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Managing Variability in Monte Carlo

James E. Schueler, Zuhdi Al-Jobeh, and Gerald R Seeley
Valparaiso University

Introduction

In the past, for the most part, calculations were done using discrete values for variable
quantities. Factors of safety were imposed to manage inherent uncertainties. However, with the
advent of modern computer hardware and software, it is now possible to move away from this archaic
mode of thinking. Using modern computational tools, our graduates will have the ability to estimate
the probability of their designs satisfying applicable criteria. Thus, in order to prepare our students
for practice in the 21st Century, the Valparaiso University Department of Civil Engineering is infusing
its curriculum with computer-assisted Monte Carlo simulations. This paper presents the rationale and
several examples using two different software packages. The presentation will give additional
examples of homework which has been done this semester.

Managing Variability Through “Factors of Safety”

It is probable that the earliest civil engineers, practicing from intuition and experience, were
painfully aware of the inherent variability of the physical quantities and properties with which they
dealt. The desire to make their predictions more reliable led them to apply the developing principles
of science to their art. Practice became ever more algorithmic and computational, always tempered
by experience and judgment.

Until a few decades ago, civil engineers made their calculations “by hand” using slide rules or
mechanical/electrical calculators. They were, therefore, generally limited to performing calculations
once, and they were forced to select a single value for each variable involved in the algorithm.
Engineers, generally aware of the uncertainties inherent in the numbers used, included a “factor of
safety” to achieve what they hoped would be a “safe design.” This computational history led to a mind
set in which engineers consider physical quantities to be representable by a single number (i.e., E =
29,000 KSI). This nearly ubiquitous mind set has generally prevented engineers from viewing and
evaluating their projects as systems of interrelated random variables. Additionally, the “factor of
safety” approach to managing the variability inherent in all physical quantities and properties
precludes quantitative estimates of the chances of “failure.”
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The “Monte Carlo Simulation” Alternative

Spreadsheet and statistical software are now available which readily permit each variable in
the mathematical system model (algorithm) to be described as a distribution of values. For each
variable in the algorithm, the type of distribution (normal, log-normal, uniform, etc.) and parameters
of the distribution (usually the central tendency and dispersion) must be established based on
experience or available data. The software will automatically execute the algorithm thousands of
times, randomly selecting a different value from each variable distribution for each computation.
Because the algorithm is solved thousands of times, there are thousands of results. This large, but
finite, set of varying results can be used to estimate the frequency distribution of all possible
outcomes (the population). One method of achieving repeated computational cycling and random
selection of variable values is the “Monte Carlo Simulation.”

Monte Carlo Simulations Provide Two Crucial Advantages

Monte Carlo Simulations require the engineer to estimate the shape, central tendency, and
dispersion appropriate for each variable. This process requires the engineer to visualize every
physical quantity or property as a random variable. The result, and one of the principal advantages
of Monte Carlo Simulation, is a far more realistic modeling of physical phenomena. Developing a
perception of the physical world which includes dispersion, or degree of variability, will also help
engineers avoid unfounded conclusions. The simple comparison of means of two groups of data to
determine which is “better” is a common error. Expressing predictions to an unwarranted number of
significant figures would occur much less frequently if outcomes were visualized as distributions.

The other principal advantage of Monte Carlo Simulation is the ability it provides to estimate
the chances of exceeding or falling below certain critical values. Available software typically
presents simulation results in a histogram showing the frequency at which outcome values fall
within certain intervals. The software usually allows one to specify an outcome of particular interest
(i.e., Factor of Safety = 1.00), and calculates the percentage of the outcome values falling below
that value. It is far more instructive to estimate that “the chances of failure are one in one
thousand” than to conclude that “failure is very unlikely because the customary factor of safety of
2.0 was applied.”

Examples

Two simple examples, each using different software, of Monte Carlo Simulation follow. They
are intended to demonstrate the basic concepts and procedures. The authors are aware that
many statistical software packages are available, that nuances of variable type and
interdependency are not included, and that differences of opinion are probable regarding the
shapes and values assumed for the variable distributions.

Example 1: Factor of Safety

Consider the simple beam shown in Figure 1. The conventional approach to the design of
this beam would involve calculating a single value for the Factor of Safety with respect to failure by
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yielding. The Factor of Safety would be equal to the material yield strength divided by the
calculated maximum fiber stress in the beam. For this example, the following values were selected
for the parameters:

P = 18 kips Beam Section = WI 6x31 L = 120 in. Fyld = 36 ksi

The maximum bending moment is determined to be PL/4, and the maximum fiber stress is defined
by the equation Me/l. Based upon these equations, a maximum fiber stress of 22.9 ksi (T or C) is
calculated. Thus, the Factor of Safety = 36.0/22.9 = 1.57.

Suppose the client asked the designer if there is any chance of failure (that the Factor of
Safety could fall below 1.0). The designer would probably answer: “Yes, there is a chance, but
failure is very unlikely.” Knowledge of the ‘real world’ tells us that there is variability in all of the
values that were used in the previous calculations. Because conventional Factor of Safety
calculation methods do not consider such variabilities, estimates of the percentage of times the
Factor of Safety would fall below 1.0 are not possible.

Now consider a solution of the same problem using a Monte Carlo Simulation in which all
values influencing the Factor of Safety are treated as random variables. The software package
PC: Solve@ was used for this analysis. The values assumed for the deterministic solution above will
be taken as the mean values for the respective random variables. The dispersion of each random
variable will be taken as three standard deviations. The means and dispersions of each random
variable in the Monte Carlo Simulation were:
P=18*6kips (actual variation would depend on load type)
L = 120 f 3/8 in. (based on value specified in the standard mill practice section of the

AISC LRFD Manual of Steel Construction)
W16X31 (variations in width and depth were taken from the standard mill section

of the AISC LRFD Manual of Steel Construction)
Fyld

=36~9ksi (actual variation would depend on results of material tests or on
allowable variations permitted by ASTM)

As input to the PC: Solve@ analysis, one must specify both a mean and variance for each
distribution created. Once these distributions (all assumed to be normal distributions in this
example) are created, they can be manipulated just as one would manipulate any “variable.” Thus,
repeating the above problem many times using the means and variances assumed, the distribution
of Factor of Safety obtained is shown in Figure 2.

Examination of this distribution indicates that some Factor of Safety values fall below 1.0.
The next logical question is.- “What percentage of the time will the Factor of Safety fall below 1.0?”
This can be estimated by asking the software to count the number, and calculate the percentage,
of values which fall below 1.0. For this example, the Factor of Safety fell below 1.0 approximately
0.102% of the time. One would therefore estimate that approximately 1 out of every 1000 such
beams will fail.
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Example 2: Cost Estimate

As another illustration of Monte Carlo Simulation, the cost of excavating a simple storm
sewer pipe trench was estimated using a user-friendly software package called Crystal Ball@.
Traditionally, the storm sewer trench excavation volume is taken off by multiplying the average
depth between catch basins and manholes by the width and length of the trench taken from
engineering drawings. Different width trenches are taken off separately. Even though the final
trench width depends on many variables (such as the tendency of the soil to slough and the
experience of the operator), no attempt is usually made in the traditional take-off process to
account for such variations. Consider for example the cost of excavating a 300 ft long x 3 ft-6 in
wide x 5 ft deep trench. Traditionally, the excavation volume (IxWXD)  would be calculated as 5250
ft3 (195 CY). If the cost of excavation is assumed to be $4.50/CY,  the total cost will be $877.50.

Suppose that an excavation contractor, considering submitting a bid of $1,250 for this work,
wonders what his/her chances of suffering a loss would be. Only a vague guess could be made
based on the conventional estimating procedures described above. A far more useful estimate of
the answer to the contractor’s question can be obtained through a Monte Carlo Simulation. The
software Crystal Ball@ will be used in this example.

In this example, the variables are the trench length, trench width, trench depth, and unit cost
of excavation. The trench width and depth were assumed to be dependent and positively
correlated, a condition which Crystal Ball@ manages with ease. A “forecast cell” was defined in
which the many values of calculated total cost were saved. To illustrate the flexibility and simplicity
of using Crystal Ball@,  a different type probability distribution was defined for each of the above
variables.

Figure 3 shows the “forecast” of trench excavation cost under the specified assumptions. Of
the 9,928 cost calculations, a click of the mouse caused Crystal Ball@ to count approximately 8.5°A
of these values exceeding $1,250.

Conclusions

Civil engineers (and all engineers and scientists) must conceive of, and manage, physical
quantities and properties as the random variables they are. This will permit a far more realistic
modeling of natural phenomena, and it will provide the priceless opportunity to estimate
quantitatively the chances of failure. Undergraduate civil engineering curricula founded on, and
saturated at all levels with, Monte Carlo Simulation will help to achieve these important objectives.
The simple examples presented above show the “power” and simplicity of such computer-assisted
applications in civil engineering education. . . .
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Figure 3: The Probability Distribution For the Forecasted Total Excavation Cost
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