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Abstract 

 
This paper presents a methodology for short-term load forecasting using a system-type 
neural network based on semigroup theory. A technique referred to as algebraic 
decomposition is proposed for the modeling of electric power load demand in terms of 
the coefficient vector and the basis vector, and a new learning algorithm based on 
semigroup theory is put forward for extrapolation of the coefficient vector. Due to the 
non-stationary attribute of the load, the actual load is preprocessed by regression to 
become better correlated to daily time and temperatures. A rearrangement method based 
on the hourly temperature is developed to solve the problem of the roughness of the 
coefficient vector. With the algebraic decomposition of the rearranged regression load, a 
much smoother coefficient curve can be obtained. Based on the smoothness, interpolation 
and extrapolation can be achieved for each hour using the historical hourly temperatures 
and the hourly temperature forecast. The interpolated or extrapolated coefficient vector is 
recombined with the basis vector for each hour, and the recombined hourly load are 
grouped to form the final load forecast of the target day. A moving window slides 
through the whole year to perform the day-ahead load forecasting. Load data from New 
England Independent System Operator (ISO) is used to verify the capability of the 
proposed approach.  
 

I. Introduction 
 
Accurate load forecasting is very important for electric utilities in a competitive 
environment created by the electric industry deregulation. In order to supply high quality 
electric energy to the customer in a secure and economic manner, an electric company 
faces many economical and technical problems in operation, planning and control of an 
electric energy system1. Load forecasting helps an electric utility to make important 
decisions including decisions on purchasing and generating electric power, load 
switching, and infrastructure development. Load forecasting is also important for energy 
suppliers, financial institutions, and other participants in electric energy generation, 
transmission, distribution, and markets2. 
 
The load is a non-stationary process which is affected by two main factors: time of the 
day and weather conditions. The time dependence of the load reflects the existence of a 
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daily load pattern, which may vary for different weekdays and seasons. Temperature is 
the primary weather factor affecting load. Humidity and wind speed may also influence 
power consumption. In general, the load has two distinct patterns: weekday and weekend 
patterns. In addition, holiday patterns are different from non-holiday patterns.  
 
Section II describes the proposed approach. In Section III, the proposed approach will be 
applied to the forecasting problem. Finally, some conclusions are drawn and presented in 
Section IV. 
 

II. Proposed Method 
 
A. System-Type Neural Network Method 
In previous papers3-8, a system-type neural network which implemented extrapolation 
was proposed. In this method, the distributed parameter system (DPS) surface determined 
by a given data set was expanded along one axis. The load is in general a 
function, ),,,( classesCustomerWeatherHourDayfLoad = , and is often considered as 

),( HourDayfLoad = , which is parameterized by weather and customer classes. In this 
paper, however, the load is treated as ),( HoureTemperaturfLoad =  due to the 
importance of the temperature among many factors that affect the load. In the next 
section, it will be shown that the load can be represented in the following form: 

)()(),( HETCHoureTemperaturL T= , where )(HE  is a vector of linearly independent 
orthonormal basis functions, and )(TC  is a preliminary coefficient vector as a function of 
the hourly temperatures. To obtain )(HE  and )(TC , a technique referred to as algebraic 
decomposition, which aims to approximate and model load data set, is involved. This 
process at first requires load profile ),( HTL  to be parameterized as { } liT TTTHL ,,,)( L= , 
then converts n chosen members of { })(HLT  using Gram-Schmidt process to obtain an 
orthonormal basis set )](,),(),([)( 21 HeHeHeHE nL= . Finally the least squares method 
is performed to determine the coefficient vector )(TC , where )()(),( HETCHTL T=  and 

)](,),(),([)( 21 TcTcTcTC nL= .  
 
Neural networks are being used for systems described by partial differential equations 
(PDEs) 9. The system-type architecture is shown in Fig. 1, which implements an arbitrary 
function ),( HTL . The proposed architecture reflects a system-type approach using two 
neural network channels, a Function Channel and a Semigroup Channel. The Semigroup 
Channel supplies the Function Channel with a coefficient vector )(TC  as a function of 
the index T . The Function Channel provides a vector of basis functions )(HE . These 
two channels realize a semigroup-based implementation of the mapping ),( HTL . The 
Function Channel can have a Radial Basis Function (RBF) architecture10. It consists of n 
RBF networks, each representing one of the n orthonormal basis functions in )(HE . The 
outputs of the orthonormal vectors are (internally) linearly summed so that the channel 
spans an n-dimensional function space. The Semigroup Channel can be adapted from the 
Diagonal Recurrent Neural Network (DRNN) or the Elman architecture8, in which the 



Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference 
Baylor University 

Copyright © 2009, American Society for Engineering Education 

input is split into a dynamic scalar component T and one static vector component, the 
initial vector )0(C . The output is a vector )(~ TC , which is related to the dynamic input T 
and to the static input )0(C  by the semigroup property: )0()()(~ CTTC Φ= , where 

)()()( 2121 TTTT ΦΦ=+Φ . 
 

 
 

Figure 1. System-Type Architecture. 
 
B. Learning Algorithm of Proposed System-type Neural Network 
The second component, the Semigroup Channel, can be trained in a successive way 
illustrated in Fig. 2. During training, the Semigroup Channel receives a preliminary 
coefficient vector )(TC  as input and produces a smoothened coefficient vector )(~ TC  as 
output. That is, the primary objective of training is to replicate (and, if necessary, to 
smoothen) the vector )(TC  with a vector )(~ TC , which has the following semigroup 
property: )0()()(~ CTTC Φ= , where T

n TcTcTcTC ])(~,),(~),(~[)(~
21 L=  and )(TΦ  is an nxn 

matrix that satisfies: )()()( 2121 TTTT ΦΦ=+Φ . However, there is a secondary objective of 
training: the channel must also “replicate” the semigroup property of the trajectory by 
gradually acquiring a semigroup property of its own, in the weight space. The existence 
of this acquired semigroup property in the weight space becomes the basis for 
extrapolation. In order to elicit this gradual acquisition of the semigroup property, it is 
necessary that the training in this second step (semigroup tracking) occur in a gradual 
manner, as shown in Fig. 2.  
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Figure 2. Overview of New Training Algorithm. 

 
C. Regression 
Regession method is one of the most widely used approaches for load forecasting11. 
However, it is not playing the leading role to perform forecasting in this paper. The 
electric load is a complex system influenced by many factors. It can be expressed as the 
following form:  

factorsotherweatherbasetotal LLLL ++=  

where baseL  is the base load which is caused by time factor; weatherL  is the weather 
sensitive load which is due to weather variables, temperature being usually dominant 
among various weather variables; and factorsotherL  is a component of the load resulting 
from other factors. Therefore, regression is used here to filter the load and remove the  
load component caused by other factors.  
 
D. Rearrangement of Load 
Assuming the load changes smoothly with temperature, the filtered load is rearranged 
according to the hourly temperature. If the data surface of the rearranged load is smooth, 
the extrapolation along a single coordinate (temperature) can be performed. Because the 
temperature is changing hourly, it is necessary to rearrange the load with respect to the 
temperature at each hour so that a smooth load surface can be obtained.  
 
E. Interpolation and Extrapolation 
Interpolation and extrapolation involve only the coefficient vector modeled in the 
Semigroup Channel.  Fig. 3 illustrates the interpolation and extrapolation procedures for a 
given hour. Red circles represent the historical load and green circles represent the 
forecasting load.  
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Figure 3. Interpolation and Extrapolation of the Coefficient. 

 
Because the hourly temperatures for a forecasting day are already known, the coefficient 
vector can be found by interpolation if the forecasted temperature at a given hour does 
not exceed the temperature bounds experienced in previous (historical) days. Then the 
load forecasting at this hour is achieved by recombining the basis vector and the 
interpolated coefficient vector. If the temperature forecast exceeds the temperature 
bounds, then the coefficient vector can be obtained by extrapolating the coefficient 
curves. The load forecasting at this hour is achieved by recombining the basis vector and 
the extrapolated coefficient vector.  
 

III. Simulation Results 
 
The proposed forecasting approach is tested by using the past load data obtained from 
New England Independent System Operator (ISO). The hourly temperatures of each day 
are weighted average values of 8 weather stations in the New England area in degrees 
Fahrenheit. In the simulation, load data for the year 2002 is chosen for demonstration. 
The load is classified into two groups: weekdays and weekends load. For each group, the 
simulation uses data in a window of previous four weeks. For each forecasting day, actual 
raw load data in the moving window passes through the regression filter, and then the 
filtered data is decomposed into a basis vector and a coefficient vector of dimensionality 
n, where n is set to two. The results are analyzed by the following formulas: 
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where ),( hdL  is empirical load data for a given day (d) and hour (h), ),(ˆ hdL  is the 
corresponding load forecast. 
 
ii) Percent Error 

100),(/|),(ˆ),(| ×−= hdLhdLhdLError  

Here an arbitrary weekday is chosen as the forecasting day to show the simulation results. 
Fig. 4 shows the filtered load before the rearrangement and after the rearrangement.  
After the rearrangement, the load is decomposed into a basis vector and a preliminary 
coefficient vector. The Semigroup Channel is trained with the preliminary coefficient 
vector using the proposed successive training algorithm. Figure 5 shows the smoothened 
coefficient vector plotted in two components. When a forecasted temperature exceeds the 
temperature bounds of the moving window, extrapolation of the coefficient vector is 
required, which is illustrated in Fig. 6.  
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Figure 4. Regression Load before Rearrangement (left) and after Rearrangement (right). 
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Figure 5. Comparison of Original and Smoothed Coefficient Vector C1 and C2. 
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Figure 6. Extrapolation of C1 and C2. 

 
Here three typical weeks are selected to show the performance of the proposed method, 
winter, spring and summer weeks. The results include percent error and standard 
deviation at each hour of each day, both being calculated from the regression load and the 
actual load. In the first week which is a typical winter week, the highest error is 7.29% at 
3:00 on Wednesday and the lowest error is 0.01% at 13:00 on Sunday for the regression 
load. On the other hand, for the actual load in the same week, the highest error is 29.87% 
at 8:00 on Tuesday and the lowest error is 0.04% at 24:00 on Friday. It should be noticed 
that Tuesday is the New Year’s Day, but we still have treated it as a normal weekday. 
Therefore the errors for this day are relatively large. In the 11th week which is a typical 
spring week, the highest error is 2.39% at 17:00 on Thursday and the lowest error is 
nearly 0% at 9am on Sunday for the regression load. With respect to the actual load, the 
highest error is 7.95% at 7:00 on Sunday and the lowest error is 0.01% at 21:00 on 
Tuesday as well as at 12:00 on Wednesday. In the 28th week, which is a typical summer 
week, the highest error is 7.06% at 20:00 on Friday and the lowest error is 0.03% at 9:00 
on Saturday for the regression load. For the actual load, the highest error is 17.27% at 
20:00 on Friday and the lowest error is 0.01% at 10:00 on Tuesday. As shown above, 
high hourly percent errors with respect to the regression load may appear for some hours, 
e.g., 7.29% in the first week. This is due to relatively larger hourly temperature changes 
in the forecasting day compared to the historical temperatures of previous days.  
 
Table 1 shows the results of the regression load averaged for the whole year. Friday 
shows the best forecasting result and Saturday shows the worst. Based on the actual load, 
Thursday shows the best result and Saturday shows the worst. Large errors are in late 
afternoons for weekdays and mornings for weekends.  
 

IV. Conclusions 
 
In this paper, a new neural network approach is proposed to perform load forecasting. 
Instead of  actual empirical load data, the filtered load which is already preprocessed by 
regression is used. The filtered load rearranged along the temperature axis provides the 
smoothness of the coefficient vector to carry out interpolation and extrapolation. The 
results of the whole year show that the proposed method achieves satisfactory forecasting 
results. However, the errors resulting from the use of actual load are generally larger than 
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the short-term load forecasting requirement. This is because the load may also depend on 
other unknown factors. If the given load and temperature data are highly correlated to 
each other, it is expected that much better results can be achieved and the regression 
procedure can be removed. 
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Table 1. Statistics of the Whole Year Average Forecasting Results (Regression Load) 

 Mon. Tue. Wed. Thr. Fri. Sat. Sun. 

Hour Per. 
Err. 

Std. 
Dev. 

Per. 
Err. 

Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

1 1.45 238 1.73 378 1.76 454 1.73 418 1.47 299 2.39 425 1.97 366
2 1.27 216 1.72 350 1.81 456 1.68 380 1.47 294 2.55 424 1.83 341
3 1.42 221 1.80 363 1.95 460 1.65 352 1.28 250 2.44 429 1.76 299
4 1.54 226 1.93 369 2.03 464 1.70 339 1.32 261 2.19 408 1.64 278
5 1.57 230 2.13 389 2.06 468 1.90 341 1.39 276 2.17 387 2.05 315
6 1.53 252 1.97 424 2.04 458 1.71 316 1.40 258 1.85 490 1.81 261
7 1.54 305 1.74 400 1.69 390 1.64 379 1.34 259 1.79 624 1.88 288
8 1.41 330 1.22 324 1.40 374 1.47 451 1.17 289 1.87 1137 1.64 302
9 1.21 291 1.39 333 1.27 387 1.49 403 1.10 307 1.93 1105 1.49 316
10 1.18 295 1.36 320 1.32 415 1.30 406 1.10 345 1.69 629 1.21 294
11 1.01 277 1.06 288 1.28 441 1.11 391 1.01 335 1.89 599 1.27 292
12 0.89 213 0.99 294 1.33 464 1.07 346 1.01 326 2.00 562 1.49 342
13 0.97 244 1.17 350 1.48 547 1.11 320 1.08 271 2.10 602 1.74 393
14 1.09 290 1.33 416 1.55 565 1.15 343 1.19 291 2.09 608 1.87 457
15 1.07 282 1.52 408 1.62 582 1.19 407 1.29 338 1.98 609 1.63 367
16 1.19 324 1.54 426 1.73 663 1.73 631 1.10 310 2.19 648 1.79 415
17 1.51 413 1.57 505 1.56 616 1.73 589 1.22 317 2.30 673 1.88 467
18 1.59 439 1.52 499 1.77 562 1.48 622 1.62 439 2.33 871 1.66 411
19 1.41 408 1.75 607 1.79 541 1.29 375 1.61 437 1.92 662 1.47 346
20 1.39 409 1.42 464 1.66 480 1.17 332 1.50 421 1.61 559 1.51 336
21 1.34 387 1.47 462 1.62 492 1.22 379 1.26 391 1.57 612 1.56 371
22 1.42 357 1.55 525 1.60 474 1.51 447 1.36 391 1.85 565 1.74 401
23 1.34 295 1.95 587 1.58 486 1.47 374 1.17 289 2.41 739 1.97 400
24 1.48 284 2.20 583 2.00 544 1.46 333 1.16 238 2.16 554 2.16 403

Avg 1.33 301 1.58 419 1.66 491 1.46 403 1.28 318 2.05 622 1.71 352

 
 
 
 
 
 


