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Abstract 

 
This paper describes a two-phase stochastic procedure based on the Genetic Algorithm, 
to minimize the total transportation cost in transmitting power from sources to 
destinations. The Genetic Algorithm portion minimizes the total cost by modifying the 
source locations, and the Linear Programming technique optimizes the power distribution 
from the proposed source locations to each destination.  The proposed algorithm was 
compared to a similar two-tiered heuristic procedure based on the Simulated Annealing 
Algorithm.   A suite of 19 small test problems (using 2 to 4 sources and 4 to 8 
destinations), and two large test problems (8 X 16 and 12 X 16) were tested.  The 
problems were constructed in such a way that the exact solution were known.    In all 
cases, the algorithm based on Simulated Annealing was superior  to the other techniques.   
 

Introduction 
 
A transportation location-allocation problem is a problem in which both optimal source 
locations and the optimal amounts of shipments from sources to destinations are to be 
found.   In recent years, several researchers have attempted to solve these types of multi-
modal objective problems.  Some approaches solving these problems are outlined below. 
 
Cooper [2] formulated the transportation-location problem which was a generalization of 
both the Hitchcock  “Transportation Problem” and the “Location-Allocation” problem 
with unlimited constraints.   He proposed an exact algorithm, which is considered to be 
exact and relatively simple in concept, but its use is limited to relatively small problems.   
 
A heuristic algorithm called the “Alternating Transportation-Location Heuristic” was also 
developed by Cooper [1]. This algorithm involved an iterative search technique to find 
the optimum.  The steps are iterated until the amount of improvement in the objective 
value is reduced to within some tolerance. Even this algorithm had its limitations, one 
being that it would sometimes end in a local optimum.  
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The need for short computation time, coupled with increased complexity of many 
optimization problems, has prompted a search for more efficient methods.  One approach 
is to use heuristic algorithms, such as Simulated Annealing (SA) and the Genetic 
Algorithm (GA), which produce more nearly global optima.   
 
Liu et al.[4] have applied Simulated Annealing to solve large-scale Location-Allocation 
problems with rectilinear distances.  The results showed high solution quality and 
computation time.  Gonzalez–Monroy et al.[3] have compared the use of simulated 
annealing with the Genetic Algorithm for optimization of energy supply systems.  The 
results inferred that for small problems, the Genetic Algorithm was more efficient than 
Simulated Annealing, but for large problems, the reverse was true. 
 
The present work is also a comparison of Genetic Algorithms to that of Simulated 
Annealing in solving Transportation-Location problems.  The two features of comparison 
are the quality of solution and the computation time. The present work builds upon the 
work of Chowdhury et al. [5], by using the Genetic Algorithm in place of Simulated 
Annealing and comparing the results for their efficiency. 
 

Problem Statement 
 
Although the general transportation-location problem refers simply to “sources” and 
“destinations,” for clarity, the algorithm will solve a particular example of a 
transportation-location problem, namely, identifying the optimal location of new 
powerplants to supply the new (or future) energy demands of a  number of cities.  The 
objective of this problem is to minimize the total power distribution cost.  The power 
distribution cost is the sum of the products of the power distribution cost (per unit 
amount, per unit distance), the distance between the plant and the city, and the amount of 
power supplied from the plant to the city, for all plants and all cities.    For each city, the 
total amount of energy supplied by all plants is made equal to the total demand of that 
city.  And for each plant, the total amount of energy supplied by the plant is to be less 
than or equal to the total capacity of the plant. 
 
The mathematical form of the problem can be written as, 
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Where 
 
φ =   transportation cost per unit amount per unit distance 
δij =  distance from source i to destination j 
vij =   amount supplied from source i to destination j 
n =   number of plants  
m =   number of cities 
xi , yi   =  X & Y coordinates of the source i 
xj , yj   =  X & Y coordinates of the destination j 
dj =  demand of the destination 
ci  =  source capacity 
 
It is noticed that the Euclidean distance term, δij, can be calculated using Eqn. 2 below. 
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                        Eqn. 2 

 
Method 

 
A Two-Phase method is implemented to the solve location – allocation problem.   Phase 
1 involves the Genetic Algorithm technique, which is used to minimize the transportation 
cost by varying the source locations.   Phase 2 includes a Linear Programming technique 
to allocate the power from the sources to the destinations in accordance with the 
constraints. 
 
Phase 1 
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1. The locations and demands for each city; the lower and upper limits for the plant 
locations; the plant capacities; the population; and the number of generations are 
specified.  The upper and lower limits are used to create the initial random 
population of the source locations. 



 
2.   The objective function (Eqn. 1) is evaluated for the random population of  plant  
       locations by calling the phase 2 subroutine, which optimally allocates power from  
       the plants to the demand points, and insures that the constraints are satisfied. 
 
3. The X and Y locations of all of the plants of the initial population are converted to 

base 10 integers and converted to their binary forms.  From the objective function 
values, the probabilities and the cumulative probabilities for each individual in the 
population are calculated. 

 
4. Parent selection is made on the basis of fitness function.  Individuals having higher 

fitness values  are chosen more often.  The greater the fitness value of an individual 
the more likely that the individual will be selected for recombination.  The selection 
of mating parents is done  by roulette wheel selection, in which a probability to each 
individual , i ,  

 
Pi= fi/f1+f2+f3……..   where Pi = Probability of individual ,  fi = fitness values 

 
is computed. A parent is then randomly selected, based on this probability. 

 
5. The parents thus selected are made to mate using a single-point crossover method.   
      The offspring thus obtained form a new population of plant locations.  The binary  
      version of the new population are converted to base-10 integers and then to real   
      values. 
 
6. Steps 2 - 5 are repeated until the desired number of iterations have been performed. 
 
 7.    In order to maintain diversity in the population two operators, viz., mutation  
        and elitism are included.   Mutation is the random change of a gene from 0 to 1 (or 1  
         to 0).  Elitism is the procedure by which the weakest individual of the current 
        population is replaced by the fittest  individual of the immediately-preceding  
        population.  The mutation, and elitism operators offer the oppurtuinity for   
       new genetic material to be introduced into the population. 
  
8. The final cost and final (X and Y) location of the plants are reported. 
 

Phase 2 
  
In Phase 2 the random locations of the plants are received from Phase 1 and are solved as 
a linear transportation problem using the simplex algorithm.   The Simplex Algorithm 
optimizes the cost for allocation of power from the plants to the cities, to a minimum.   
The optimal cost value, which is the objective function value in the Genetic Algorithm, is 
passed back to Phase 1. 
 
A sample of 20 problems is solved using the above Genetic Algorithm and the results are 
displayed and analyzed. 
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Results 

 
The method described above was applied to the sample problems given in Cooper (1972), 
and the efficiencies of both  the Genetic Algorithm and Simulated Annealing Algorithm 
were compared.  These results are shown in the tables  below.   The algorithms are 
compared for two features: 
 

a. Quality of the solution (The efficiency is compared for the same number of 
cycles.) 

b. Computation Time (The number of cycles is compared to obtain the same 
efficiency.) 

 
A set of eighteen small problems and two large problems were tested.  All twenty 
problems were designed in such a way that the optimal values were known in advance.  
Since the method described in this paper involves random perturbations, each of the small 
sample problems was solved ten times each, and the average result is reported below.     
 
Quality of the solution       
  
 Running the algorithms for same number of cycles compares the efficiency.     
                                

Prob 
No. 

Src X 
Destn 

Exact 
Solution 

SA 
Solution 

GA 
Solution 

Computation 
Cycles 

%Difference 
SA Vs Exact 

%Difference 
GAVs Exact 

1 2 x 7 50.450 50.450 50.465 15000 0.0000% 1.1377% 
2 2 x 7 72.000 72.010 72.033 9000 0.0144% 1.6152% 
3 2 x 7 38.323 38.323 38.334 12500 0.0000% 2.6420% 
4 2 x 7 48.850 48.850 48.850 8000 0.0000% 0.7389% 
5 2 x 7 38.033 38.037 38.398 8000 0.0116% 2.4084% 
6 2 x 7 44.565 44.565 44.565 6500 0.0000% 1.4809% 
7 2 x 7 59.716 59.717 59.921 15000 0.0008% 2.6442% 
8 2 x 7 62.204 62.209 62.380 9000 0.0079% 0.9742% 

 
Table 1:  Results Obtained for the Above Set of Eight Problems; Reflects the Quality of Solution. 

 
Proceedings of the 2002 ASEE Gulf-Southwest Annual Conference, 

The University of Louisiana at Lafayette, March 20 – 22, 2002. 
Copyright  2002, American Society for Engineering Education 



 
Prob 
No . 

Src X 
Destn 

Exact 
Solution 

SA 
Solution 

GA 
Solution 

Computation 
Cycles 

%Difference 
SA Vs Exact 

%Difference 
GA Vs Exact 

1 2 x 4 54.14246 54.14315 54.16013 12500 0.00129% 0.03265% 
2 2 x 5 65.78167 65.78545 66.83248 15000 0.00575% 1.59742% 
3 2 x 6 68.28538 68.28678 68.78933 12500 0.00205% 0.73800% 
4 2 x 7 44.14334 44.14334 44.17555 25000 0.00000% 0.07296% 
5 2 x 8 93.65978 93.66392 95.48586 20000 0.00442% 1.94969% 
6 3 x 3 40.00267 40.00331 40.28115 15000 0.00159% 0.69615% 
7 3 x 4 40.00020 40.00092 40.50941 10000 0.00180% 1.27301% 
8 3 x 5 60.00000 60.00672 60.74852 10000 0.01120% 1.24753% 
9 3 x 6 54.14263 54.14266 54.47150 15000 0.00006% 0.60741% 

10 4 x 4 10.00000 10.00083 11.06346 15000 0.00797% 10.6346% 
 
Table 2: Results Obtained for the Above Set of Ten Problems; Reflects the Quality of Solution. 
Large problems 
 
Prob 
No . 

Src X 
Destn 

Exact 
Solution 

SA 
Solution 

GA 
Solution 

Computation
Cycles 

%Difference 
SA Vs Exact 

%Difference 
GA Vs Exact 

1 8 X 16 216.549 224.10744 502.9196 25000 3.48% 132.2% 

2 12 X 16 160.000 160.24570 444.1291 25000 0.15 % 177.5% 

 
Table 3. Results Obtained for the Above Set Two Large Problems; Reflects the Quality of  
Solution. 
 
Computation time 
 
The number of cycles is compared to obtain the same efficiency.  For small problems 
Simulated Annealing took less than 15,000 cycles. Genetic Algorithm took 300,000 
cycles to reach nearly the same. 
                   

Problem 
No. 

Source X 
Destination 

Exact 
Solution 

SA 
Solution 

GA 
Solution 

%Difference 
SA Vs Exact 

%Difference 
GAVs Exact 

1 2 x 7 50.450 50.450 50.465 0.0000% 0.0297% 
2 2 x 7 72.000 72.010 72.033 0.0144% 0.0458% 
3 2 x 7 38.323 38.323 38.334 0.0000% 0.0287% 
4 2 x 7 48.850 48.850 48.850 0.0000% 0.0000% 
5 2 x 7 38.033 38.037 38.398 0.0116% 0.9597% 
6 2 x 7 44.565 44.565 44.565 0.0000% 0.0000% 
7 2 x 7 59.716 59.717 59.921 0.0008% 0.3432% 
8 2 x 7 62.204 62.209 62.380 0.0079% 0.2836% 

 
Table 4. Results Obtained for the Eight Small Problems; Reflects the Computation Time & the 
Level of Accuracy. 
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Problem 
No. 

Source  X 
Destination 

Exact 
Solution 

SA 
Solution 

GA    
Solution 

% Difference 
SA Vs Exact 

% Difference 
GA Vs Exact 

1 2 x 4 54.14246 54.14315 54.14248 0.00129% 0.00005% 
2 2 x 5 65.78167 65.78545 65.80696 0.00575% 0.03844% 
3 2 x 6 68.28538 68.28678 68.29348 0.00205% 0.01186% 
4 2 x 7 44.14334 44.14334 44.14421 0.00000% 0.00197% 
5 2 x 8 93.65978 93.66392 93.66516 0.00442% 0.00574% 
6 3 x 3 40.00267 40.00331 40.00626 0.00159% 0.00897% 
7 3 x 4 40.00020 40.00092 40.00634 0.00180% 0.01534% 
8 3 x 5 60.00000 60.00672 60.00212 0.01120% 0.00353% 
9 3 x 6 54.14263 54.14266 54.14834 0.00006% 0.01055% 

10 4 x 4 10.00000 10.00083 10.01878 0.00797% 0.18780% 
 
Table 5. Results Obtained for the Ten Different Small Problems; Reflects the Computation Time 
& the Level of Accuracy. 
 
Large Problems                                
 
Prob 
No . 

Src X 
Destn 

Exact 
Solution 

SA 
Solution 

GA 
Solution 

Computation
SA,GA 

%Difference 
SA Vs Exact 

%Difference 
GA Vs Exact 

1 8 X 16 216.549 224.107 243.975 25K,300K 3.48% 12.5% 

2 12 X 16 160.000 160.246 217.592 25K,300K 0.15 % 35.99
% 

 
 
Table 6. Results Obtained for the Two Large Problems; Reflects the Computation Time & the 

evel of Accuracy. 
 

Discussion of Results 

d 

e 
 

 
ed the 

olution in 25,000 cycles, whereas the Genetic Algorithm took 300,000 cycles.  
 

Conclusions 

ithm and Linear 
rogramming method, for solving Transportation-Location problems.  

 

L

 
In the case of quality of solution, for small problems, as it can be seen from Tables 1 an
2, Simulated Annealing converged very nearly to the exact solutions (within 0.01 %); 
whereas Genetic Algorithm only converged to within 10% of the exact solutions.  For th
large problems, results in Table 3 shows that Simulated Annealing converged to within
3.5% of the exact solution for the first problem, and to 0.15% for the second problem; 
whereas Genetic Algorithm incurred an error of 132.2% for the first large problem and 
177.5% for the second problem.  With regard to computation time, as it can be seen from
Tables 4, 5 and 6 to reach the same level of accuracy Simulated Annealing reach
s

 
The results illustrate that, the two tiered hybrid Simulated Annealing and Linear 
Programming method is better than the two tiered hybrid Genetic Algor
P
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