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Abstract  
 
Metal-ceramic nanolaminates are attractive materials because of their high strength and flexibility as 
well as their potential applications in functional devices. The effective elastic modulus of thin-film 
multilayers is normally measured by nanoindentation. In this paper, a numerical study was 
undertaken to study the elastic property of metal-ceramic multilayered composites derived from 
indentation testing. The model system features alternating thin films of aluminum (Al) and silicon 
carbide (SiC), free from any effect due to the underlying substrate. The true effective elastic 
response of the laminate was represented by a homogenized anisotropic material, with its modulus 
values obtained by simulating overall loading of the structure. A two-dimensional axisymmetric 
model with a rigid conical indenter was created using Abaqus 6.5. Two finite element modeling 
simulations of instrumented indentation, one with real multilayered features and the other with a 
homogenized anisotropic material, were then employed to calculate the indentation-derived modulus 
using the unloading portion of the load-displacement curve. The numerical results from indenting 
the homogenized composite (with the built-in multilayer property) and from indenting the real 
multilayers (with Al and SiC layers explicitly accounted for) were compared. It was found that, with 
a large number of alternating metal-ceramic layers included in the model, an indentation depth equal 
to several initial layer thicknesses is sufficient to yield a representative elastic response. The 
indentation-derived effective modulus was found to be close to the out-of-plane overall modulus of 
the multilayer composite. A limited set of analyses on the effect of the substrate material has also 
been conducted. 
 

Introduction  
 
Composites consisting of alternating metal and ceramic layers at the nano- and micro-scales are 
attractive materials because of their high strength, high toughness, damage tolerance, as well as their 
potential applications in functional devices1-14. Traditional mechanical testing methods for bulk 
materials are not easily used on small-scale structures.  Characterization of the effective mechanical 
properties of the laminates has been conducted by instrumented indentation. When the indentation 
depth is sufficiently large, the measured elastic modulus and hardness values may be representative 
of the structure as a whole. However, the relationship between the indentation-derived mechanical 
properties and the “true” composite properties is still not well understood15. A continuum-based 
numerical study focusing on the effective hardness of multilayers has been reported16. Under the 
ideal elastic-perfectly plastic assumption, it was shown that the indentation hardness, upon 
conversion to plastic flow stress, underestimates the overall strength of the composite. This work 
demonstrated the potential uncertainty in assessing intrinsic material properties utilizing the 
indentation test. 
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In the present study, we have focused on the effective elastic modulus of the metal-ceramic 
multilayers obtained from indentation. Our model system consists of alternating layers of aluminum 
(Al) and silicon carbide (SiC). The true effective elastic response of the composite was represented 
by a homogeneous anisotropic material. The elastic constants of the composite were obtained by a 
combination of analytical and numerical means under uniaxial compression loading. Finite element 
modeling of indentation into the homogeneous material was then employed to calculate the 
indentation-derived modulus (using the unloading portion of the load-displacement curve). The 
indentation-derived modulus and the “true” composite modulus were compared. In addition, finite 
element modeling of indentation was conducted with the multilayers modeled explicitly. The 
primary objectives of this work are to determine if the true elastic response of the multilayers can be 
extracted from instrumented indentation, and to examine how the indentation-derived modulus 
compares with the actual anisotropic elastic properties of the composite. 
 

Numerical Model 
 
Overall Elastic Properties 
A schematic of the multilayer structure, composed of a large number of alternating metal and 
ceramic layers, is shown in Fig. 1.  The individual layers are isotropic, each with an in-plane 
dimension (along the 1- and 3-directions) much greater than the out-of-plane dimension (the 2-
direction). All interfaces between adjacent layers are assumed to be perfectly bonded so the 
displacement field across the interface is continuous. Although the individual layer thickness may be 
conceived to be in the micrometer or nanometer range, there is no intrinsic length scale involved in 
the present scheme. 
 
 

2 

1 

3 

 
Figure 1. Schematic showing the alternating metal-ceramic layers considered in this study 

 
 
If the composite in Figure 1 is treated as a homogeneous material, its anisotropic elastic properties 
can be represented by a set of elastic constants. It is convenient to start with the generalized Hooke’s 
law for an orthotropic material system: 
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where ε, γ, σ, E, G and ν represent the normal strain, shear strain, stress, Young’s modulus, shear 
modulus and Poisson’s ratio, respectively. The coordinate axes are based on those defined in Figure 
1. For an orthotropic material the following relations hold true17: 
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Therefore there are a total of 9 independent elastic constants (which may be taken as E11, E22, E33, 
ν12, ν13, ν23, G12, G13 and G23). The multilayered structure considered here is a special case of the 
orthotropic material: It is transversely isotropic along the 13-plane. As a consequence, 

E11 = E33, G12 = G23, ν21 = ν23, ν12 = ν32, ν13 = ν31, )1(2 13

11
13 ν+
=

EG . (3) 

There are now only 5 independent elastic constants, which may be chosen as E11, E22, ν12, ν13 and 
G12. These 5 constants are determined following the approach outlined below. 
 
A simple way to compute the magnitudes of E11 and E22 of the composite, is to use the relations 
based on the isostrain condition (Voigt model) and isostress condition (Reuss model), respectively. 
The composite modulus Ec in the isostrain condition (E11) is:  

SiCSiCAAlc fEfEE += / ,       (4) 
while in the isostress case (E22),  

SiC

SiC

Al

Al
c

E
f

E
fE

+
=

1 .        (5) 

Here f represents the volume fraction of the constituents denoted by the subscripts. It should be 
noted that Eqs. (4) and (5) are derived under a one-dimensional assumption so care must be taken in 
directly applying them to the material considered here. For instance, when the layered composite is 
subject to loading along the 1-direction, uneven deformation in the 3-direction between layers will 
occur due to the different Poisson’s ratios of Al and SiC. This will generate stresses in the 3-
direction and, in turn, will affect the stresses in the 1-direction and thus the longitudinal composite 
modulus, E11. Similarly, when the loading is along the 2-direction, the strains along the same 
direction in the two materials will not be the same. Unequal lateral deformations between the layers 
will occur, which will in turn affect stresses in the 2-direction, and thus, the transverse composite 
modulus, E22. Thus, depending on the magnitude of the elastic constants, significant errors may exist 
if one uses these one-dimensional approximations (Eqs. (4) and (5)). As a consequence, in the 
present study we use finite element modeling of overall uniaxial loading of the multilayers to 
accurately determine the necessary elastic constants, as described below. 
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Figure 2. Schematics showing the (a) longitudinal and (b) transverse loading configurations for modeling the overall 

elastic response of the multilayered composite 
 
 
Figure 2 shows a schematic of compressive loading of the multilayered structure. The composite 
Young’s moduli were calculated from the ratio of stress and strain along the direction of interest, 
and the composite Poisson’s ratios were calculated from the respective strain ratios. In the actual 
numerical model only two representative layers were included with appropriate boundary conditions 
imposed such that a periodic stacking along the transverse (out-of-plane) direction and an infinite 
dimension in the longitudinal (in-plane) direction were ensured. This was accomplished by setting 
the top and bottom boundaries to remain horizontal and the side boundaries to remain vertical during 
deformation, similar to the unit-cell approach for simulating particle-matrix composite systems18,19. 
The calculated composite response is the “true” effective property of the entire multilayer structure 
with all three-dimensional features accounted for. The longitudinal loading configuration in Figure 
2(a) was used for obtaining E11, ν12 and ν13, and the transverse loading configuration in Figure 2(b) 
was used for obtaining E22.  
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The remaining elastic constant to be determined is G12. It can be directly obtained from the 
analytical expression 
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which is based on the equivalent shear stress condition20. The five independent elastic constants are 
then used as input parameters for simulating indentation of the “homogenized” Al/SiC composite. 
 
Indentation Modeling 
Indentation modeling was based on an axisymmetric model featuring a rigid conical indenter. Two 
models of the same geometry were considered: one with the Al and SiC layers explicitly accounted 
for and the other a homogenous block possessing the anisotropic elastic property of the Al/SiC 
composite. They are henceforth referred to as the “multilayer model” and “homogenized model,” 
respectively. Note that the two models have exactly the same overall elastic behavior. Figure 3 
shows the schematic of the model of indentation into the multilayer. The left boundary is treated as 
the symmetry axis. The semi-angle of the conical indenter is 70.3°, resulting in a same projected 
area as that of a Berkovich indenter21. In the upper portion of the model there are a total of 100 
alternating layers of Al and SiC. Although this model is intended to represent the real composite 
with an “infinite” number of layers, a homogenized Al/SiC material having the anisotropic 
composite property is placed underneath the 100 explicit layers. The main purpose of this is to 
improve computational efficiency by allowing a coarser mesh size in the less deformed lower 
region. Very small elements have to be employed within the layered region to sufficiently resolve 
the geometry-limited deformation field.  
 
Although there is no intrinsic length scale in the analysis, it is convenient to associate the model 
with specific physical dimensions. The overall size of the entire specimen is taken as 40 μm in 
lateral span (radius) and 43 μm in height. The region containing 100 layers of Al and SiC has a total 
thickness of 5 μm. In the case of the homogenized model, both the Al and SiC layers in Figure 3 
were simply replaced by the homogenized Al/SiC composite. In the simulation the maximum 
indentation depth considered is within 2% of the total height and radius of the specimen, so the edge 
effect due to the side and bottom boundaries was negligible (according to our preliminary 
calculations). During deformation the left boundary is allowed to move only in the 2-direction. The 
bottom boundary is allowed to move only in the 1-direction. The right boundary is not constrained. 
The top boundary is also free to move, except when contact with the indenter is established, the 
surface portion engaged by the indenter is restricted to follow the indenter contour. The coefficient 
of friction at the contact is taken to be 0.1, which is a typical value for the diamond/metal contact 
pair22,23.  
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100 layers of Al/SiC 

Homogenized Al/SiC 

Rigid 
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Figure 3. Schematic showing the multilayer model and the boundary conditions for indentation modeling. The specimen 

and indenter both possess axial symmetry about the left boundary. The rigid indenter has a semi-angle of 70.3° 
 
 
The indentation-derived elastic modulus from the simulation is obtained according to the method 
proposed by Oliver and Pharr24. The method is based on the expression: 

AES rπ
β 2

=         (7) 

where S is contact stiffness obtained from the initial unloading slope of an indentation load-
displacement curve, A is the projected contact area at the onset of unloading, β is an indenter 
geometry-dependent dimensionless parameter close to unity, and Er is the reduced modulus given by 

i

i

r EEE

22 111 νν −
+

−
= .        (8) 

In Eq. (8) E and ν are the Young’s modulus and Poisson’s ratio of the material being tested, and Ei 
and νi are the Young’s modulus and Poisson’s ratio of the indenter.  In our simulation the parameter 
β was first calibrated with a pure Al body of the same geometry, and a value of 1.06 was determined 
which was followed in all subsequent analyses. When calculating the projected contact area A, the 
last nodal point on the top surface in contact with the indenter was identified in the deformed finite 
element mesh so the effect of pileup resulting from the indentation was taken into account. The 
calculation of indentation-derived modulus E from Er requires a known Poisson’s ratio of the 
composite. Here we used the ν12 value obtained from the modeling of overall uniaxial loading of the 
Al/SiC composite, as described above. 
 
The finite element program ABAQUS (Version 6.5, Dassault Systemes Simulia Corp., Providence, 
RI) was employed in all calculations. A total of 174,266 linear elements were used in the model, 
with a finer mesh size near the upper-left corner. The input Young’s moduli for Al and SiC were 
those measured from experiments of the single-layer film6. The individual materials were treated as 
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isotropic elastic-perfectly plastic, with the input plastic response of both materials based on the 
tensile loading data of single-layer Al6. In a separate preliminary numerical study, we have 
confirmed that, under the current model configuration, the indentation-derived elastic modulus is 
essentially independent of the input plastic behavior in the finite element model. This is also 
consistent with other theoretical and/or numerical studies25,26. Therefore the present approach is 
deemed appropriate, and was able to avoid the potential numerical problem when attempting to 
indent extremely hard layers to a sufficient depth. The Young’s modulus E and Poisson’s ratio ν, 
used as input parameters in all the finite element modeling, were: EAl = 59 GPa, ESiC = 277 GPa, νAl 
= 0.33, νSiC = 0.17. In this work the calculation of the overall anisotropic elastic property for the 
homogenized model incorporates the entire span of Al/SiC volume (thickness) ratio from zero to 
one. Three specific Al/SiC volume ratios were selected for the indentation modeling: Al50/SiC50, 
Al25/SiC75 and Al75/SiC25 (here the numbers represent the thickness of the individual layer, in 
nm). 
 
In addition to the above described “infinite layers” model, a different model system which has 41 
alternating layers of Al and SiC on a silicon (Si) substrate was also considered. The overall model 
geometry and the boundary conditions for the indentation simulation were the same as the “infinite 
layers” model. Instead of a rigid indenter, an elastic diamond indenter is used.  Figure 4 shows the 
schematic of the model. The Young’s modulus E and Poisson’s ratio ν, used as input parameters for 
the Si substrate and diamond indenter, were: ESi = 187 GPa, νSi = 0.28, νDiamond = 1141 GPa, νDiamond 
= 0.07. We focus on how the substrate would affect the indentation derived elastic modulus of the 
Al/SiC multilayers. 
 

41 layers of Al/SiC 

Si substrate 

Elastic indenter 

 
Figure 4. Schematic showing the multilayers on a Si substrate and the boundary conditions for indentation modeling. 

The specimen and indenter both possess axial symmetry about the left boundary. The rigid indenter has a semi-angle of 
70.3°. 
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Results and Discussion 
 
Overall Elastic Properties 
We first present the overall elastic properties of the Al/SiC multilayer composite, on the basis of the 
approach described in Section 2.1. Figure 5 shows the numerically modeled Young’s modulus 
values as a function of volume fraction of SiC. For comparison purposes the modulus values given 
by the one-dimensional approximation (Eqs. (4) and (5)) are also included in the figure. It can be 
seen that the difference between the longitudinal modulus (E11) and transverse modulus (E22) of the 
Al/SiC multilayers is quite large. In general the numerically modeled E11 values are close to those 
given by Eq. (4), but there is a significant discrepancy between the numerical E22 values and those 
from Eq. (5). The inaccuracy of applying the one-dimensional approximation to composite modulus 
of the metal/ceramic multilayers is thus illustrated. 
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Figure 5. Numerical result showing the overall Young’s modulus along the longitudinal direction (E11) and transverse 

direction (E22) of the Al/SiC multilayers. For comparison the modulus values based on the one-dimensional assumption 
(Eqs. (4) and (5)) are also included. 

 
 
The overall elastic response is needed as input properties for the homogenized composite during 
indentation modeling, for both the entire test material in the “homogenized model” or for the lower 
portion of the “multilayer model.” The five independent elastic constants for each of the three 
volume fractions used in the indentation modeling are listed in Table 1. 
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Table 1. Five independent elastic constants for the three composite models: Al75/SiC25, Al50/SiC50 and Al25/SiC75 
 
 

 Composite E11 (GPa) E22 (GPa) ν12 ν13 G12 (GPa) 
 
 

 Al75/SiC25 114.2 84.8 0.3215 0.2357 27.8 

 Al50/SiC50 168.7 116.9 0.2789 0.2002 37.4 

 Al25/SiC75 222.9 168.3 0.2265 0.1815 56.8 

 
Indentation Analysis of Al50/SiC50 Composite 
We now present the results from indentation modeling. Figure 6 shows a representative indentation 
load-displacement curve for the multilayer model of Al50/SiC50, with a maximum indentation depth 
at 100 nm (equal to two initial layer thicknesses in this case). All other models show the same 
qualitative features. The initial slope during unloading was used to calculate the indentation-derived 
elastic modulus of the composite. 
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Figure 6. A representative indentation load-displacement response obtained from the finite element modeling. This curve 

corresponds to the multilayer model Al50/SiC50, with the maximum indentation depth at 100 nm. 
 
 
Figure 7 shows the numerical results of the indentation-derived elastic modulus as a function of 
indentation depth, for the case of Al50/SiC50. The maximum indentation depth shown is 700 nm, 
which corresponds to a depth of 14 initial layer thicknesses. For reference the modeled result for a 
pure Al specimen is also included, which shows a constant modulus value over the range of 
indentation depth considered. The Al50/SiC50 composite response is represented by three curves in 
Figure 7: one of the homogenized model and two of the multilayer model. The difference in the two 
multilayer cases is the material used as the topmost layer, Al or SiC. 
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Figure 7. Indentation-derived elastic modulus, obtained from the finite element analysis, of the Al50/SiC50 composite as 
a function of the indentation depth. The result of pure Al is also included for reference. In addition to the homogenized 
model, two curves for the multilayer model are presented: one with Al being the topmost layer and the other with SiC 

being the topmost layer. 
 
 
It can be seen from Figure 7 that, when the indentation is relatively shallow, the response of the 
multilayer model is sensitive to the first-layer material in contact with the indenter. If Al is the 
topmost layer, the elastic modulus is relatively low and vice versa. The three curves tend to 
converge when the indentation depth is large (beyond about 400-500 nm, or 8-10 initial layer 
thicknesses). The merging of the curve of the multilayer model (with Al on top) to that of the 
homogenized model appears at an even smaller indentation depth. We can conclude that, when 
performing nanoindentation tests on metal-ceramic multilayers consisting of a large number of 
layers, a depth of indentation beyond several initial layer thicknesses may be sufficient for 
generating the “true” elastic response of the composite. 
 
Other Al/SiC Thickness Ratios 
Next we consider results of the Al75/SiC25 and Al25/SiC75 composites. Only the multilayer model 
with Al being the topmost layer is presented here. Figure 8 shows the modeled indentation-derived 
elastic modulus as a function of indentation depth. The result of Al50/SiC50 is also included in the 
figure for comparison. The modulus variation follows the same trend in all three cases. With a 
sufficient indentation depth a steady modulus value can be reached. The numerical values are 83.9 
GPa, 114.9 GPa, and 167.9 GPa for Al75/SiC25, Al50/SiC50, and Al25/SiC75, respectively. 
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Figure 8. Indentation-derived elastic modulus as a function of the indentation depth for the composites Al75/SiC25, 

Al50/SiC50 and Al25/SiC75 
 
 
The correlation between the indentation-derived elastic modulus, which is a single value, and the 
effective anisotropic elastic property of the composite, is shown in Figure 9. Here the modulus 
values (at the deepest indentation considered) for the three multilayer composites Al75/SiC25, 
Al50/SiC50 and Al25/SiC75 are overlaid on the plot showing the variation of composite E11 and E22 
with the SiC volume fraction. It is evident that the three discrete points in Figure 9 are very close to 
the E22 curve. This observation suggests that the modulus obtained from indentation may be a good 
representation of the overall transverse elastic modulus of the multilayers. 
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Figure 9. Comparison of the overall longitudinal modulus E11 and transverse modulus E22 with the indentation-derived 

modulus values of the composites Al75/SiC25, Al50/SiC50 and Al25/SiC75 
 
 
Further Discussion 
The present study aims at gaining a fundamental understanding of the elastic property of metal-
ceramic laminates measured from the instrumented indentation technique, through a systematic 
continuum-based numerical analysis. The composite geometry of concern consists of essentially 
“infinite” number of alternating metal and ceramic layers, so the possible effect of the underlying 
substrate material was avoided. In reality this condition is not always met.  Here we consider the 
model containing 41 layers of Al/SiC on a Si substrate. Figure 10 shows the numerical results of the 
indentation-derived elastic modulus as a function of indentation depth. The maximum indentation 
depth is 700nm (14 layers). It does not show a constant modulus value over the range of indentation 
depth considered. Rather, the modulus value continues to increase as the indentation goes deeper, 
suggesting the significance of the substrate stiffness effect. It appears to be very difficult to prevent 
the substrate material from contributing to the measured effective modulus of the multilayers.  A 
thorough understanding of the interaction between the substrate and the layers, as well as their 
combined effect on indentation response, will require further investigations. 
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Figure 10. Elastic modulus from indentation modeling as a function of the indentation depth for the composites of 41-

layer Al50/SiC50 on Si 
 
 

Conclusions 
 
A systematic finite element analysis was carried out to study the effective elastic modulus of metal-
ceramic multilayers obtained from the indentation technique. The composite structure considered 
consists of a large number of layers and is free from any substrate effect. Using the Al/SiC 
multilayers as a model system, the modulus values, calculated from the modeled indentation load-
displacement curve during unloading, were compared with the overall elastic property of the 
composites. It was found that, when the indentation reaches beyond about 8-10 initial thicknesses of 
the individual layers, the indentation response becomes representative of the entire composite. The 
multilayer modulus derived from the indentation test is consistent with the overall transverse (out-
of-plane) modulus of the composite. The findings apply to a wide range of relative thicknesses 
between the metal and ceramic layers. When a fewer number of Al/SiC layers exists in the model 
above a Si substrate, however, the indentation-derived modulus was found to increase monotonically 
with the indentation depth. The influence of the substrate material is significant throughout the range 
of indentation depth considered. 
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