
2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

Infusing High-Performance Computing and Machine Learning in

Mechanical Engineering Education

Christy Dunlap1, Jeff Pummill2, Han Hu1

1Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701
2Arkansas High Performance Computing Center, University of Arkansas, Fayetteville, AR 72701

Abstract

This paper presents the integration of parallel computing into engineering education. This paper

will discuss the role of scientific computing in molecular dynamics simulations, density

functional theory simulations, and deep learning model training. It is becoming more critical for

students to have the capability of running simulations or train machine learning models and when

needed to improve computational times with the aid of supercomputers. This paper will cover

current applications of scientific computing in research areas, upscaling on supercomputers (with

an emphasis on machine learning models), how to use supercomputers, and ideas on integrating

the topics into the mechanical engineering curriculum.

Keywords

Supercomputing, Wafer-Scale Engine, Machine Learning, Numerical Simulation

Introduction

Scientific computing applications are emerging in several fields, in the form of simulations,

machine learning model training, etc. Simulations are used in heat transfer, for example,

Sheikholeslami et al. used finite element method to simulate the solidification of NEPCM.[1]

They ran this simulation to determine the effect of metallic fins and nanoparticles on the

performance of the system. They are also used to model fluids, Malki et al. used computational

fluid dynamics and BEM in simulations for understanding tidal stream devices.[2] They

simulated different turbine array layouts to predict their performances. Lópex et al. used

computational fluid dynamics with Ansys and OpenFOAM to study erosion.[3] Molecular

dynamics and DFT are widely used in materials. Wei et al. combine both machine learning and

molecular dynamics to improve accuracy for a relatively low computational cost.[4] They used a

GAP machine learning model to predict the potentials used in the simulation.

Machine learning is probably the broadest method and rapidly growing as the number of

databases increases. Wang et al. used a neural network to predict the instability of a slope to

prevent landslides.[5] Our lab, in particular, uses machine learning in analyzing two-phase

cooling. We have done some work developing an acoustic regression model. This model is to be

used in predicting the heat flux of a pool boiling experiment from hydrophone data. Another

application in the scope of our lab is using high-speed images of boiling experiments to predict

heat flux or segment the images into boiling regimes. This work is done to better understand the

instabilities (i.e. critical heat flux) that limit two-phase cooling.

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

The mechanical engineering undergraduate curriculum at the University of Arkansas develops

the student’s understanding of the governing equations behind concepts such as heat transfer and

fluid dynamics. Students learn how to hand solve the Navier-Stokes equations for extremely

simplified examples or how to use Heisler charts in heat transfer. It is important to understand

the equations and how one would go about solving them but, the general curriculum lacks

expansion on computational methods. The required course, computational methods, introduce

some techniques for approximating equations of simple examples (e.g., spring-mass systems)

and they are relatively cheap computationally to just introduce the concepts.

Due to this, at the end of the curriculum, students understand different computational techniques

as well as different general equations but there is a gap on how to connect the two and

understand how to use relevant software available, such as LAMMPS, Python libraries, or

COMSOL. Molecular dynamics, density functional theorem (DFT), and machine learning are

becoming more important to several fields of research. Machine learning in particular is being

incorporated into essentially every field. It is important for engineers to have some knowledge of

machine learning to keep up with the change and leverage the capability of machine learning as a

tool. There is a new machine learning elective offered at the University of Arkansas for

mechanical engineering, but it would also be good to see other main courses integrate some

examples of machine learning into their curriculum.

The mechanical engineering curriculum also lacks training for students in using large datasets or

large simulations. Most of the work is done on smaller subsets of data that can be easily run on

their personal computer or they are just given the governing equations. This structure allows

students to learn the methods, but there is a critical piece of information missing, how to run and

upscale their code. Once in the field, there will be a need to process larger datasets or run larger/

longer simulations. This disconnect can be resolved through the integration of supercomputing

and more computational methods within the courses. This can be through the actual use of

supercomputers or even by incorporating examples explaining how the code would be run on a

supercomputer. Molecular dynamic simulations, although much faster than DFT can take a

significant amount of time to run depending on the number of atoms, equations used, and length

of the simulation. DFT simulations will take even longer but generate more accurate results.

Molecular dynamic simulation, DFT, and training machine learning models can all benefit from

using supercomputers for speedups.

Programming skills are becoming an essential part of most jobs. The mechanical engineering

curriculum introduces MATLAB and Visual Basic in Excel, but MATLAB can be expensive to

purchase outside of school and Excel cannot handle larger datasets as well as other programming

languages. Python would be a good introductory language for all scientists and engineers

because of its convenient IDEs (e.g., Jupyter Notebook) and simple syntax which makes it much

more “readable” for students that are new to programming. Python is now a very mature

language and while not as fast as compiled codes like C++ and Fortran, it does possess all of the

necessary functions and libraries for a wide array of tasks. It would also be good to introduce

open source packages for running simulations such as OpenFOAM.

Supercomputers

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

Supercomputers provide essential speed ups for code that would ordinarily take a significant

amount of time. Supercomputers make it possible to run code over multiple CPUs to improve

performance and also provide massive pools of memory for large data problems that require

them. GPUs have been shown to improve the speed of machine learning models, especially

CNNs. Our lab has access to two supercomputers, bridges2 and Neocortex. Neocortex is a new

generation of supercomputers, known as wafer-scale engines used specifically for machine

learning model training. To show the benefit of supercomputing several cases were run for

machine learning, DFT simulations, and molecular dynamics simulations on a few different

supercomputers.

Table 1: Supercomputers, their location, and type.

Super Computer Location Type

Pinnacle AHPCC CPU

Bridges2 RM PSC CPU

Bridges2 GPU PSC GPU Nvidia Tesla V100

Neocortex PSC GPU (wafer-scale engine)

Cerebras-2

Machine learning consists of two primary types; supervised and unsupervised learning. In

supervised learning, a model is trained with both input and output data. The model is fit to best

match the expected output so it requires both input and labels. While in unsupervised learning,

no labels are necessary. Within supervised learning, there are many model architectures. The

simplest is a multilayer perceptron (MLP). A mlp is composed of layers of “neurons”. Where

each neuron output is defined as: 𝒐𝒖𝒕 = 𝝈((∑𝒊𝒏𝒑𝒖𝒕𝒊 ∗ 𝑾𝒊) + 𝒃) and is commonly represented

as shown in figure 1. Where σ is a specified activation function. Once the structure is defined,

the model is fit to the data by updating the weights and biases.

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

Figure 1: Left: Representation of neuron in machine learning. Right: Example figure of a

multilayer perceptron. It is constructed by combining neurons. This particular model has 2 layers

and the first layer has 4 neurons and the 2nd layer has 3 neurons.

Another type of machine learning model is a convolutional neural network. This architecture is

commonly used in image processing because it is good at extracting features.

Three machine learning cases were run as shown in table 2. ML1 and ML2 are the same

multilayer perceptron code just on two different supercomputers. ML3 is a convolutional neural

network made with TensorFlow and ran on bridges2 for different numbers of GPUs and is shown

in figure 2.[6]

Table 2: Machine learning cases ran on different supercomputers.

Case ID ML Case Dataset Cluster

ML1 Simple MLP Images Neocortex

ML2 Simple MLP Images Bridges2 GPU

ML3 CNN Images Bridges2 GPU

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

Figure 2: Example machine learning model code for running on supercomputers with multiple

GPUs.

The model defined in figure 2 was ran for different batch sizes on different numbers of GPUs

using bridges2. The speed comparison results from this test are shown in figure3.

Figure 3: Left: Speed up comparison for CNN training on multiple GPUs. Right: Fixed-size

parallel efficiency vs number of GPUs.

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

Figure 4 shows the speed up for training a simple multi-layer perceptron on a personal computer

and two supercomputers. It was found that the Neocortex was slightly slower than CPU model

different types of models will be tested to attempt to fully leverage the Neocortex

supercomputer.

Figure 4: Plot showing speed comparison between CPU, Bridges2 GPU, and Cerebras for a basic

MLP model. This is for case ID ML1 and ML2.

One density functional theory simulation (DFT1) was ran on Bridges2 CPU supercomputer with

varying numbers of CPUs.

Table 3: DFT case.

Case ID DFT Case Pseudopotential

Number of

atoms Cluster

DFT1 FeNi

Fe/Ni.pbe-n-

kjpaw_ps1.1.0.0.UPF 108 Bridges2 RM

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

Figure 5: Case DFT1 showing speed up and b.) fixed-size parallel efficiency vs. CPUs.

Three molecular dynamics simulations were ran on Bridges2 CPU supercomputer for varying

numbers of CPUs using LAMMPS.

Table 4: Molecular Dynamic Simulations ran using LAMMPS.

Case ID MD Case Force

Field

Number of

atoms

Cluster

MD1 HAP deformation at 300 K IFF 120,736 –

2,816,000

Bridges2 RM

MD2

MD3 FeNi diffusion MEAM 80,000 –

1,280,000

Bridges2 RM

Figures 6 and 7 show the speed-ups seen from increasing the number of CPU cores for various

code cases along with the fixed size efficiency.

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

Figure 6: Case MD1 and MD2 showing speed up and b.) fixed-size parallel efficiency vs. CPUs.

Figure 7: Case MD2 showing speedup and fixed size parallel efficiency against the number of

CPU cores.

Supercomputing

The first hurdle in running codes on a supercomputer is connecting to one and transferring files.

For this example, the supercomputer Bridges2 is used but other supercomputers may be slightly

different.

Transferring files

The first step in using the supercomputer is transferring files, there needs to be a way to get the

code and data to the supercomputer and get the results back to the personal computer. This

process varies between a mac or Linux and a windows computer. For a mac or Linux, everything

can be done in the terminal. There are a few different protocols that can be used such as scp or

sftp.

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

To use sftp, first navigate to the folder in the computer terminal where the code will be moved

from or to using “cd” command. Then use “sftp username@bridges2.psc.edu” to connect to the

supercomputer. Once the command line shows “sftp>”, commands “get” and “put” can be used

to transfer files. Use “cd” command again to switch to the correct folder on the supercomputer

where code should be moved to or results should be pulled from.

Command

get filename Move file from remote computer to personal

computer

put filename Move file from personal computer to remote

computer

cd path Change directory to

get -r foldername Used to move a folder from remote computer

to personal computer

put -r foldername Used to move a folder from personal

computer to the remote computer

Table 5: Common Linux commands used in Supercomputing

Once the files are transferred, to close the session, type “exit”.

For a windows computer, a SFTP client should be installed such as WinSCP. WinSCP can be

used for sftp or scp file transfer protocols. To use WinSCP select the file protocol, fill out the

host name, username, and password then login. Once connected, files or folders can be dragged

and dropped between the right and left sides to transfer.

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

Figure 8: WinSCP login menu screen. To access files on Supercomputer, choose file protocol,

enter hostname, username, and password. Termius add new host menu.

Connecting to the supercomputer

On a Linux or mac system, the terminal can be used for all commands. The ssh command in the

terminal can be used to connect. For example, to connect to bridges2 the command “ssh

username@bridges2.psc.edu ” is used. When prompted, type your password, and then you have

access to the supercomputers. For a windows system, software should be installed to connect to

the supercomputer. For example, Termius with WinSCP or putty can be used. In termius, a new

host can be set up as so. Open the host and now you are connected to the supercomputer.

Using the supercomputer

For bridges2, there are two ways to run code; interactive and batch jobs. Interactive sessions are

good for debugging. They allow the user to run codes in real time while connected to the

computer. Batch jobs are submitted using SLURM or an equivalent batch scheduling system

such as PBS or LSF and will be sent to a queue to be ran. Batch jobs allow for longer codes to be

ran and can be submitted alongside other codes. The user does not have to be actively connected

to the supercomputer after submitting them. A file will be generated showing the output of the

code once it is completed running for the user to view later.

Interactive Session

1. Request an interactive session

2. Load desired modules

a. This may include anaconda or Cuda modules. There are commands for viewing

what modules are available to be loaded on Bridges2.

3. Run the code

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

a. Once all necessary modules are loaded run the code.

Table 6: Common commands used when running python code on Bridges2 in an interactive

session.

Command Example

interact Used to start an interactive

session.

interact -p GPU-shared --

gres=gpu:1 -t 1:00:00

module spider Lists all available modules,

this is done in an interactive

session

module spider anaconda

module load Loads specified module module load anaconda3-

tf2.2020.11

conda create Creates an anaconda

environment, used with

loaded anaconda module

conda create --prefix

$PROJECT/env --clone

$AI_ENV

conda activate Activates already created

anaconda environment

conda activate

$PROJECT/env

ipython Used to run jupyter notebook

(.ipynb) files. Used with

loaded anaconda module

ipython code.ipynb

python3 Used for running a python

file (.py) with anaconda

module loaded.

python3 code.py

Batch Job

1. Prepare a batch script

Figure 9: Example job script for batch job.

2. Submit batch script

Command Function Example

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

sbatch Submits script to be ran sbatch script.slurm

squeue Used for showing what the

status of submitted jobs is.

squeue -u username

scancel Cancels previously submitted

job. (Uses jobid which can be

found using command

squeue.)

scancel jobid

3. View results

Once the code is finished running it will output a txt file with the output from running.

Command Function Example

more Shows the contents of file in

command line.

more output.out

vi Opens an interactive editor

where the file can be viewed

and edited.

Within this editor:

i (insert), can be pressed to

edit the text. This portion can

be closed by pressing the

“esc” key.

:wq (write and quit), will exit

the editor.

vi output.out

Another new type of supercomputer is a wafer scale engine. For example, Neocortex is designed

to speed up machine learning codes which use TensorFlow or PyTorch. TensorFlow is focused on

here because it currently has the most documentation and usable layers/ loss functions.

To use Neocortex, code must first be converted to the correct structure. The model needs to use

the TensorFlow estimator structure. The code should include 2 main functions.

1. Input_fn

a. This function is used to load the data for the model.

b. Inputs:

i. The only input is “params” or parameters that can be defined by user.

c. Outputs:

i. Should output a tensorflow dataset.

2. Model_fn

a. This function is used to define the model, optimizer, train_op, and loss.

b. Inside this function the dtype should be set to float16.

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

c. Inputs:

i. Features: this is the input to the model.

ii. Labels: this is the correct output of the model.

iii. Mode=tf.estimator.ModeKeys.TRAIN

iv. Params is once again variables from user input.

d. Output:

i. Returns spec=tf.estimator.Estimator.Spec(mode=mode, loss=loss,

train_op=train_op, eval_metric_ops=None)

To run the code on Cerebras, it first must be compiled and then it can be run.

Integration To Classroom

There are two ways scientific computing should be incorporated into the classroom. First, each

of the primary courses could add a bit more information on how to implement these methods in

practice. By just introducing these topics, it will prepare students for an easier transition to

running simulations. For example, in the mechanical engineering fluid curriculum, it might be

good to touch on common computation packages that are used for fluid simulations such as

OpenFOAM or COMSOL.

The other way these topics could be included in the curriculum is by creating a new elective that

would allow students to use an available package to run a sample simulation or train a model and

then expand on this by teaching how to upscale their model. This might mean using more atoms

or increasing the time in a simulation or using more data for training a supervised machine

learning mode. The course could include a scaling assignment to emphasize the speed up for

increasing CPU nodes or GPUs on a supercomputer for large-scale problems. It would be

important for the scaling to be at a large scale because as the processor clock speed is often

slower on supercomputer nodes than on a desktop system, one often won’t see a speedup at all

unless the problem is of sufficient size to either utilize the large memory footprint, use all of the

cores efficiently, or both. GPU codes would show speedup on most any problem.

Conclusion

In this paper, the role scientific computing plays in the engineering field is shown. It also shows

how running code on supercomputers can lead to faster computational times. This is

demonstrated through a few case studies including machine learning models and simulations

including DFT and molecular dynamics. The process of moving code to and running code on

supercomputers (Bridges2 and Neocortex) is also discussed. Lastly, ways that scientific

computing can be integrated into the mechanical engineering curriculum are presented.

Acknowledgments

This work was supported by the Arkansas EPSCoR Data Analytics that are Robust & Trusted

(DART) through seed grant number 22-EPS4-0028, under NSF grant number OIA- 1946391.

This work used the Extreme Science and Engineering Discovery Environment (XSEDE)

Bridges2 RM and Bridges2 GPU at Pittsburgh Supercomputing Center through allocation TG-

MCH200010 supported by NSF grant number ACI-1548562, and Neocortex CS-1 supported by

NSF grant number OAC-2005597.

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

References

The preferred reference style is IEEE. See the Citing Sources and the References section in the

Paper Formatting Guidelines below for more instructions.

[1] M. Sheikholeslami, R. ul Haq, A. Shafee, Z. Li, Y. G. Elaraki, and I. Tlili, “Heat transfer

simulation of heat storage unit with nanoparticles and fins through a heat exchanger,”

International Journal of Heat and Mass Transfer, vol. 135, pp. 470–478, Jun. 2019, doi:

10.1016/j.ijheatmasstransfer.2019.02.003.

[2] R. Malki, I. Masters, A. J. Williams, and T. Nick Croft, “Planning tidal stream turbine

array layouts using a coupled blade element momentum - computational fluid dynamics

model,” Renewable Energy, vol. 63, pp. 46–54, Mar. 2014, doi:

10.1016/j.renene.2013.08.039.

[3] A. López, W. Nicholls, M. T. Stickland, and W. M. Dempster, “CFD study of Jet

Impingement Test erosion using Ansys Fluent® and OpenFOAM®,” Computer Physics

Communications, vol. 197, pp. 88–95, Dec. 2015, doi: 10.1016/j.cpc.2015.07.016.

[4] Z. Wei, C. Zhang, Y. Kan, Y. Zhang, and Y. Chen, “Developing machine learning

potential for classical molecular dynamics simulation with superior phonon properties,”

Computational Materials Science, vol. 202, no. November 2021, p. 111012, 2022, doi:

10.1016/j.commatsci.2021.111012.

[5] H. B. Wang, W. Y. Xu, and R. C. Xu, “Slope stability evaluation using Back Propagation

Neural Networks,” Engineering Geology, vol. 80, no. 3–4, pp. 302–315, Aug. 2005, doi:

10.1016/j.enggeo.2005.06.005.

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R.

Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D.

Murray, C. Olah, ´ M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wat- ´ tenberg, M.

Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. Software available from tensorflow.org.

Christy Dunlap

Christy Dunlap is a Ph.D. student in the Department of Mechanical Engineering at the University

of Arkansas. Christy obtained her B.S. in Mechanical Engineering and B.S. in Mathematics with

Applied Concentration from the University of Arkansas in 2021. Her research covers system

design, DNA sequencing, thermal data analytics, and multimodal fusion. Christy is proficient in

programming using Python, MATLAB, C++, and Arduino, machine learning packages including

TensorFlow and scikit-learn, operating system and software maintenance on Linux systems.

Jeff Pummill

2022 ASEE Midwest Section Conference

© American Society for Engineering Education, 2022

Mr. Pummill joined the University of Arkansas in 2005 as the Senior Systems Administrator for

the newly formed high performance computing center to manage the 379th fastest supercomputer

in the world followed in 2007 by a new system that ranked 339th in the world to support an

increasingly diverse scientific workload at the UofA campus. In 2015, he negotiated acquisition

and relocation of a 3 year old $2.8M supercomputer from San Diego Supercomputer Center to

meet the increasing demands of research community on campus. In an adjunct capacity in the

Fulbright College Department of Biological Sciences, he delivers lectures and workshops on

scientific computing. As co-Director of AHPCC, he enjoys working with research faculty and

graduate students and has co-authored a number of publications as part of his collaborative

efforts to advance both AHPCC and scientific computing on campus. Jeff has been the recipient

of nearly $500,000 in NSF funding as part of his work with the National research computing

effort.

Han Hu

Han Hu is an Assistant Professor in the Department of Mechanical Engineering at the University

of Arkansas. He leads the Nano Energy and Data-Driven Discovery (NED3) Laboratory and his

research interests cover experimental characterization and multi-scale modeling of two-phase heat

transfer enhancement on micro-/nano-structured surfaces, immersion cooling of power electronics,

diffusion kinetics in high-entropy alloys, and multimodal data fusion.

