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Abstract 
    
With recent media attention focusing on the importance of maintaining secure lines of 
communication, it may be a good time to introduce simple cryptology examples in your math 
based courses as a means of stimulating student’s interest in mathematics.  Examples discussed  
in this paper have been presented to students with a wide range of mathematical abilities from 
middle school to senior level college math students.  
 
Using cryptology as a teaching tool allows the instructor to demonstrate the existence of a 
variety of functions and their inverses. If the instructor feels comfortable discussing some 
counting principles and probability concepts, cryptology can be made to be more meaningful. 
The most important benefit, is that some students see for the first time practical and important 
real-world applications for some of the mathematics they have been studying. 
 
Encryption of plaintext using matrices as presented in LaPREP, a nationally acclaimed 
engineering, math, and sciences enrichment program for middle school students held on the 
LSU-Shreveport campus, has already been reported in the 1999 ASEE GSW Conference 
Proceedings4. This encryption procedure has also been used as an application of mathematics in 
College Algebra, Discrete Math, and Linear Algebra classes at LSUS.  
 
Cryptology also provides excellent examples of applications of modular arithmetic for Abstract 
Algebra and Discrete Math students.  This paper will focus on examples of cryptology using 
modular arithmetic. 

 
Introduction 

 
The concept of function is one of the most important concept in mathematics, yet a recent 
evaluation of post College Algebra mathematics students yielded an unexpected high percentage 
who were unable to correctly define “function” and to correctly solve a literal equation for one 
unknown as a function of the others. If courses are taken in their normal sequence, by the time a 
student enrolls in a calculus course, they will have been exposed to linear, polynomial, rational, 
exponential, logarithmic, and trigonometric functions. Piece-wise defined functions, which are 
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sometimes introduced in College Algebra and revisited in calculus, are difficult for some to 
grasp since more than one equation is required in the definition. 
 
Unless enrolled in a Discrete Math or Probability course, a student  may never be exposed to the 
wide variety of functions available for study.  Using encryption and decryption to illustrate 
examples of functions may be worthwhile for several reasons: (1) recent terrorist activities have 
increased the public’s awareness of the need to keep secret messages secure; (2) there has been a 
growing interest in cryptology among adults since 1990. This claim is supported in part by the 
popularity of books such as Seizing the Enigma (David Kahn, 1991), The Code Book (Simon 
Singh, 1999), Station X – Decoding Nazi Secrets (Michael Smith, 1999), The Bible Code 
(Michel Drosnin (1997), and Cracking the Bible Code (Jeffrey Satinover, 1997); (3) for more 
than 60 years, cartoonists have presented encoding and decoding ideas to children through comic 
strips such as Herge’s 1947 Les Aventures de Tintin – Le Secret de La Licorne (French Text) 
and Carl Bark’s Search for the Cuspidoria (Walt Disney’s Comics and Stories, January 1955).  
Some cartoon characters actually had their own coding and decoding units available for their 
youthful readers -- Little Orphan Annie had Secret Decoder Rings in the 1930s and Captain 
Midnight’s Secret Code Book and Membership Manual and Decoder Badges were available in 
the early 1940s  (4) some applications of mathematics appeal to a wider audience than others.  
Students seem to find uniform motion problems, painter problems, and mixture problems rather 
boring, but perk up a little when the relationship between the study of ellipses and the 
construction of a lithotripter is explained. They see the likelihood of being asked to solve a 
painter or mixture problem in real life as remote, whereas they probably know someone who has 
experienced the kidney stone phenomena and can therefore appreciate the application of an 
analytic geometry concept being used to solve a real world problem.  
    
To address both the need to have real world examples and to appeal to the student’s interest in 
cryptology, some authors have included easy-to-understand examples of encryption in their 
college level math texts (College Algebra, Linear Algebra, Number Theory, and Discrete Math).  
These examples are sometimes restricted to the use of linear functions or square matrices for  
enciphering3. However, with just a little time devoted to the fundamentals of modular arithmetic, 
the student’s exposure to and understanding of both cryptology and functions can be expanded 
considerably.  

 
Encoding For Error Detection and Correction 

 
Introduction 
    
Messages are seven binary digits long and  consist of two parts: a four digit data part, d1d2d3d4, 
and a three digit error check part, c1c2c3.  Errors occur when messages are corrupted during 
transmission, a 0 is received as a 1, or a 1 is received as a 03. 
 
Messages are encoded using parity check sums.  Parity, the number of 1 digits in a message, can 
be either even or odd.   A check sum is the sum of the digits being examined1.  In this paper, 
parity will be even. Even parity is determined using the mod function, which is the remainder in 
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a division problem.  For example, 6 mod 2 = 0, because 6 divided by 2 equals 3 with a remainder 
of 0. 
 
Encoding 
 
The domain of the encoding function  consists of the set of four digit strings  holding the data.  
The range of the encoding function is the set of seven digit strings, where each string is 
composed of four data digits followed by three check digits, d1d2d3d4c1c2c3.  The check digits 
are appended to the four data digits according to the following rules: 
 
C1 = 0 if (d1 + d2 + d3) mod 2 = 0 
C1 = 1 if (d1 + d2 + d3) mod 2 ≠ 0 ; 
 
C2 = 0 if (d1 + d3 + d4) mod 2 = 0 
C2 = 1 if (d1 + d3 + d4) mod 2 ≠ 0 ; and 
 
C3 = 0 if (d2 + d3 + d4) mod 2 = 0 
C3 = 1 if (d2 + d3 + d4) mod 2 ≠ 0 . 
 
This is the encoding function. 
 
Example 1: 
 
Encode 1010. 
 
d1 = 1, d2 = 0, d3 =1, d4 = 0 
 
For c1, (d1 + d2 + d3) mod 2 = 
                  (1 + 0 + 1) mod 2 = 
                                 2 mod 2 = 0 
Thus, c1 = 0. 
 
For c2, (d1 + d3 + d4) mod 2 = 
                  (1 + 1 + 0) mod 2 = 
                                 2 mod 2 = 0 
Thus, c2 = 0. 
 
For c3, (d2 + d3 + d4) mod 2 = 
                   (0 + 1 +0) mod 2 = 
                                  1 mod 2 = 1 
 
Thus, c3 = 1. 
 
The encoded message is 1010001. 
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Decoding 
 
The decoding function maps a seven digit string d1d2d3d4c1c2c3 back to a four digit string 
d1d2d3d4 by examining the check digits and the data digits.  The decoding function is: 
  
If (d1 + d2 + d3 + c1) mod 2 = 0 then 
     d1, d2, d3 are error free. 
If (d1 + d2 + d3 + c1) mod 2 ≠ 0 then 
     d1, d2, d3 contains an error. 
 
If (d1 + d3 + d4 + c2) mod 2 = 0 then 
     d1, d3, d4 are error free. 
If (d1 + d3 + d4 + c2) mod 2 ≠ 0 then 
     d1, d3, d4 contains an error. 
 
If (d2 + d3 + d4 + c3) mod 2 = 0 then 
     d2, d3, d4 are error free. 
If (d2 + d3 + d4 + c3) mod 2 ≠ 0 then 
     d2, d3, d4 contains an error. 
 
Example 2: 
 
Decode 1100110. 
 
d1 = 1, d2 = 1, d3 = 0, d4 = 0, and 
             c1 = 1, c2 = 1, c3 = 0 
 
Examine the first check sum. 
(d1 + d2 + d3 + c1) mod 2 = 
        (1 + 1 + 0 + 1) mod 2 = 
                             3 mod 2 = 1 
 
Thus, the first check sum contains an error. 
 
Examine the second check sum. 
(d1 + d3 + d4 + c2) mod 2 = 
        (1 + 0 + 0 + 1) mod 2 = 
                             2 mod 2 = 0 
 
Thus, the second check sum is error free. 
 
Examine the third check sum. 
(d2 + d3 + d4 + c3) mod 2 = 
         (1 + 0 +0 + 0) mod 2 = 
                              1 mod 2 = 1 
Thus, the third check sum contains an error. 
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Error location begins with the recognition that each data digit is part of two check sums.    If the 
set of digits used to compute each erroneous check sum is compared, a small set of possible error 
digits is found.  Then, the set of possible error digits is compared to the set of digits in the error 
free check sum.   This leaves only a single digit as the error digit. 
 
Example 3: 
 
Locate the error in 1100110. 
 
From Example 2, c1 contains an error, c2 is error free, and c3 contains an error.  Let s1 be the 
data digits in c1, s1 = {d1, d2, d3}.  Let s2 be the data digits in c2, s2 = {d1, d3, d4}.  Let s3 be 
the data digits in c3, s3 = {d2, d3, d4}.  Since c1 and c3 contain errors, examine s1 and s3 for 
common error digits, by examining s1 ∩ s3.  This produces a set of possible error digits, {d2, 
d3}.  Next, intersect this set with the error free set s2.  The result of this operation is {d3}, which 
is a member of set that is error free.  Remove d3 from the set of possible error digits.  Thus, the 
error digit is d2.   
 
Example 4. 
 
Correct the error digit in 1100110. 
 
The error digit is d2, which is 1.  If a digit of 1 is incorrect, then the correct value for that digit is 
0.  The corrected message is 1000110. 
    

Ciphers Using Modulo Arithmetic 
 
An early form of a cipher was used by Julius Caesar during the Gallic wars2. In this system, he 
simply replaced each letter (the plaintext) by a letter by a letter three units to the right (the 
ciphertext). 
   
A substitution of our alphabet would appear as follows:        
            Plaintext:  A  B  C  D  E........W  X  Y  Z 
         Ciphertext:   D E   F  G  H........Z   A  B  C 
 
The plaintext message "STRIKE" would be encoded and decoded using the substitution 
alphabet. 
             Plaintext: S T R I K E 
          Ciphertext: VWU L NA 
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Ciphers can be described mathematically. First we adopt the following notational convention and 
list a few basic properties of modulo arithmetic:  
         
Mod[a,n] is the remainder when a is divided by n. That is, 
Mod[a,n] = r if and only if there exist integers q and r such  
that a = nq + r where 0 ≤  a < n.    
Frequently [a] will be used to denote Mod[a,n] if the value of n is understood. Note that 
[a] = a if 0≤  a < n.   
 
Example 1: 
 
Mod[25,7]=4, Mod[7,25]=7 and Mod[63,21]=0. Also, if n = 27, then [48] = 21, [55] = 1 and 
[100] = 19.Also since [a] = a if 0 β a < n, we can write  
Mod[25,7] = [4], Mod[7,25] = [7], etc. 
 
Elementary properties of Mod[a,n] = [a]: 
 
(1) [a] = [b] if and only if n divides (a - b),  i.e., if and only if  a - b = kn for some integer k.  
(This is easy to see by letting  a = nq + r and b = nq' + r' where 0 ≤  r,r' <n,  and then studying  a - 
b = n(q - q') +( r - r'). ) 
 
(2) [-x] = [n - x].         
(This follows immediately from part (1).) 
 
(3) [a] = [b] implies both [a ± c] = [b  ± c] and [ac] = [bc] for any integer c. 
(This is clear.) 
 
(4) If [a] = [b] and [d] = [e], then [a + d] = [b + e] and [ad] = [be]. 
(Since  [a] = [b] and [d] = [e], there exist integers k and l such that 
a - b = kn and d - e = ln. Thus, (a + d) - (b + e) = (k + l)n and 
[a + d] = [b + e].We also have that ad - bd = (kd)n and 
bd - be = (le)n. Consequently, ( ad - bd) +( bd - be) = ad - be = (kd + le)n 
and therefore, [ad] = [be].) 
 
(5) If the greatest common divisor of a and n, denoted gcd(a,n), is equal to 1, then there exists an 
integer a  such that 0 < a  <  n and [aa ] = [1] = 1. 1− 1− 1−

( Since gcd(a,n) =1, by the Euclidean Algorithm there exist integers s and t such that  
as + tn =  1. Thus, (as) -1 = n(-t) , and therefore,  [as] = [1] = 1. Now chose a  such that a  = 
[s].  Since a  = [a ] =[s], then by property 4 above, [aa ] = [as] =1.)       

1− 1−

1− 1− 1−

[Note that the converse of property (5) is also true.  For if [ aa ] = 1 = [1] for some integer a , 
then aa  - 1 = kn for some integer k. Thus, aa  + (-k)n = 1 which means that gcd(a ,n) = 1.] 

1− 1−

1− 1− 1−
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(6) Assume that A = {1,2,3,....,n} and f : A --> A given by  
c = f (p) = [ap + b] where gcd(a,n) = 1. (It will become clear in a moment why we are using p 
and c instead of x and y for the variables of this function.) Then f has an inverse defined by p = 
f (c) = [a (c - b)] where a  is the integer as described in property (5) above. 

1− 1− 1−

(If c = [ap+ b], then [c] = [ap + b]. Thus,  
                                       [c - b] = [ap] and 
                                       [a (c - b)] = [p].   1−

           Therefore, p = f (c) = [a (c - b)].)                                       
1− 1−

                                       
Let's now continue our discussion of ciphers by describing one using this modulo arithmetic.  
We will associate the n letters of the alphabet with the n nonnegative integers A={0,1,2,3,....,n-
1} and define a mapping f:A →A by the encryption function c = f(p)=Mod[p +k,n], where k is 
the key, the number of positions from the plaintext to the ciphertext. For example with Caesar’s 
cipher, since there is a shift of 3 letters to the right, k = 3. 
 
To illustrate Caesar’s cipher as well as the other examples in this paper, we will use the 
following alphanumeric cipher:   
   

BLANK     0 
A 1 N 14 
B 2 O 15 
C 3 P 16 
D 4 Q 17 
E 5 R 18 
F 6 S 19 
G 7 T 20 
H 8 U 21 
I 9 V 22 
J 10 W 23 
K 11 X 24 
L 12 Y 25 
M 13 Z 26 

   
For Caesar’s message, our ciphered message becomes          
              
                      plaintext                                      S   T    R  I    K  E  →
                      p-numbers →                                   19 20 18  9  11   5  
                      c-numbers (c= Mod[p+3,27] ) →    22 23  21 12 14  8 
                      ciphertext                                    V   W  U  L   N  H     →
                                                                             
To decipher the messages, we use the inverse functions. From property 6 above, we see  
that if c =  [p+k], then its inverse is given by p = [x-k] ( In this case, both a and a  are equal to 
one. Thus, the ciphered message VWULNH can be deciphered as follows: 

1−
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                      ciphertext                                      V  W  U  L   N  H     →
                      c-numbers                                    22 23  21 12 14  8 →
                      p-numbers (p= [c-3] ) →                  19 20  18  9  11  5 
                      plaintext                                        S   T   R  I    K  E  →
                    
Example 2: 
 
For a more sophisticated example, let's choose the mapping 
c = Mod[5p + 7,27] = [5p + 7]over our 27 letter alphabet. The message STRIKE would be 
encoded as follows:  
 
                      plaintext                                      S   T    R  I    K  E  →
                      p-numbers →                                   19 20 18  9  11   5  
                      c-numbers (c= [5p+7] )               21 26 16 25  8    5 →
                      ciphertext                                     U  Z   P  Y   H  E     →
               
To decode this message, we would apply the inverse of c = [5p + 7]. From properties listed 
above, we have the following: 
                              
                                [c] = [5p+ 7]  [c -7] = [5p] ⇒

                                                 [5 (c -7)] = [p].    ⇒ 1−

                                    
                               ∴ p = [5 (c -7)]  1−

                                      = [11(c – 7)]     (since [5]*[11] = [1]) 
                                      = [11(c + 20)]   (since [-7] = [27 – 7] = [20]) 
                                      = [11c + 220] 
                                      = [11c + 4]        (since [220] = [4]) 
 

The message UZPYHE can now be deciphered as follows: 
 
                  ciphertext                                    U  Z    P Y   H  E     →
                  c- numbers                                 21 26 16 25  8    5 →
                  p- numbers ( p = [11c + 4]) →      19 20 18  9  11   5  
                  plaintext                                      S   T   R  I    K  E                     →
                                                    
Example 3: 
 
Use c=f(p) = [p + 15]  to encode and decode the message HELP. We first encode the message: 
                      plaintext                                      H    E   L   P  →
                      p-numbers →                                   8    5   12  16  
                      c-numbers (c= [p+15] )              23  20   0   4 →
                      ciphertext                                    W   T   B   D     →
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Now to decode the message :                     
                     ciphertext                                    W   T    B  D     →
                     c-numbers                                  23   20    0   4 →
                     p-numbers ( p = [c - 15]) →            8     5   12  16  
                     plaintext                                      H    E     L   P                    →
 
Example 4: 
 
Use c = [2p + 7] to encode and decode the message HELP. First to encode the message: 
 
                      plaintext                                      H    E   L   P  →
                      p-numbers →                                   8    5   12  16  
                      c-numbers (c= [2p+7] )              23  17   4   12 →
                      ciphertext                                    W   Q   D   L     →
 
To decode the message we first find the inverse of c = [2p + 7]: 
                
                     [c] = [2p + 7]   [c - 7] = [2p] ⇒
                                             [2 (c - 7)] = [p] ⇒ 1−

                                             [14c - 7)] = [p]   ( since [2][14] = [1]) ⇒
                                             [14c - 98] = [p] ⇒
                                             [14c + 10] = [p]   ( since -98 = 4*27 + 10) ⇒
                                             [p] = [14c + 10]. ⇒
 
We now decode the message:                     
                     ciphertext                                        W   Q     D   L     →
                     c-numbers                                       23   17    4   12 →
                     p-numbers ( p = [14c + 10]) →            8     5   12  16  
                     plaintext                                           H    E     L   P  →
 

Summary and Conclusions 
 
For many years, encryption and decryption using matrices has been a staple in the Discrete Math 
component of LaPREP. When doing end-of-course evaluations, students ranked this as their 
favorite topic above other applications including stochastic matrices and “0-1” matrices. In this 
paper, applications of cryptography using functions incorporating modular arithmetic for both 
error checking and ciphers have been discussed. Cryptology provides excellent examples of 
modular arithmetic for Abstract Algebra and Discrete math classes. Such applications are now 
being included in these classes at LSUS and the students have found them to be of great interest. 
Many have gained a new appreciation for mathematics and have expressed an interest in forming 
a campus cryptology organization.   
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