pressure, u(sf, p), and specific internal energy at saturation 
point, uf(sf)  
 

% change in u =  100
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In these equations sf = s(Tsat), vf(sf) is the saturated specific volume at a given entropy, and uf(sf) 
is the saturated specific internal energy at a given entropy. 
 
The percentage change, in Table 2.2 are evaluated from the following relations,  
 

% change in v =  100
) ,(v

)(v) ,(v f ×
−
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TpT
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% change in u =  100
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where, vf(T) is saturated specific volume at a given temperature and uf(T) is saturated specific 
internal energy at a given temperature. 
 
Table 2 shows percentage change in specific volume, (% change v), and percentage change in 
specific internal energy, (% change u), for water at 200 ˚C. For example specific volume at 
saturation pressure is equal to 0.0011565 m3/kg and specific volume at 30 MPa is equal to 
0.0011367. The change between these two values is -1.74 %. This table also shows that the 
specific internal energy at saturation pressure is equal to 850.57 kJ/kg and specific internal 
energy at 30 MPa and same temperature is equal to 850.77 kJ/kg. The change between these two 
values is 0.035 %.  
 
Table 3 shows percentage change in approximating specific volume and internal energy along 
the 200 ˚C isotherm. For example, specific volume of the saturated liquid is 0.0011565 m3/kg 
and specific volume at 30MPa is equal to 0.0011304 m3/kg. The change between these to values 
is -2.31 %. The specific internal energy of saturated liquid is 850.47 kJ/kg and at 30 Mpa it is 
equal to 831.1 kJ/kg. The change in internal energy is calculated as -2.3 %.  
 
The variations of specific volume are low along an isotherm. It is even lower along an isentrop. 
Thus, we can assume that specific volume is constant and equal to saturation value along an 
isentrop. Table 2 also shows that the variation of internal energy with pressure along an isentrop 
is very small. Then, internal energy and specific volume at a given pressure, could be 
approximated, 
 

Proceedings of the 2008 ASEE Gulf-Southwest Annual Conference 
The University of New Mexico – Albuquerque 

Copyright © 2008, American Society for Engineering Education 



  v(sf, p) = vf (sf)      (40) 
 
and  
 
  u(sf, p) = uf (sf)       (41) 
 
The approximation by equation (41) helps us to solve the right side of the equation (31). 
Assuming constant specific volume, equation (31) reduces to 

 
h(p, sf) – hf(sf) = v(sf) [p - psat]    (42)  

or, 
 

h(p, sf) = hf(sf) + v(sf) [p - psat]    (43)  
 
Therefore, equation (42) will give more accurate results then equation (10) for the approximation 
of the specific enthalpy in the compressed liquid region. 
  
Typically temperature and pressure are given for the calculation of properties in the compressed 
liquid region. In order to use equations (29), (30), (31), entropy, s(T, p), must first be evaluated 
from the given temperature and pressures. This will be future discussed in next section.  
 
Approximation Formulation for The Internal Energy  
It was shown that in the compressed liquid region the assumption that internal energy, u, along 
an isotherm is independent of pressure was not always true. Therefore it will be useful to develop 
an approximation equation based on saturated liquid properties. 
 
The variation of specific internal energy with pressure along an isentrop was shown in Table 2. 
We notice that the temperature increases with pressure along an isentrop. A linear relationship 
can be developed for temperature as a function of pressure along the isentropic line. In Table 2 it 
was shown that along an isentrop, the saturation temperature increases from 200 oC at the 
saturation pressure to 201.4 oC at 10 MPa and 204.6 oC at 30 MPa. Figure 2 shows the trend of 
temperature versus pressure along constant entropy. The trend between temperature and pressure 
is shown in the Figure 2 to generate the relationship 
 

T(s, p) = 0.16p + 199.7     (44) 
 
The data in Table 4 helps us to describe a more accurate method to approximate the internal 
energy at given temperature (200 ˚C) and pressures. Along an isentrop, temperature increases 
with the increasing pressure as was shown in Table 2. First column in Table 4 shows the actual 
value of internal energy at given temperature and pressure. Second column represents the 
internal energy of the saturated liquid at a given temperature, which is the existing 
approximation, u(T,p) ≈ uf(T), for the internal energy. Third column is the temperature at a given 
entropy and pressure. The last column represents the proposed approximation of internal energy, 
uapp. 
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 Figure 2. Temperature trend versus pressure along an isentrop 
 
 
The proposed approximation is based on the specific internal energy of saturated liquid evaluated 
at a temperature, T’, determined from the following procedure. We find the temperature at a 
given pressure using equation (44). Then we find the temperature rise along the isentrop 
 

∆T = T(sf, p) – Tsat      (45) 
 

Now T’ is calculated by, 
 
  T’ = Tsat - ∆T       (46) 
 
Then, 
 
  u(T, p) ≈ uf(T’)      (47) 

 
 
Table 4 shows the approximation of internal energy for Water at a temperature of 200 ˚C. For 
example the specific internal energy at 200 0C and 10 MPa is 844.31 kJ/kg, with an existing 
approximation, u(T, p) ≈ uf(T),  850.47 kJ/kg. Using the proposed approximation, u(s, p) = uf(s) 
= uf(T- ∆T),  specific internal energy is 844.27 kJ/kg. Results show that estimating internal 
energy with the new method gives much more accurate as compared with result the existing 
approximation of internal energy, u(p, T) = uf(T). Equation 2.33 can be expressed generally  
 

T’ = ap + b        (48) 
Where p is pressure, a and b are constants. The constants in equation (48) are given in Table 5 
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Table 4. Approximation of specific internal energy at sf = 2.3305 J/kgK 

u( 200 oC, 10 Mpa) uf(200 oC) T(sf, 10 Mpa) uf(198.61 oC)
[kJ/kg] [kJ/kg] oC [kJ/kg]
844.31 850.47 201.39 844.27

u( 200 oC, 20 Mpa) uf (200 oC) T(sf, 20 Mpa ) uf (197 oC)
[kJ/kg] [kJ/kg] oC [kJ/kg]
837.49 850.47 203 837.09

u( 200 oC, 30 Mpa) uf (200 oC) T(sf, 30Mpa) uf(195.45 oC)
[kJ/kg] [kJ/kg] oC [kJ/kg]
831.1 850.47 204.55 830.19

WATER

 
 

 
Table 5. Variations constants a and b with pressure 

T [C] a b T [C] a b T [C] a b
5 0.0036 4.99 105 0.0708 105.00 205 0.1553 204.74
10 0.0079 9.99 110 0.0744 110.00 210 0.1602 209.69
15 0.0121 14.99 115 0.0782 115.00 215 0.1654 214.65
20 0.0158 20.00 120 0.0814 120.00 220 0.1703 219.60
25 0.0196 25.00 125 0.0855 125.00 225 0.1764 224.53
30 0.0231 30.00 130 0.0887 129.98 230 0.1818 229.46
35 0.0266 35.00 135 0.0926 134.98 235 0.1905 234.40
40 0.0296 40.00 140 0.0963 139.97 240 0.1930 239.29
45 0.0330 45.00 145 0.1003 144.97 245 0.1980 244.18
50 0.0360 50.00 150 0.1047 149.96 250 0.2037 249.07
55 0.0394 55.00 155 0.1086 154.95 255 0.2090 253.94
60 0.0422 60.00 160 0.1132 159.94 260 0.2143 258.78
65 0.0452 65.00 165 0.1172 164.93 265 0.2205 263.61
70 0.0484 70.00 170 0.1217 169.92 270 0.2255 268.41
75 0.0518 75.00 175 0.1259 174.90 275 0.2307 273.19
80 0.0548 80.00 180 0.1305 179.88 280 0.2358 277.93
85 0.0580 85.00 185 0.1352 184.86 285 0.2405 282.65
90 0.0612 90.00 190 0.1403 189.84 290 0.2448 287.31
95 0.0644 95.00 195 0.1454 194.81 295 0.2487 291.93

100 0.0676 100.00 200 0.1500 199.77 300 0.2524 296.49
 

 
 

Proceedings of the 2008 ASEE Gulf-Southwest Annual Conference 
The University of New Mexico – Albuquerque 

Copyright © 2008, American Society for Engineering Education 



Table 6 shows the properties and percentage changes for water at s = sf(300˚C) for different 
values of pressure starting from saturation pressure to 30 MPa. The results show that in this 
range of pressures the maximum changes are -3.19% for the specific volume, and 0.07% for the 
internal energy. 
 
 

Table 6. Variation of specific volume and internal energy at along an isentrop for water  
at s = sf(300˚C) 

P T s v (T, s) % change 
in v

u(T, s) % change 
in u

 [Mpa] [C] [J/kgK]  [m3/kg]  [kJ/kg]
sat 8.5879 300.00 3.2552 0.0014042 0.00 1332.90 0.00

comp 10 300.65 3.2552 0.0014009 -0.24 1333.02 0.01
comp 20 304.95 3.2552 0.0013790 -1.83 1333.31 0.03
comp 30 308.89 3.2552 0.0013608 -3.19 1333.82 0.07  

 
 
Table 7 shows the properties and error calculations for water at 300 ˚C for different values of 
pressure starting from saturation pressure to 100 MPa. The results show that in these range of 
pressures the maximum percentage changes are -15.59% for specific volume, -10.38% for 
internal energy, 10.85% for enthalpy and -7.72% for entropy.  It is seen in Table 3.6 that the 
absolute errors associated with the approximation of internal energy are lower then those for 
enthalpy for all the pressures.  
 
 

Table 7. Variation of specific volume, internal energy, enthalpy and entropy of water with 
pressure along the isotherm T = 300˚C 

p* v(T, p)*
% 

Error 
v

u(T, p)* 
% 

Error 
u   

happ h(T, p)*
 % 

Error 
happ

s(T, p)*
% 

Error  
s

 [Mpa] [m3/kg] [kJ/kg] [kJ/kg] [kJ/kg] [kJ/kgK]

8.5879 0.0014042 0.00 1332.9 0.00 1345.0 1345.0 0.00 3.2552 0.00
10 0.0013980 -0.44 1329.4 -0.26 1347.0 1343.3 0.27 3.2488 -0.20
15 0.0013783 -1.88 1317.6 -1.16 1354.0 1338.3 1.17 3.2279 -0.85
20 0.0013611 -3.17 1307.1 -1.97 1361.0 1334.4 2.00 3.2091 -1.44
30 0.0013322 -5.40 1288.9 -3.41 1375.1 1328.9 3.47 3.1760 -2.49  

                *First row represents the saturation property 
 
 
Range of Application for Approximation Equations 
It is presented that the errors resulting from using equations (1), (2), (3) and (10) in predicting 
the thermodynamic properties of few fluids in the compressed liquid region. It was shown that 
the current approximation equations result in unacceptable errors at high pressures. In this 
section we will shoe the range of pressures when the approximation equation results in errors 
less than 2%. Figure 3 shows the range of pressure when the errors in approximation of specific 
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volume, internal energy, entropy and enthalpy resulting from the applications of equations (1), 
(2), (1.3) and (10) falls below 2%. The line identified by “2% error limit” represents the limit of 
pressure when the changes are less the 2%. Therefore the region bounded by the saturation curve 
and the 2% error limit defines the range of applications of equations (1), (2), (3) and (10) 

 
Figure 3 presents the range of application of approximation equations for water in the 
compressed liquid region. The figure shows that error will be less then 2% for low temperatures 
(less than 150 oC) at pressures lower then 30 MPa. For temperatures in the range of 150 oC and 
300 oC, the limit of application is for pressures less than 20 Mpa. 
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Figure 3. Application range of approximation equations for compressed liquid water  

(errors ≤ 2% ) 
 

Summary and Conclusions 
 

Standard practice in approximating of main thermodynamic properties in the compressed liquid 
region is investigated and error resulting from the use of general approximation equations 
 

v(T, p) ≈ vf (T)       (1) 
u(T, p) ≈ uf (T)                  (2) 
h( p, T) =  hf  (T) + vf (T) [( p - psat(T) ]   (10) 
 

are evaluated. It is shown that equations 
 

u(s, p) ≈ uf (s)        (29) 
v(s, p) ≈ vf       (30) 
h(s, p) = hf (s) + vf (s) [ p – psat (s) ]    (31) 
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are more accurate approximation equations in the compressed liquid region. Analysis showed 
that approximating the specific volume, internal energy and enthalpy along a constant entropy 
line will result reduce errors as compared when those properties are approximated along an 
isotherm. Therefore it is suggested in this work that properties should be calculated isentropically 
rather than isothermally in the compressed liquid region. 
 
Also a new approximation method was developed in this work by approximating compressed 
liquid properties based on the saturation properties along an isentropic line. 
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