
2006-2484: ENGINEERING A NATIONWIDE ENGINEERING DESIGN CONTEST

Eugene Ressler, U.S. Military Academy
COL Eugene Ressler is Professor and Deputy Head of the Department of Electrical Engineering
and Computer Science at the U.S. Military Academy. He teaches computer science and has also
served as the Academy’s Associate Dean for Information and Educational Technology. He is a
recipient of the AAES Norman Augustine Award for Outstanding Achievement in Engineering
Communications.

Stephen Ressler, U.S. Military Academy
Colonel Stephen J. Ressler, P.E., is Professor and Vice Dean for Education at the U.S. Military
Academy, West Point, NY. He earned a B.S. degree from USMA in 1979 and M.S. and Ph.D.
degrees in Civil Engineering from Lehigh University in 1989 and 1991. He is a past Chairman of
the ASEE CE Division and is a recipient of the ASEE Mid-Atlantic Section Distinguished
Educator Award, the Premier Award for Excellence in Engineering Education Courseware, and
the EDUCOM Medal for application of information technology in education.

Catherine Bale, U.S. Military Academy
Catherine Bale is an adjunct professor at Mount Saint Mary College in Newburgh, New York.
She teaches English and Communications classes and has coordinated the West Point Bridge
Design Contest since 1997.

© American Society for Engineering Education, 2006

P
age 11.547.1

Engineering a Nationwide Engineering Design Contest

Abstract

This paper concerns problems solved and lessons learned while conducting the West Point

Bridge Design Contest,
1
 with a focus on the design of technology support and operations behind

the scenes. The contest is a nationwide, Internet-based competition for teams of one or two

students, age 13 through grade 12, culminating in a final round with large cash prizes. In 2006

the contest is in its fifth year. We have previously reported it as a means of engineering

outreach.
2
 This work, on the other hand, is technical, concerning the engineering behind the

contest that allows it to be run by a half-time administrator and two college faculty members

working in their spare time. The design has successfully dealt with challenges including large

service demand fluctuations, tied contest entries, participation by ineligible persons

“masquerading” as true contestants, hackers, an extortionist, hardware failure, Internet outages,

an artificially intelligent bridge optimizer, and other interesting tribulations, all of which were

managed without mishap. Hence the goal of this paper is to pass on information useful to anyone

contemplating related work, where similar occurrences are likely.

Introduction

The intent of this paper is to document our experience in designing and operating the West Point

Bridge Design Contest (WPBDC), a nationwide Internet-based competition that has involved

some 70,000 K-12 students over a five-year period. Careful design of the contest rules, the

supporting technology, and the roles of support personnel has produced an effective and efficient

operation. The original goals for the contest have been met. Moreover, two college faculty

members working in their spare time plus a half-time coordinator have administered the contest

with only modest additional institutional support and no serious mishap. Accordingly, we will

discuss our design methodology, some particular design solutions, and the roles of support

personnel that have evolved over time. While these are necessarily tailored to the unique goals

and constraints of the WPBDC, many are likely to transfer well and therefore to benefit other,

related efforts. We also provide some anecdotes to give the flavor of unexpected challenges that

inevitably arose during contest operations and how the contest’s design allowed them to be met.

The overarching goal of the WPBDC is to increase awareness of and interest in engineering

among a large, diverse population of middle and high school students. As described in our earlier

work,
2
 its motivation is to attract young students of the United States to careers in engineering,

math, and science in order to mitigate projected national shortfalls in the future. This leads to

more specific goals, which are that each contestant should:

• Learn about engineering through a realistic, hands-on problem-solving experience.

• Learn about the engineering design process—the application of math, science, and

technology to create devices and systems that meet human needs.

• Learn about truss bridges and how they work.

• Learn how engineers use the computer as a problem-solving tool.

• Have some fun pitting individual problem-solving skills against those of other virtual

bridge designers worldwide.

P
age 11.547.2

A goal implied in “learning about the engineering design process” is to encourage work in

collaborative teams while also allowing individuals to compete successfully.

Technology supports

To achieve our goals, we established the central principle for design of WPBDC: to exploit

computer and Internet technology to provide an engaging engineering design-build-test

experience with high learning value at no cost to a large number of participants and with low

costs of administration. With due consideration, this principle led directly to four broad

categories of technology support for the contest.

Web site. The contest web site provides potential and actual contestants and their teachers with

all information necessary to prepare for competition, produce successful designs, and submit

them for judging. The current site includes information on purpose, rules, prizes and eligibility to

win, schedule, supporting lesson materials for teachers, and results of previous contest rounds.

Over time, analysis of questions emailed to the Webmaster has guided additions and refinements

including a Frequently Asked Questions page. The contest web site also provides free downloads

of the client software for the contest, the second technology support.

Client software. The West Point Bridge Designer client software is

provided at no cost. It runs on any Windows computer, presenting a

virtual design problem in a graphical form that resembles an

engineering drawing of a real job site where a pin truss bridge is to

be erected across a river gap. The contestant “builds” a virtual

bridge, placing joints and members by manipulating a simplified

Computer-Aided Design (CAD) user interface. Finally the

contestant determines whether her design is successful with a single

button press that causes a simulated truck to pass over the bridge,

presenting it with a realistic load. Designs can be saved as files,

which can be re-opened by the client for further design work and submitted to the contest web

site for judging.

During the simulation, a lifelike three-dimensional display, shown in Figure 1, depicts the forces

in each bridge member with color. Red indicates compression (crushing force) and blue, tension

(stretching force). Color intensity shows the fraction of a member’s capacity being demanded.

Dull red or blue means the member is lightly stressed, while bright color means it is near failure.

Thus colors change dynamically with member forces as the truck advances. If a member fails,

the simulator approximates the motion of the broken bridge, and the ill-fated truck appears to

tumble into the gap. Thus, the animation is an attractive and intuitive display of forces in a truss.

The client employs a simple but realistic cost model to continuously indicate the cost of the

structure assembled thus far. The model includes the cost of materials, which depends on cross-

section, length, and type of metal used in structural elements. It includes fabrication cost, which

depends on the number of joints and joined elements. It also includes site preparation costs

determined by shore abutment and pier configurations, which are chosen at the outset by the

Figure 1—Client simulation.

P
age 11.547.3

contestant from a menu of 56 possibilities. The most efficient design is one that is both

successful (passes the truck load) and has the least possible cost. The contest is to produce the

most efficient design.

The client software captures several important aspects of engineering in an appealing way.

• It shows the connection between the abstract concept of member forces and a real

consequence, the truck passing or falling into the gap.

• It requires the contestant to experience the iterative nature of design. The software

handily supports design, build, test, and redesign in rapid cycles, and it records the

number of such cycles. Top entries normally result from thousands of iterations.

• It reveals the relative ease of creating a successful design versus an efficient one. Nearly

anyone who can use a computer can design a bridge that supports the truck load. Top

designs can result only from a detailed understanding of structures and the cost model.

In survey studies, these three qualities of the client software appear to be responsible for reports

of high learning value.

Automatic judging. Another technology support, intended to make the WPBDC engaging by

appealing to the competitive instincts of contestants, is the automatic judging feature of the web

site. To qualify for prizes, competing teams must register for the contest. In a series of simple

web forms, the system establishes eligibility for prizes, gathers team information, and finally

provides a home page where the team may log in at any time to submit bridges for judging and

see instantly how the team’s best design is faring in competition.

Administrator interface. The contest administrator interface is a separate, secure way to access

the web site in order to retrieve contest management information, record judging decisions, and

post current official standings. Details of the administrator interface are discussed further below.

Its intent is to provide for administration with a minimum investment in hours of effort.

Design of the contest

We employed use cases as the primary means for collaboratively envisioning the final system.
3

For our purposes, a use case is a narrative describing the interaction of actors with the contest

technology. We considered interaction to be series of events, each consisting of an action by

some actor followed by a response of the technology. We initially considered the following

actors:

• Competing teams

• Supporters of competing teams (teachers, mentors, parents, etc.)

• Client software author/maintainer

• Judging system software author/administrator

• Contest coordinator

• Contest judge

• Database administrator

• General system administrator/technician

• Webmaster

• “Bad guy” (malicious Internet entity)

P
age 11.547.4

There is no strict relationship between actors and people; an actor in the system may be zero or

more people and vice versa. The list of actors became longer as design proceeded.

Our methodology was to develop a use case narrative while noting its implications for both

contest rules and support technology requirements. We expected technology requirements to

follow from decisions about rules. Yet we found that the opposite occurred nearly as often.

Requirements for rules followed from decisions about technology. The narrative form of use

cases led naturally to “what if?” reasoning about alternatives so that most use cases developed a

conditional, branching structure. It was quickly apparent that our most difficult task was to

anticipate all possible contingencies. In general, each use case branch fell into one of three

categories:

Normal branches described routine interactions of actors with the support technology. An

example would be a contest team registering for the contest and viewing its team home page for

the first time. Mistakes by users were also considered normal.

Failure mode branches described the experience of actors attempting to use the support

technology while some part of it was failed or failing. An example would be an actor attempting

to submit a bridge for judging while some part of the system was inoperable.

Malicious branches considered attacks by “bad guys” intending to disrupt the competition or

gain unfair advantage. One example we considered was a “denial of service” attack, where a

“hacker” would employ nefarious technology to bombard the contest web site with so many

requests for service that bona fide contestants could not gain access. There were many others.

Table 1—Use case example.

A simplified example, taken from the author’s design notes, suffices to illustrate. It is presented

in Table 1.

Use case : Register and submit design

Action Response Notes

Select “Register and log

in.”

Show “register and log in page.” * Register and “log in” dialogs must appear

simultaneously with good instructions.

Press “register” button. Show initial registration form. * Need best practices for form layout.

* How to handle multiple team members?

Fill in form correctly and

press “submit.”

Determine and show eligibility for

prizes. Allow user to verify

correctness.

* What team data are required?

* What are eligibility rules?

* Need branches for bad form entries.

User verifies correctness. Register the team with given eligibility.

Present the modifiable data form.

* Data entered so far cannot be modified!

* Need separate form for modifiable team information.

Enter modifiable data

correctly and press

“submit.”

Present team home page. * What are modifiable data? All that do not determine

eligibility (ex: email address, school, home town).

* Need branches for bad form entries.

Browse for bridge design

file and press “upload.”

Analyze bridge design, verify the truck

load passes, compute cost, show home

page including results of analysis and

contest standing of the design.

* What if the team later submits a bridge not as good

as this one?

* Need branches for failed load tests, files other than

bridge designs including extremely large files that

would disable the web server.

* What is biggest possible bridge design file?

* Standing can only be “unofficial” pending judging.

P
age 11.547.5

One can see that this was an early, rough use case that led to many branches, questions, and

refinements. For example, it made obvious the need for a rule on maximum team size. We

settled on teams of only one or two members because we reasoned that young people were

unlikely to be productive in larger groups. The rule instantly became part of the software design.

Another important point in the use case development is shown in

italics. The need for a separate form to collect modifiable team

data followed from the need to prevent future changes to data on

team eligibility. This became apparent only as the use case was

being discussed. The use case narrative developed in parallel with

decisions on requirements. Such tight coupling of discovery and

consequences within use cases was common. In addition, many use

cases implied changes to rules or technology, which affected other

use cases. Thus the overall design process was strongly connected

and highly iterative. A hypothetical example is shown

schematically in Figure 2, where the arrows indicate how one event

implies a necessary change to another, either within the same use

case or in another.

A partial list of contest rules and software features that resulted from our use-case analysis is as

follows:

• A standard annual cycle based on the average US K-12 school year.

• A three-round structure for the contest where each successive round is more closely

observed and controlled than the last, while the number of competing teams is

geometrically smaller. See Table 2. This arrangement ensures that final winners are

deserving, while the highest possible level of qualifying round participation is also

achieved. The latter served the goals of maximum learning and broad participation.

Table 2—Three-round structure of contest.

• Mass emailing infrastructure for communication with teams.

• Tied submissions to be avoided by 1) disallowing geometrically identical bridge

submissions and 2) by assigning unique sequence number to each successful submitted

bridge. If two bridges of identical cost are submitted, the lowest sequence number wins.

Rejecting identical bridges creates an interesting technical challenge, discussed below.

• An “open competition” category for curious but ineligible people to try their hand

without impersonating a K-12 student by entering fraudulent personal data. Hence we

added a new actor to the list, “Curious, ineligible competitor.”

Round Number of teams
Technology

supports used
Competition site Observer

Qualifying
Thousands or

millions
All

Any Internet

computer
None

Semi-final Hundreds All
Mutually agreed

observed locations

Teachers and

volunteers

Final Ten or fewer Client only
Arnold Hall,

West Point, NY

WPBDC

administrators

Use Case A

Event

Event

Event

Event

Use Case B

Event

Event

Event

Figure 2—Inter-relatedness

of events in use cases.

P
age 11.547.6

• Placing the contest coordinator “in the loop”—reviewing team personal data before

posting to official standings pages for “top 30” teams. This avoids offensive information

from being posted automatically to the contest web site. It adds a significant

administrative burden, but is important to the credibility of the contest.

• A difference between real-time “unofficial” standings, which (for algorithmic reasons)

include all reviewed and unreviewed teams versus “official” top 30 listings, which

include only reviewed teams.

• 100% logging of all web server activity with detail sufficient to “replay” the contest from

the logs if necessary.

• Encouragements for teams to log in throughout the contest, which assures sponsors that

their investments are paying off in contest activity. These include “bridge design tips”

updated weekly and available to teams only through their home pages. In addition,

bridge costs are normally not listed in official standings so that teams below the top 30

will need to check their home pages to see how their designs are faring.

• “Load dumping.” Should publicity cause an unmanageable usage load spike, the

administrative interface feature allows easy posting of official standings that include

costs for the top 30. This would immediately discourage logins by the large majority of

teams that do not have highly competitive bridge designs.

Risk analysis

The existence of failure mode and malicious branches in our use cases led us to a systematic

consideration of risks in the design, implementation, or operation of the contest and its supports.

Participation risk recognizes that problems with the system can lead participants to give up,

subverting the goal of attracting large numbers.

Learning risk is defined as the danger that system problems might interfere with learning about

the engineering design process, truss bridges, and computer design tools.

Disruption risk is the possibility that an unrecoverable technology problem can prevent a fair

conclusion of the contest with the selection of final winners.

Embarrassment risk is entailed with the association between the WPBDC and the U.S. Military

Academy. Should there be even the perception of a less-than-successful outcome for the contest,

there would follow an institutional price to be paid.

Failure/risk crosswalk

With risks enumerated, we set out to analyze the failure mode and malicious use case branches

with respect to each kind of risk. Conceptually, we constructed a matrix with one axis

representing possible problems and the other the kinds of risk along with its likelihood. Each

cell was filled with a risk management decision. For our purposes, a risk management decision

is a (possibly empty) list of mitigation measures that trade off risk for implementation cost. A

few rows of the table are shown in Table 3.

P
age 11.547.7

 Risk

Failure mode/

malicious branch
Likelihood Participation Learning Disruption Embarrassment

Offensive team

data entered for a

top 30 team

Very high Low risk; no action

High risk;

follow up team data

with school

personnel

Hacker intrusion Very high High risk; take defensive action

Client bug Very low Low risk; redistribute repaired client

Moderate risk;

make strong

integrity checks on

uploaded files

Moderate risk

follows from

disruption;

same action

Spiking

participation
Low Moderate risk; make services rapidly scalable

Health failure of

admin team
Low Moderate risk; no action

Solution clustering Unknown

High risk; use 56

cost-comparable

design cases.

High risk follows

from participation;

same action

Very low risk;

no action

Low risk;

no action

Table 3—Risk crosswalk matrix.

Solution clustering occurs if the bridge design problem inadvertently leads to a relatively small

and obvious set of solutions that are all near-optimal. In this case, many teams quickly arrive at

similar solutions, the leader board becomes static, and there is less incentive to participate.

Mitigation consisted of offering 56 different shore abutment and pier configurations and then

taking the greatest possible care that near-optimal designs for each configuration would all have

similar costs.

Specific design decisions taken as a result of risk analysis but not shown above include:

• Use of fully redundant hardware with real-time backup of the contest database.

• Use of the institution-standard enterprise database engine for all team and uploaded

design data and “borrowing” of a skilled database administrator for setup.

• Stationing server computers in power and atmosphere-controlled machine rooms and

borrowing an expert technician to maintain their basic operating systems.

Unforeseen requirements

Despite our care with use case and risk analysis, several unforeseen requirements appeared

during the first two contest years. A discussion of these illustrates how the initial design was

changed on-the-fly to meet them. In several cases, responding to participant requests in this

manner substantially improved the contest.

Annual contests. In fact, the WPBDC was initially intended to be a single event rather than an

annual one. The year 2002 was the Bicentennial Year of the Military Academy, and the WPBDC

was conceived as a fitting celebration of the Academy’s engineering heritage. Successive years

were added only in response to requests from teachers and students and the willingness of

financial supporters to continue. To redesign the system for additional contest years, we

reconsidered existing use cases in the new light. New ones were added to describe the work

necessary between the finals at the end of one contest year and the next year’s qualifying round.

These included creating a new design problem by making changes to the truck load and cost

P
age 11.547.8

model, changing the client and server software to suit, archiving the completed year’s data, and

resetting the contest database.

Archive analysis. To minimize risk from solution clustering, the completed year’s bridge

submissions were searched for the minimum cost bridge in each of the 56 shore abutment and

pier configurations. These were used to ensure that a winning bridge could not be obtained using

the same shore/abutment configuration in the following year and to make the other 55

configurations equally likely to produce winning designs. This approach was successful. In the

two most recent contest years, several different configurations were represented among

qualifying round winners, who advanced to the semi-finals.

The COPA. Two months before the first qualifying round, legal review by a prospective contest

supporter made us aware of the Children’s Online Protective Act
4
 (COPA) and its provisions.

Our widely distributed advertisements had already promised that all U.S. K-12 students would be

eligible for prizes. Yet the COPA required written permission from a parent or guardian for

children less than thirteen years old before personal data could be collected via our electronic

registration forms. We responded by adding use cases for children of this age. The registration

system was modified to provide the COPA permission form and ask the contestant to certify that

the form had been signed and mailed prior to finishing registration. Modifications to the server

software were relatively simple. To the contest coordinator’s list of duties was added the

retrieving and storing the COPA forms that accumulated in our post office box rented to receive

them. After the first year, contest rules were changed so that children younger than 13 were no

longer eligible for prizes.

Special reports. Several groups including state engineering societies and school districts

requested custom reports of participation in their geographical areas. Since the system was

based on an enterprise database engine, it was straightforward to generate a daily report,

accessible through the web site, showing the numbers of competing teams by zip code. This

satisfied nearly all the individual requests and was implemented in about 24 hours.

Local contests. One request for special information could not be met by the zip code report.

This was to provide the standings of teams participating in a statewide bridge design contest that

had been scheduled to “piggyback” on our national one. Without our help, the state would be

faced with a cumbersome manual method of deciding winners. We determined that such

requests for local contest standings could be met if each participating team entered a unique code

word in an optional registration form field (we chose the name of the team’s teacher or volunteer

mentor). On the server side, we began generating hourly local contest standings pages with web

addresses based on the code word. We informed the local coordinator of this address. Thus we

found that we could support a virtually unlimited number of local contests with the only

administrative burden being to issue local contest codes through e-mail to the local coordinators.

This simple idea proved very successful. Over 200 local contest codes have been issued. Server

records show that approximately three-fourths of these have had three or more participating

teams, the largest over 1000. Groups including home-school clubs, classrooms, schools, school

districts, professional society chapters, states, and foreign countries have conducted local

contests. In following years, the administrator interface of the judging system has been

augmented to manage codes and coordinator information.

P
age 11.547.9

Bridge data obfuscation. The 2002 and 2003 client software saved bridge data in a readable

format, which was easy to modify with a text editor or generate with a separate computer

program. By design, the client software made few checks of data integrity as it read these data

files. The server, on the other hand, carefully checked submitted files to ensure with perfect

certainty that each successful submission could have been produced by the client. This

eliminated some kinds of risk and avoided arcane and unverifiable rules about how submitted

files must be produced.

After two contest years, there was strong evidence that several groups were constructing

automatic bridge designers—heuristic search algorithms using artificial intelligence techniques.

All groups known to us were pursuing legitimate research, and none were finding success.

Nonetheless, there was high risk of contest disruption if any such effort, legitimate or not,

succeeded. Therefore, as a precaution, bridge files for the 2004 contest and beyond have been

stored in a scrambled form that would require a high level of technical sophistication to decipher.

Design of support technology

Our use case and risk analyses provided clear requirements for support technology. We list

them here for reference.

Correctness. All client and server software needed to function in accordance with use case

requirements and the contest rules. While the client was already mature in 2002 and had been in

daily use by hundreds of people for some years prior, the server software was new. Hence in

addition to best practices in implementation, a comprehensive server software testing program

was added to mitigate risk.

Robustness and reliability. Software, hardware, and network equipment had to provide adequate

service consistently to all participants and administrators.

Availability. The contest web site had to be consistently available except during scheduled

maintenance hours, which were timed to be outside school hours in all U.S. time zones.

Response times. In accordance with best practices for user interface design, the web site had to

respond to user interaction in less than ½ second. We deemed Internet-induced delays to be

unavoidable and ignored them.

Simplicity of administration. Due to constraints on administrative support personnel,

administration had to be simple and possible from any Internet computer. Indeed, the fourth

year of the contest took place while the judging system administrator was in Afghanistan,

performing his tasks remotely.

Moderate hardware and network costs. We sought to keep equipment and communication costs

low. On the other hand, where additional or more expensive equipment could reduce

administrator hours or mitigate high and moderate risk, the best decision was usually to

purchase.

P
age 11.547.10

Skill environment. Development languages and tools employed were those familiar to the

software authors at the time the project first started in 1999. This had consequences, as will be

discussed below.

Usage load estimation

Nearly all of these requirements hinged on one independent variable— the rate of requests to the

web server. Finding no help in the literature, we proceeded with an educated guess. According

to the 2000 census, there were approximately 51.5 million K-12-age children in the U.S. and

about 92,000 primary and secondary schools. Earlier downloads of the pre-contest client

software numbered about 67,000. We settled on the following estimates:

• 100,000 teams would register.

• 1,000,000 bridges would be submitted,

• 4,000,000 registration and login interactions would occur.

We assumed interaction would be spread over 8 hours of each contest day. Using a rudimentary

M/M/1 queuing model, we determined that a service time per interaction of 0.3 second would

result in an average queue wait of 0.2 seconds, providing the desired 0.5 second response.

However, we suspected that spikes would occur when the contest was advertised in metropolitan

newspapers and other media with large audiences as planned for the Bicentennial. Some further

back-of-the-envelope calculation indicated that a 0.03 second service time provided an

acceptable performance margin. The same calculations indicated that an inexpensive

0.4 megabit per second Internet uplink would serve all purposes except downloads of the client

software. The client has therefore been distributed through volunteer educational institutions,

including ours, through their high-bandwidth connections to the Internet.

Special technical requirements

A few fascinating problems in software design are inherent in the rules of the contest. One is

the need to reject bridges that are duplicates of previous submissions. It is not sufficient to check

that bridge file contents are identical. These files are necessarily based on an arbitrary

numbering of truss joints. Member ends are specified with these joint numbers, and members

may also be listed in any order. Thus a bridge with n joints and m members has at least n!m!

possible bridge file representations, a large number. Moreover, a new bridge must be checked

against the existing database of up to one-million others in approximately 0.02 seconds to meet

service time requirements.

To achieve adequate performance, we used two well-known tools of computer science. We first

implemented a function to compute a canonical variant of any given bridge. A canonical variant

in our case is a numbering of joints and an ordering of members unique for a given bridge

geometry. We chose left-to-right, bottom-to-top joint ordering and then ordered the members by

the smallest of its two joint numbers ascending. Hence to compare two bridges for identical

geometry, we first convert them to canonical form and then compare the variants for exact

equality.

P
age 11.547.11

The second technique needed for rapid duplicate checks is a hash function. In our case, the hash

function translates a bridge into a short string of characters such that two unequal bridges are

very likely to produce different strings.

With these in hand the algorithm for duplicate checking is as follows:

1. Convert the new bridge B to its canonical variant C(B).

2. Compute H(C(B)), the hash string for the canonical variant.

3. Search the database for all bridges Mi with stored hash string equal to H(C(B)).

4. If no such bridge is found, go to 6.

5. Otherwise convert each bridge Mi to its canonical variant C(Mi) and check whether

C(B) = C(Mi) for any i. If so, a duplicate has been found, otherwise continue.

6. There is no duplicate. Store the pair B and H(C(B)) in the database.

Since a standard database engine can look up a hash string very rapidly, and canonical variants

and hash strings are also quick to compute, this algorithm successfully met the performance

requirement.

A second challenge was determining the unofficial standings of any team in a population of

100,000, also in less than 0.02 seconds. Our enterprise database was inadequate for this task,

since its relational engine needed a linear scan of 100,000 records in the worst case. A well-

known balanced tree algorithm with node numbering was well-suited, but implementation

presented some arcane technical problems. Help came from the Open Source software

community in the form of a production-quality embeddable database system with the required

node-numbering feature.
5

Bearing in mind that our usage load estimates were rough, we set out to implement the server

software for scalability. We chose an architecture of communicating services that each provided

a separate function. In the system’s original configuration, all services were located on the same

server computer. If load grew beyond estimates and performance suffered, it would be possible

to quickly distribute services on separate computers. Some could also be replicated on any

number of computers to further share and balance loads. A diagram of the server organization is

presented here.

Single Server Architecture

Sybase Back End

Database

Firewall

PerlEx

CGI/Perl

Front End

“Judge”

Perl Extension

IIS

Static

Pages

Software

Download

Standings

Zone 0

Standings

Zone 1

Standings

Zone 2

Standings

Zone 3

Standings

Zone 4

processor threads

Distributed Architecture

Sybase Back End

Database

Firewall

PerlEx

CGI/Perl

Front End

“Judge”

Perl Extension

IIS

Static

Pages

Software

Download

Standings

Zone 0

Standings

Zone 1

Standings

Zone 2

Standings

Zone 3

Standings

Zone 4

Cloned Copies

on different machines

R
u
n
 o
n
 s
ix
 d
if
fe
re
n
t
m
a
c
h
in
e
s

Figure 3—Scalable services architecture for the contest server.

P
age 11.547.12

Today, service-oriented systems are common due to the wide acceptance of industry standards

such as CORBA, XML, and SOAP.
6
 This was not true when the WPBDC was designed. The

choice to use services has proven a good one. Though scaling of the system by distributing and

replicating them has not been necessary to date, the capability to do so is powerfully reassuring.

In addition, though our original implementation used only two Open Source software

components—BerkelyDB
5
 and perl,

7
 the Open Source movement now provides versions of all

the WPBDC service components. Were we beginning today, we could choose Linux
8
 rather than

Microsoft Windows 2000,
9
 the Apache

10
 web server rather than Internet Information Server,

11

modperl
12

 rather than ActiveState PerlEx,
13

 and PostgreSQL
14

 rather than Sybase Enterprise

Server
15

 to duplicate the current architecture at no cost for software licenses. In addition, we

could replace the hand-written communications code in the standings servers with a SOAP

service provider for a simpler implementation.

Administrator support

The administrator interface of the contest web site is secured by password and provides various

supports to the administrative team, which are also depicted in the typical screen shown here.

• Server status and consistency

checks.

• Verification that the server can

be accessed from a third-party

Internet location.

• Review of “top 30” team

information for offensive

content and other issues;

approval or disapproval of

eligibility for prizes.

• Preview and posting of official

standings for approved, eligible

teams.

• Viewing of currently posted

standings.

• Simple queries to find arbitrary

teams by team name.

• Viewing sketches of the best

bridges of any set of teams.

• Adding, removing, and

searching for local contest

codes and associated

coordinator data.

• Producing e-mail distribution lists for top 30 teams.

These functions have not changed since the second contest year, when local contests were added.

A typical administrator screen is shown here. Personal data have been elided.

Figure 4—Administrator interface.

P
age 11.547.13

Administrative support team roles

The division of labor and authority over the administrative support team has evolved slowly to a

specific set of roles. These are filled by three people as already explained plus modest

institutional and volunteer support. In Table 4, the main support personnel are denoted by A, B,

and C. The reader should take careful note that the routine time estimates are for the contest’s

fifth year of operation, after much learning and reorganization of work. At the outset, they were

roughly three times higher.

 Time estimates

Role Personnel Routine Task

Webmaster A 2 hr/wk 100 hrs

Client software author A — 800 hrs

Client software maintainer A — 20 hrs/yr

Judging system software author B — 500 hrs

Judging system software administrator B 2 hr/wk varies

Contest coordinator C 20 hr/wk 80 hrs/yr

Chief judge A 1 hr/wk varies

Database administrator B 2 hr/wk —

General system administrator/technician Institutional

support

2 hr/wk —

Local contest coordinator Volunteers — varies
Table 4—Administrative support team roles.

The webmaster is a conventional author and maintainer of the static information portion of the

contest web site. The client software author independently created the West Point Bridge

Designer. Annual design changes and bug fixes fall to the client maintainer. Similarly, the

judging system author and administrator respectively created and continuously operate the

judging system. The contest coordinator is the human voice and face of the WPBDC. She

telephonically verifies the administrative data of each top 30 team. At the start of the qualifying

round, this is a large daily task. She makes decisions to qualify or disqualify teams, referring

those that are not clear-cut to the chief judge. She arranges semi-final round sites and monitor

personnel at locations throughout the U.S., on ships afloat, and in foreign countries. She plans,

organizes, and executes the contest finals including travel of finals teams to West Point, live

competition in an arena-like venue, distribution of prizes during an awards banquet or luncheon,

and reimbursements for travel. To the chief judge falls the final adjudication of decisions not

within the coordinator’s purview. He interprets rules and officiates at the finals. The database

administrator is a standard support role; he performs routine monitoring and preventative

maintenance on the enterprise database engine of the contest support system. The general

system administrator is another standard role; he keeps server and network hardware and

operating system software in good repair and up to date.

As shown in the rightmost two columns of Table 4, time spent by contest administrators may be

divided into routine and task-oriented work that may be scheduled or unscheduled. Routine

work occurs each week from the start of the qualifying round through the completion of finals.

Scheduled tasks are generally aimed at preparation for the next contest round. Exceptions are the

P
age 11.547.14

tasks of the webmaster and software authors, which reflect the effort of initial development.

Unscheduled tasks result from unpredictable events such as software bugs and misbehaviors of

contestants.

Observations, episodes, and lessons learned

We close with a few anecdotes and observations having the flavor of out-of-the-ordinary

challenges that seem inevitable as each contest unfolds, beginning with most dramatic.

The extortionist. Among the various misbehaviors of young contestants, one stands out. During

the closing days of one contest year, the coordinator received an articulate email message from

one of the current contest leaders, call him L, explaining that another person, let us say E, was

asking, via pseudonym email, to be sent a copy of L’s winning design. If L did not comply, then

E would arrange to have L disqualified. L found that he was unable to log into his home page. E

had guessed his password, logged in, and changed it. E promised to make good his threat by

changing L’s team information to include offensive language. Fortunately, the contest

coordinator already knew L’s school principal and verified that L was an honest competitor.

Though E took some measures to conceal his true identity, information provided by L along with

the contest server logs were sufficient to identify E with high certainty. The case was turned

over to E’s principal, and E was permanently disqualified from the contest.

The hardware failure. Another episode occurred in the contest’s second year when, despite all

precautions, a hardware failure led to corruption of the contest database, and the backup system

failed. Fortunately, a skilled database administrator was able to recover about three-fourths of

the database using specialized techniques. It was then possible to rescue all but a handful of

bridge design submissions by “replaying” the system logs, repeating earlier interactions between

teams and the server. In all, this intense effort required 14 hours mostly weekend hours. We

saw no measurable impact on the contest. We knew we were lucky. In the following year, we

upgraded hardware, improved the backup system, and changed log formats to support easier

replaying in the future. No similar incident has occurred. In fact, for the most recent contest

year, there was 100% service availability with no errors.

Other events have included software bugs manifest by non-US character sets in both the client

and server software (the authors were initially ill-acquainted with international software

development), offense taken in the wording of registration forms, Internet worms and outages,

and many others that had straightforward resolutions, but nonetheless have constituted the press

and roar of contest operations.

Annual software changes. Finally, we relate that, in hindsight, our worst design decision has

been the choice of different implementation languages for the client and judge portion of the

server, which duplicates load, member force, and cost calculations. Recall that our choice

stemmed from the expertise of the implementers. It was made when the contest was planned as a

one-time event. The result has been that load and cost model changes between contest years

have been implemented twice, once in each computer language. More importantly, it has been

necessary to test the two implementations extensively to verify that they produce identical results

P
age 11.547.15

in all circumstances. In retrospect, a common language implementation would have repaid the

time investment for one of the authors to learn a new language many-fold over the years.

Conclusion

We have presented information about the design of the West Point Bridge Design Contest that

ought to be helpful to people engaged in similar work. We described the goals of the contest and

how they were translated to a design principle. The principle led us to an overall organization of

technology supports. We set out to design these supports and found a mutual dependency

between them and the contest rules. We settled on use case methodology as a way to envision

both the contest rules and technology requirements simultaneously through iteration. We

performed a risk analysis because our use cases indicated substantial dangers inherent in the

contest, and we addressed risks systematically as management decisions arranged in a matrix.

With requirements in hand, we determined a key unknown in software design: usage load. We

made educated guesses on usage load to guide software design and hardware selection; these

proved to be relatively accurate. We elected to use a service-based implementation so that

capacity could be rapidly scaled should participation grow beyond estimates, though this has not

occurred. We described the algorithms needed to provide real-time feedback on contest

standings and to reject duplicate contest entries. We described the administrator support

interface of the web site and how the small contest administrative support team divided

responsibilities. Finally, we related some stories with the flavor of operating challenges that

similar efforts should expect.

Withal, the design and implementation of the WPBDC has itself been an exciting and

enlightening engineering experience.

1. http://bridgecontest.usma.edu is the contest web site.

2. Stephen J. Ressler and Eugene K. Ressler, “Using a Nationwide Internet-Based Bridge Design Contest as a

Vehicle for Engineering Outreach,” Journal of Engineering Education, vol. 93, no. 2. April 2004.

3. An original reference is The Unified Software Development Process, Ivar Jacobson, Grady Booch, James

Rumbaugh, Addison-Wesley. A more readable guide is UML Distilled: A Brief Guide to the Standard Object

Modeling Language, Third Edition, Martin Fowler, Addison Wesley Professional, 2004.

4. Children's Online Privacy Protection Act, Title XIII, U.S. Code, Children's Online Privacy Protection, Sec. 1301–

1308, 1998.

5. BerkeleyDB, available at http://www.sleepycat.com.

6. A good, modern summary text is Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju, Web Services,

Springer-Verlag, New York, 2004.

7. http://www.perl.org.

8. http://www.linux.org.

9. http://www.microsoft.com/windows2000.

10. http://www.apache.org.

11. http://www.microsoft.com/iis.

12. http://perl.apache.org.

13. http://www.activestate.com.

14. http://www.postgresql.org.

15. http://www.sybase.com/products/informationmanagement/adaptiveserverenterprise.

P
age 11.547.16

