Asee peer logo

Sensing Angular Kinematics by Embedding an Open-source Electronics Design Project into a Required Biomechanics Course

Download Paper |

Conference

2016 ASEE Annual Conference & Exposition

Location

New Orleans, Louisiana

Publication Date

June 26, 2016

Start Date

June 26, 2016

End Date

June 29, 2016

ISBN

978-0-692-68565-5

ISSN

2153-5965

Conference Session

Hands-on Learning in BME

Tagged Division

Biomedical

Page Count

17

DOI

10.18260/p.26167

Permanent URL

https://peer.asee.org/26167

Download Count

707

Request a correction

Paper Authors

biography

Eric G Meyer Lawrence Technological University

visit author page

Dr. Meyer directs the Experimental Biomechanics Laboratory (EBL) at LTU with the goal of advancing experimental biomechanics understanding. Dr. Meyer teaches Introduction to Biomechanics, Tissue Mechanics, Engineering Applications in Orthopedics, and Foundations of Medical Imaging. He has been an active member of the engineering faculty committee that has redesigned the Foundations of Engineering Design Projects course that is required for all freshmen in the College of Engineering at LTU. This committee is currently designing a new sophomore-level Engineering Entrepreneurship Studio that will also be required for all students as a continuation of the “Foundations Studio.” He has published 33 peer-reviewed journal and conference proceeding articles. At LTU, Meyer offers a number of outreach programs for high school students and advises many projects for undergraduate students.

visit author page

biography

Brent L Ulrey Western New England University

visit author page

Brent Ulrey has worked as an engineer in the medical device and heavy industries. He holds a PhD in Biological Systems Engineering and MS degrees in Mechanical Engineering and Biomedical Engineering from the University of California, Davis. He received a BS in Mechanical Engineering from Alfred University in New York. His research interests include orthopaedic, occupational, and musculoskeletal biomechanics, as well as ergonomics. Dr. Ulrey is currently teaching mechanics and biomedical engineering courses at Western New England University.

visit author page

Download Paper |

Abstract

Engineering courses have typically followed deductive pedagogy methods that are lacking in important student learning opportunities, such as; the reason why the concepts or mathematics are important, their real-world relevance, and how it will impact the students’ future career in engineering. Project Based Learning (PBL) is an alternative method that is an inductive pedagogy, which begins with a real world problem or observation. In addition to the potential for improved student outcomes with inductive learning, the real world nature of PBL modules can lend itself for engineering design experiences that may also include broader Entrepreneurial Minded Learning (EML). The goal of this project was to introduce a PBL module with a real world scenario into “Biomechanics” courses that cover the theory and methods for solving dynamics problems. In addition to learning the related angular kinematics concepts, this project required students to design a sensor-based system for the measurement and interpretation of 3D angular velocities during a specific human movement. The motivation for the project was a call for assistance help improve the university’s baseball and softball teams’ batting performance. Assignment questions guided the students through the engineering design process steps of; identifying customer needs, brainstorming, determining specifications, analyzing solutions. This was followed by informal presentations describing the initial concept to the “customer”. Next, students were introduced to open-source electronics like Arduino and sensor platforms like SEEED Grove to use for the prototype development phase of the project. During an in class activity, they were provided a hardware kit and “recipe” instructions to set up and program the electronics as an angular velocity measurement sensor. Then they had to work with their partners outside of class to develop a calibration method for the sensors and to record the motions during a baseball swing. Finally, they developed a formal design report that refined their concept into a commercial product that could be marketed to the Baseball Coach and potential investors. Student outcomes during pilot implementations at two universities were measured with direct (formal design report) and indirect (student survey) assessments. The instructors also maintained close observation of student groups in class and during office hours to reflect and improve the module’s implementation. Most students were able to collect and calibrate gyrometer sensor data and relate this information to the angular kinematics of a baseball swing. Although students had variable prior experiences with Arduino, they enjoyed the hands-on aspect of building a prototype. On the other hand, some students expressed confusion or did not appreciate the constraints imposed due to the staged nature of this project. The project was intended to reinforce the lecture topic of angular kinematics, but also introduced broader learning outcomes related to electronics and design.

Meyer, E. G., & Ulrey , B. L. (2016, June), Sensing Angular Kinematics by Embedding an Open-source Electronics Design Project into a Required Biomechanics Course Paper presented at 2016 ASEE Annual Conference & Exposition, New Orleans, Louisiana. 10.18260/p.26167

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2016 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015