Asee peer logo

Scaling Up Project-based Learning for a Large Introductory Mechanics Course Using Mobile Phone Data Capture and Peer Feedback

Download Paper |

Conference

2016 ASEE Annual Conference & Exposition

Location

New Orleans, Louisiana

Publication Date

June 26, 2016

Start Date

June 26, 2016

End Date

June 29, 2016

ISBN

978-0-692-68565-5

ISSN

2153-5965

Conference Session

Active Learning & Laboratories in Statics, Dynamics, and Mechanics

Tagged Division

Mechanics

Page Count

17

DOI

10.18260/p.27341

Permanent URL

https://peer.asee.org/27341

Download Count

602

Request a correction

Paper Authors

biography

John W. Sanders University of Illinois, Urbana-Champaign

visit author page

John W. Sanders is currently working toward a Ph.D. in Theoretical and Applied Mechanics at the University of Illinois at Urbana-Champaign, where he has served as the official instructor for an undergraduate-level, introductory dynamics course for the past two summers. He holds a B.S. in Engineering Physics and Mathematics from Saint Louis University, and an M.S. in Theoretical and Applied Mechanics from the University of Illinois at Urbana-Champaign. His research interests include solid mechanics, micromechanics of materials, fracture mechanics, and STEM education research.

visit author page

biography

Matthew West University of Illinois, Urbana-Champaign Orcid 16x16 orcid.org/0000-0002-7605-0050

visit author page

Matthew West is an Associate Professor in the Department of Mechanical Science and Engineering at the University of Illinois at Urbana-Champaign. Prior to joining Illinois he was on the faculties of the Department of Aeronautics and Astronautics at Stanford University and the Department of Mathematics at the University of California, Davis. Prof. West holds a Ph.D. in Control and Dynamical Systems from the California Institute of Technology and a B.Sc. in Pure and Applied Mathematics from the University of Western Australia. His research is in the field of scientific computing and numerical analysis, where he works on computational algorithms for simulating complex stochastic systems such as atmospheric aerosols and feedback control. Prof. West is the recipient of the NSF CAREER award and is a University of Illinois Distinguished Teacher-Scholar and College of Engineering Education Innovation Fellow.

visit author page

biography

Geoffrey L Herman University of Illinois, Urbana-Champaign Orcid 16x16 orcid.org/0000-0002-9501-2295

visit author page

Dr. Geoffrey L. Herman is a visiting assistant professor with the Illinois Foundry for Innovation in Engineering Education at the University of Illinois at Urbana-Champaign and a research assistant professor with the Department of Curriculum & Instruction. He earned his Ph.D. in Electrical and Computer Engineering from the University of Illinois at Urbana-Champaign as a Mavis Future Faculty Fellow and conducted postdoctoral research with Ruth Streveler in the School of Engineering Education at Purdue University. His research interests include creating systems for sustainable improvement in engineering education, promoting intrinsic motivation in the classroom, conceptual change and development in engineering students, and change in faculty beliefs about teaching and learning. He serves as the webmaster for the ASEE Educational Research and Methods Division.

visit author page

Download Paper |

Abstract

Project-based learning (PBL) challenges students to engage in a long-form investigation of a nontrivial problem, in which they work in a team to ask questions, make predictions, collect and analyze data, draw conclusions, and communicate results. PBL has been shown to result in many benefits, including improved conceptual understanding and enhanced skills in communication, teamwork, and creativity. These are widely acknowledged to be core capabilities for engineers, making PBL an attractive proposition for teaching mechanics at the undergraduate level. Because of its open-ended nature, implementations of PBL frequently rely on large course staffs or small class sizes to be effective. Expanding the use of PBL among faculty requires we begin to understand how to implement PBL at large scales. In this paper, we present results from a recent implementation of PBL in the introductory dynamics course at Midwestern Research University (MRU), where it is currently being used for a half-semester project with 200 to 500 students per semester. The project activity used is having teams of four students challenged to design and implement an experiment to determine the drag coefficient of a ball from a sport of their choice (e.g., ping pong, tennis, soccer) and to match their experimental results to a computer simulation of the experiment.

Two implementation choices were essential for the success of PBL in this large-scale context. First, the primary data collection system was students’ own mobile phones. They were encouraged to use video capture and analysis with open-source software (e.g., Tracker), or to use accelerometer or other sensor data from their phones. This approach of using personal computing devices mirrors the BYOD (Bring Your Own Device) movement commonly seen in both educational and business settings, and allows cost-free scaling of PBL experiments to very large student numbers. Additionally, it is empowering and motivating for students to realize that they personally have the capability to collect and analyze meaningful data using their newly-acquired mechanics knowledge.

Second, peer feedback was used to provide detailed mid-project formative feedback to students, allowing and encouraging them to iterate on their experimental designs and analysis. Using a computer-based peer matching and rubric-based peer feedback system enabled scaling to large student numbers without undue instructor time commitment.

This paper evaluates the success of this PBL implementation using student survey data and feedback from the graduate teaching assistants and undergraduate course assistants who were the primary student-facing instructors for the PBL component of the course.

Sanders, J. W., & West, M., & Herman, G. L. (2016, June), Scaling Up Project-based Learning for a Large Introductory Mechanics Course Using Mobile Phone Data Capture and Peer Feedback Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana. 10.18260/p.27341

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2016 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015