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There is a disturbing paradox at the heart of contemporary American education: As this 
education turns more and more “electronic,” we are moving away from the one kind of learning 
that we know to be most effective, namely, one-on-one instruction. As the need for good teachers 
at the university level continues to grow, we see this paradox intensifying.  And we see the 
problem manifesting itself in a particularly nasty way in curricula that predominantly focus on 
cultivating abstract reasoning ability in future scientists and engineers.  The data tells us that as 
educators, we are not producing students able to successfully employ context-independent 
reasoning in technical domains. This is true despite the fact that there has been great progress 
made in developing educational technologies and aides for teaching formal, context -independent 
deductive reasoning; we refer here to an abundance of proof-construction environments. The fact 
is, teaching students to be good abstract reasoners requires the professor to have a one-on-one 
relationship with each student, with a keen eye on how each searches for a solution.  The perfect 
automated logic instructor should be adaptable, and fully available to each student, at every time 
and every place. This is obviously not possible with human instruction, but our preliminary work 
suggests that our vision is capable of being realized in the digital domain: We are developing a 
suite of intelligent agents that bring the cutting edge in AI-based tutoring to the state-of-the-art in 
proof construction courseware.  In addition, with agent-driven tutoring systems as a foundation, 
we aim to extend our agents so that they can be of assistance to logicians, mathematicians, and 
computer scientists in their research and development. Unfortunately, proof-construction 
environments in the educational realm, while presenting lucid proofs to the student, are based on 
weak theorem provers – provers that lack the sheer muscle to be of use to a professional scientist 
or engineer. We remedy the situation by using “industrial grade” theorem provers as the testbed 
for the development of our artificial assistants. 
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Introduction 

A capacity for first-rate context-independent reasoning is a vital skill for success in today's high-
tech society, which increasingly demands that people solve problems far removed from concrete 
contexts19.  Despite the fact that this skill is supposedly taught from high school on through 
college, there is a remarkable dearth of good context-independent reasoners in our college 
classrooms. This is clearly demonstrable through a simple problem such as Wason’s Selection 
Task22 : 

 Suppose that I have a pack of cards each of which has a letter written on one side 
and a number written on the other side. Suppose in addition that I claim the 
following rule is true:  

· If a card has a vowel on one side, then it has an even number on the other 
side.  

Imagine that I now show you four cards from the pack:  

 

Which card or cards should you turn over in order to decide whether the rule is 
true or false? 

Cheng and Holyoak conducted studies of this nature, with disparaging results that fully support 
our claim8. Only approximately 5% of the educated population solves this problem correctly, 
even after having an introductory course in logic.  It seems safe to conclude that we're just not 
doing a good enough job teaching our students how to formally reason.  Our preliminary work 
seems to suggest an antidote, because it has shown that an agent-based presentation of material 
achieved better results on a post-test among an experimental group of subjects than those who 
learned the material in standard lecture format17.  Our motivation is to deliver a mature brand of 
this agent driven instruction to the masses, so that the absence of a human instructor who needs 
to attend to individual students has positive, rather than negative, effects. 
 
 
Harnessing the Power of One-on-One Tutoring 
 
One-on-one tutoring is remarkably effective:  we have long known that there is strong evidence 
from a myriad of domains that tutored students consistently outperform those taught in 
classroom situations having standard student/teacher ratios.  For example, in a meta-analysis 
conducted by Cohen, Kulik & Kulik  of 65 evaluations of school tutoring programs, it was 
shown that the median tutored student performed at the 66th percentile of the untutored students9.  
Bloom discovered that the average one-on-one tutored student performed two standard 
deviations higher than students in normal elementary school classroom environments. Studies 
specifically concerning machine tutoring systems have long followed suit. Woolf reports a one-
sigma improvement by students learning via tutoring systems23.  Parallel results have been P
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obtained with respect to the Lisp and geometry tutoring systems developed by John Anderson 
and his team at Carnegie-Mellon University1. 
 
 
The Dilemma 
 

The notion of trying to build an intelligent tutoring system for logic has a long and 
checkered history.  Intelligent tutors developed for our domain of interest; logic, seem to be 
lacking in three fundamental areas: those areas being interactivity, powerful theorem proving 
engines, and the ability to let the student explore multiple lines of reasoning before interfering.  
Specifically, competency in logic requires innovation on the part of the student.  Knowing what 
assumptions to make in a proof to achieve a certain end incurs not only the cognitive cost of 
knowing a set of rules to apply, but adds the effort of examining the proof from numerous 
different angles.  This type of introspection is crucial to what is commonly referred to as “deep 
learning”.  We are working on a way to solve all three of these fundamental problems, and are 
packaging the solution in the form of an embodied intelligent agent.  The realization of this 
solution has taken its preliminary shape in an agent-driven proof construction environment called 
The Rensselaer Intelligent Prover or RIP for short. Of course, a system such as RIP comes with a 
list of modules that are among the most difficult problems in computer science to implement.  
Among them are natural language processing, advanced prediction capabilities, and effective 
user interface design.  Many of the best attempts at constructing such a system have a common 
ingredient for success missing from their software, namely the ability to do what a human 
professor does best.  One of the primary advantages of the human instructor is the ability to 
provide natural language clarification of concepts, and the wealth of domain knowledge that is 
vital in the evaluation of a student's performance on a given exercise.  Our best instructors have 
an uncanny knack for adapting to individualized need on a per student basis and keeping an eye 
on how the student progresses over time as concepts are reinforced through new material.  A 
simple example would be a student who hasn’t yet mastered Modus Tollens, which simply states 
the following: 

 
 

P ® Q  (if P, then Q) 
ØQ (it is not the case that Q is true) 

 
\ØP (therefore it is not the case that P is true) 

 
This is a vital rule in the simple derivation of P or not P (P Ú ØP), which is vital to the solution 
of other more complicated derivations.  A seasoned instructor would be able to look at one of 
these more complicated derivations, and immediately see that the student is incorrectly applying 
Modus Tollens, and provide a more fundamental example to reinforce the concept. 

The ability to perform meta-reasoning is unavoidable within the framework of a 
computer instructor for any subject, but all the more vital for subject areas such as logic.  These 
areas of study are plagued by a lack of a certain one-to-one mapping from problem statement to 
solution.  The one-to-one mapping issue is easily illustrated by the fact that all first-order logic 
problems can be solved with indirect proof (proof by contradiction).  If we have a proof that we 
want the user to construct, he is just as correct arriving at the answer via indirect proof as he is 
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using some other method of proof.  In the ideal situation, we’d like to be able to let the student 
explore both lines of reasoning.  Unfortunately, the ideal situation comes with a bit of overhead.  
We must have multiple valid solutions for a particular proof on hand, and have the appropriate 
automated advice hard-coded for these particular situations.  Given a large corpus of proofs for 
our artificial instructor to choose from for example problems, we have an unmanageably large 
database.  What’s more, as the programmers, we have to either write out all of these solutions 
ourselves and enter them into the database, or go through the trouble of interviewing logicians.  
Even in the case of the latter, we run into the problem of each logician being predisposed to a 
certain way of analyzing a proof.   
 

While it is our primary goal to develop an environment for automatic instruction in logic, 
we are proposing ancillary usage of our core technologies.  These technologies lend themselves 
nicely to the domain of research and development for scientists, mathematicians, and engineers 
alike.  Unfortunately, the computational muscle that is required to tackle the problems that these 
types of researchers face is not present in any of today’s proof construction utilities. These 
scientists must rely on theorem proving utilities that usually lack elegant interfaces, and certainly 
lack the ability to make suggestions about the problem domain.  
 

It has also been shown that tutors that are capable of non-trivial interactivity (a dialogue 
with the user for example) produce substantial learning gains among the vast majority of students 
who use them.  The interactivity in question is all but missing from intelligent tutors in the 
domain of logic.  A short exposé of previous efforts in this area will bring these shortcomings to 
light. 

 
 

Previous Work 
 
Since the advent of Herb Simon and Alan Newell's Logic Theorist at the original 1956 
Dartmouth conference, researchers in AI have been pushing the boundaries of automated 
theorem proving – and things have been progressing nicely.  ATP’s (automatic theorem provers) 
have cracked mathematical theorems that would have taken mere mortals a lifetime to prove in a 
matter of days.  
 

One of the more famous examples of one of these elusive theorems is the proof of the 
Robbins problem11, which asked whether one set of rules is powerful enough to capture all of the 
laws of Boolean algebra. 

One way to state the Robbins problem in mathematical terms is to ask if the equation     "Ø (Ø 
(P))=P" can be derived from the following three equations:  

1. P Ú Q = Q Ú P,  

2. (P Ú Q) Ú R = P Ú (Q Ú R),  

3. Ø (Ø (P Ú Q) Ú Ø (P Ú Ø (Q))) = P.  P
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This problem stumped our most brilliant mathematicians for sixty years, till the EQP (Equational 
Prover) system developed at Argonne National Labs by William McCune, cracked it in a mere 
eight days15. 
 
AI systems that once relied on proprietary (and oftentimes buggy) verification algorithms are 
now starting to harness the power of ATP, making rapid prototyping possible.  But one of the 
things that theorem provers have not managed to do is teach a person how to create an abstract 
representation of a problem, and solve it through formal reasoning.  (Perhaps one way to 
encapsulate the challenge is to say that we need theorem provers smart enough to both teach 
students the principles upon which they are based, and how to use these provers to solve 
problems.)  However, some of these attempts laid the foundations for our pioneering work here 
at Rensselaer and at other institutions of higher education.  Some of the standout efforts in the 
area of automated logic instruction are as follows 
 
CMPT – The Carnegie Mellon Proof Tutor 
 
The initiative at Carnegie Mellon University to develop an automatic tutoring system was the 
brainchild of Scheines and Sieg20.  The system is built on top of the Valid theorem proving utility 
developed by Patrick Suppes at Stanford University21.  CMPT (Carnegie Mellon Proof Tutor) 
was intended to replace a traditional first course in logic, and met with a surprising amount of 
success.  These preliminary successes, as important as they were, don't add up to an immersive 
tutoring experience.  CMPT can only be used with the propositional calculus (a subset of first 
order logic), and to date hasn't been upgraded to handle FOL.  The interface to a past version of 
the tutor is shown in Figure 1 and illustrates some of the major shortcomings in interface design 
that run as a common thread through many automated tutors for logic. The proof is made much 
more difficult to read using the proof tree representation.  There is a considerable lack of 
seamless interactivity.  Looking at the figure, it stands to reason that the reader would need a 
basic background in logic just to understand the proof tree explanation of how to progress in the 
proof. 
 

While the goal remains to teach a broad student base how to assemble proofs in first 
order logic, most of the brainpower of these programs is in the ATP behind the scenes.  This 
does little to make the software easy to use, or the visual formalisms that it uses more palatable 
to the eye.  In the case of CMPT, the preferred representation is a Fitch-style natural deduction 
proof (which is what we'd like to use as well), using windowing to encapsulate assumptions and 
their corresponding results in the proof.  Unfortunately, even though CMPT can complete a proof 
from any given step in the reasoning process, this is hardly ground to deem it a tutor.  Speaking 
as teachers, we find that during office hours when there is an opportunity to have a one-on-one 
session with a student, we resort to drawing out our lines of reasoning, and showing why certain 
assumptions work in certain situations.  In the CMPT tutoring environment, all that the user sees 
is a goal tree, with the path of derivations from the premises to the conclusions.  There doesn't 
seem to be any deep interactivity offered by this piece of software, such as rudimentary natural 
language capability or hypermedia presentations. 
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Figure 1: The Carnegie Mellon Proof Tutor 
 
 
CSLI Initiatives 
 
The industry standard in proof construction software is the excellent suite of software offered by 
the CSLI group at Stanford university, and pioneered by Barwise and Etchemendy (Hyperproof4 
and Tarski's World3 for the Macintosh platform, and more recently the java based Fitch5 and 
Tarski's World systems.  While this software provides a very flexible and intuitive proof 
construction environment, it does not afford any assistance from intelligent software agents, or 
tutorials of any kind of the in silica variety.  The CSLI software is accompanied by a textbook, 
and has been employed with a large degree of success in many colleges.  Proofs are carried out 
in Hyperproof in the Fitch style of natural deduction, and in an easy-to-read fashion.  Well-
deserved attention was paid to developing a remarkably easy-to-use interface. Hyperproof 
provides support for developing visual proofs as well, which is arguably one of the most 
revolutionary and ground breaking features to ever appear in a piece of logic courseware.  This 
leads to the exciting possibilities of constructing disproofs as well as students being able to tinker 
with situations, thus refining their ability to reason and anchoring the formalisms in a visual 
depiction (Shown in Figure 2.)   
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Figure 2: A Sample World in Hyperproof 
 
A Comparison of ITS for Logic Instruction 
 
There is much in the way of software systems that claim to be “intelligent tutoring systems” or 
something akin to the latter.  To clear up the confusion, we’ve investigated many of the 
aforementioned systems, and have developed a comparison of ITS software systems (presented 
below in Figure 3). 
 
System/Property Strong 

Theorem 
Provers 

Semantic 
Components 

Multiple 
Types of 
Reasoning 

Real-Time 
Advice 

Offline 
Advice – 
Lecture 

CMPT      
Fitch     

 
Hyperproof  

 
   

WinKE      
RIP 

     
CHOGIC 

     
Existential-
Graph Bvased 
Provers 

  
   

DPL-Based 
Systems  

 
 

  

Tarski’s World  
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  As can be seen in the figure, there are two main types of logic instruction software; that which 
already exists (Fitch, Hyperproof, WinKE*, CMPT, Tarksi’s World, et al.), and that which is 
under development (most notably the Rensselaer Intelligent Prover and CHOGIC*).  The systems 
under development are driven by artificial agents that are capable of giving advice, whether that 
advice be real-time, lecture-based, or offline (probably based on the student’s historical 
performance on a certain type of question).  Another common property of the systems under 
development is the tendency to use powerful theorem proving utilities as back-ends for the 
software.  This provides a greater robustness to the overall software package.    We have also 
included a column for “semantic component”.  This can include either visual reasoning using 
such systems as Hyperproof or Tarski’s World, or it can be contextualized reasoning engines 
such as the one found in the CHOGIC system. 
 
The Future is now: Agent Driven Logic Instruction 
 
In our approach, central to the construction of an effective tutoring system is the notion of an 
intelligent agent.  This agent is intended to behave as ways directly analogous to the human logic 
instructor.  In particular, our focus is on building intelligent agents able to offer real-time advice 
on a one-on-one basis.  As such, these agents are responsible for monitoring the progress of the 
user, and for providing advice and hints.  We are also in the process of building agents that give 
traditional-style lectures, and review assignments submitted by students.  (Recall the comparison 
we introduced above.)  Since all of our work is based on the intelligent agent paradigm, and 
since, in particular, intelligent agents come in many varieties, a brief review of the paradigm is 
necessary.  We begin with: 
 

“An agent is anything that can be viewed as perceiving its environment through sensors 
and acting upon that environment through effectors. A human agent has eyes, ears, and other 
organs for sensors, and hands, legs, mouth, and other body parts for effectors.  A robotic agent 
substitutes cameras and infrared range finders for sensors and various motors for effectors.  A 
software agent has encoded bit strings as its percepts and actions.” 18 

 
The traditional definition of an agent is so open-ended that almost anything with some 
input/output capabilities may be labeled an agent.  It is therefore useful to examine some of the 
most common types of intelligent agents, enumerate the set of necessary tasks that a human 
instructor must be capable of to be a good teacher, and finally to match up these tasks with the 
capabilities of the aforementioned agents.  Let's have a look at some different types of agents and 
what they can do for us. 
 
Reflex Agents 
 
In the preliminary stages of the project, our agent will manifest itself as a simple reflex agent 
with some enhancements that we will proceed to describe in detail.  It is often the case that 
explicit lookup in a table is insufficient for making quick inferences.  This is especially true in 
                                                
* A proof tool based on the semantic tableaux developed by Ulle Endriss at King’s College, UK10 

* CHOGIC is a proposed system to teach different types of logic and reasoning using the rules, tactics, and strategies  
in chess6 
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our case, where variables can take on many different names, and the space for naming predicates 
is virtually unlimited. The objective is to reduce the search space to a manageable size while 
maintaining correctness and precision.  This is accomplished through the use of a reflex agent.  A 
reflex agent (Figure 3) is simply a collection of condition-action rules that have the form: if 
condition then action.  
 

 
 

Figure 3: Reflex Agent with State 
 

These rules govern the behavior of the system with respect to its percepts and constitute the 
agent's abstract view of the world.  This architecture has the drawback of only being able to 
respond to singular situations and is unable to act with respect to context, or to a string of 
correlated events.  For our purposes, we need an agent that is able to make a judgment based on 
the current information it has about what a user has done thus far in a problem situation. This 
“internal state” defines each step of a proof in the context of what has already been attempted.  
The basic operation of such an agent is shown in Figure 4.  This will be our basic architecture for 
our first experiments. 
 

 
 

Figure 4: Algorithm for Reflex Agent with State 
 
Goal-Based Agents 
 
At the heart of all tutoring systems lies the a priori knowledge of expert(s) in the chosen domain.  
A tutoring system for logic will often have explicitly coded solutions for each exercise that a 
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student is presented with.  We feel that this is a limiting factor for how useful the system we 
envision can be.  An agent should be able to take the current state of the proof, and generate a 
sequence of steps to eventually satisfy all of the goals.  The ability to perform such a complex 
chain of inferences is the hallmark of a goal-based agent.  The goal-based agent architecture that 
we endeavor to implement subsumes both traditional planning agents and utility-based agents.  
While our agent needs to be able to map out a sequence of steps to get from where the agent 
decides to intervene to the goal state(s), it must also be able to select advice that can clearly be 
comprehended and implemented in the context of the student's progress through the problem.  It 
is therefore necessary to have an agent that can plan, but also has a sense of what action will 
result in the most positive outcome for the student.  
 
 
 
 
with the examples. 
 
 
 
 
 
 
 
 
 
S 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Our integrated agent architecture 
 

Figure 5 illustrates our augmented reflex-agent architecture.  As you can see, our agent relies on 
a divide and conquer approach to giving hints.  If asked for a general hint as to how to complete 
the proof, the meta-reasoning facility will examine a snapshot of the current state of the proof, 
and produce an ordering of subgoals that are necessary to complete the proof in a predefined 

Partial Proof P 
 Type: Percept 

 
 
 
   
 

Subgoal List S 
Type: percept 
 
"s in S, s contains a history of 
steps that were recorded while s 
was the active subgoal. 

Local Reasoner 
Type: Match-Generator 
Purpose: Generates 
sequences of actions that
satisfy the subgoal that 
currently is active. 

Meta-Reasoner 
Type: Match-Generator 
Purpose: Generate global strategies and 
selects the order in which subgoals 
should be selected in the hint-
generation facility 
 

Hint Queue H 
Type: Action 
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manner, taking into account the general teaching strategy (proof by contradiction, conditional 
proof, et al).  If we refer back to Figure 4 for a moment, we sketch a brief algorithm that  our 
agent uses for RULE-MATCH and RULE-ACTION below: 
 
 
 
Algorithm: Hint-Generation 
Parameters: Subgoals S, Partial Proof P, Active subgoal s 
 
Variable_1 = Is_Current_Subgoal_Satisfied? 
 If(Variable_1 = TRUE) 
 { 
  Hint Queue H ¬ “Active subgoal is already satisfied. Please go on.” 

} 
 
 Else 
 { 
  Variable_2 = Solveable_From_Available_Info? 
   If(Variable_2 = TRUE) 
   { 
    List_of_Steps ¬ Local_Reasoner(s, P) 
    Hint Queue H ¬ List_of_Steps 
    Presentation ¬ Query_Advice_Database(Hint Queue H) 
    Present_Hint(Presentation) 
   } 
 
   Else 
   { 
    Meta_Reasoner(S – s) 
    Hint-Generation(S, P, s) 
   } 
 } 
 
 
 
The Microsoft Agent 
 
Having an agent with all of these capabilities, we needed to find a robust embodiment to act as 
our vehicle for disseminating information.  The vehicle of choice in this case turned out to be the 
Microsoft Agent.   Microsoft Agent is a programmable desktop caricature that is capable of 
speaking, moving, gesturing, being spoken to and responding.  This relatively rich set of 
behaviors is a more than suitable way to embody the agent architecture we’ve mentioned 
previously.  Our agent of choice is Robby the robot, courtesy of Microsoft Research16.  Robby is 
shown in Figure 6. The agent is run by Visual Basic code that is embedded in the web pages that 
RIP displays in its browser window.    
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Figure 6: Robby, our Hardworking Assistant 
 
We are using the full suite of Microsoft Agent functionality in the algorithm design.  Robby will 
respond both to voice commands and to a help button on the application.  The infrastructure of 
the agent is based on the algorithm we’ve sketched out above, and provides the user with one or 
more steps in the progression of the proof, depending on how much help is requested.   
 
The Rensselaer Intelligent Prover 
 
As the reader has seen, there are plenty of proof construction tools out on the market already, but 
for the purposes of proof-of-concept, the Minds and Machines Laboratory has undertaken the 
development of a testbed for our AI.  The result of this work is the Rensselaer Intelligent Prover 
(or RIP for short).  RIP arose from the need to have an interface capable of supporting the type of 
rich multimedia experience that we've advocated in this document plus the power of high-grade 
theorem proving wrapped in an intuitive interface.  While RIP is by no means robust enough to 
be deployed in the classroom for full-time use, it serves its purpose as a testing platform for our 
collection of agents and the gathering of data. 
 
Our First Experiment 
 
For logic, we experimented with the role of an artificial agent in teaching students who do not 
have a physically present instructor.  The agent we designed (pictured in Figure 7) was used to 
teach a specific topic, proof by contradiction (or reductio ad absurdum), to students from the RPI 
Introduction to Logic class.  After dividing volunteers into two groups matched for ability in 
logic by a pre-test (the 1998 version, differing only in date, is available at 
http://www.rpi.edu/~faheyj2/SB/INTLOG/pre-test.f98.pdf), we offered the students in the 
experimental group an hour-long course in the use of the software, without presenting to them 
any content.  The purpose of this training was to ensure that the hour they would have later for 
instruction would not be compromised by a lack of familiarity with the mechanics of using the 
interface, which was in some ways unlike the other programs used in the course.   We then gave 
each group simultaneous instruction--the experimental group viewed the interactive software, the 
control received instruction as normal from their professor. Following the instruction, we gave 
each participant a post-test consisting of a logic proof that required understanding of the concept 
discussed in the lessons (again, proof by contradiction). Three of six students in the experimental 
group received full credit; only one of seven did so from the control, with another earning partial 
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credit.  Relatively low attendance rates complicated the statistical interpretation somewhat, but 
the difference was reported at a significance of .092, indicating that it was quite unlikely that in-
person instruction was better than instruction by the artificial intelligent agent.   
 

Though we did expect that students would not do significantly better when taught by a 
physically present human instructor, it came as a welcome surprise that even this early version of 
the software was able to substantially outperform an experienced full professor with over ten 
years of experience teaching this subject (achieving twice the success rate). 

 
 

 
 

Figure 7: The Rensselaer Intelligent Prover in Action 
 
 
 
 
 
Powerful Theorem Proving 
 
So far, we've concentrated on the problem of minimal interactivity in ITS's for logic, but there is 
still a glaring fault that we've yet to address, namely the lack of powerful theorem provers as 
back-end processors for the interface.  The problem presents itself rather forcefully, especially 
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when untrained logic students (such as those used for our experiments) are routinely able to 
“break'' proof construction tools such as Hyperproof on a routine basis using only the 
propositional calculus.  These malfunctions occur with an even more frightening frequency when 
quantification is introduced.  The Robbins problem, which was previously mentioned, is a 
perfect example of a problem that requires more computational muscle than a system such as 
Hyperproof is able to muster.  This doesn't bode well for the extension of these systems to 
robust, bulletproof tutoring facilities.  As it turns out, the authors have some hands-on know-how 
that circumvents this difficulty. We have been in the business of interfacing some of the best 
theorem provers that are available with proprietary applications since 1997 using William 
McCune's OTTER theorem prover14. 
 
OTTER 
 
OTTER (Organized Techniques for Theorem-proving and Effective Research) was developed by 
William McCune in 1994 at the Argonne National Laboratories for use as a high-powered tool 
for proving first-order theorems with equality.  We have employed OTTER in a number of 
different applications here at RPI, including The Rensselaer Intelligent Prover.  OTTER has also 
been successfully used in the teaching of Logic Programming Courses7 and various other AI-
related courses.  OTTER is a resolution-based theorem prover, and subsequently produces output 
that isn't what we would consider to be aesthetically pleasing. To better illustrate our point, let’s 
take a look at some sample OTTER output: 
 
---------------- PROOF ---------------- 
22 [] -At(STENCH,x,y)| -At(OK,INC(x),y)|  
-At(OK,x,INC(y))| -At(OK,DEC(x),y)| -At(OK,x,DEC(y)). 
30 [] At(OK,3,1). 
35 [] At(OK,4,2). 
36 [] At(STENCH,4,1). 
40 [] INC(1)=2. 
46 [] INC(4)=5. 
59,58 [] DEC(4)=3. 
65,64 [] DEC(1)=0. 
79 [] At(OK,x,0). 
82 [] At(OK,5,1). 
87 [para_from,40.1.1,22.3.3,demod,65,unit_del,79]  
-At(STENCH,x,1)| -At(OK,INC(x),1)| -At(OK,x,2)| -At(OK,DEC(x),1). 
304 [para_into,87.2.2,46.1.1,demod,59,unit_del,36,82,35,30] $F. 
------------ end of proof ------------- 
 
As you can see, proofs that are generated via resolution have been modified from their original 
form.  In light of these modifications, these generated proofs become much more difficult to use 
in the context of an intelligent tutoring system to teach deductive reasoning.  On the contrary, the 
type of output that OTTER produces does not rule out its use for our purposes.  OTTER has been 
deployed as a back end in our Rensselaer Intelligent Prover to verify the syntactical correctness 
of user input (i.e. for the validation of steps in the proof), and to determine if some statement 
follows from the justification statements that are selected at that step of the proof. 
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Evolutionary Learning of Natural Deduction Proofs 
 
One of the major obstacles to overcome in the development of a final release will be to give our 
agent the ability to generate multiple internal models of a proof scenario.  In most tutoring 
systems, there is a definite set of steps to take from start to finish in a question.  Sometimes this 
is just a simple question/answer scenario, and sometimes it is a set of definite steps that comprise 
the only correct sequence to get from the beginning to the end of a problem.  In our scenario, a 
student may try many different approaches on the landscape of valid solutions.  Often in these 
scenarios, it is perfectly acceptable for the agent to intervene when a user deviates from the 
correct sequence.  This is obviously not the case given our domain of proof construction.  One of 
us (Bello) is looking into the correlation between proof and program, so that it may be exploited 
to “evolve” a population of proofs based on the genetic programming methodology developed by 
John Koza13.  The basic evolutionary algorithm is given below: 
 

Start 
 

Time unit t ® 0 
initialize population P(t) randomly from our set of operators and variables 

evaluate each member of P(t) by how well it satisfies our constraints 
 

while stopping condition is not true  { 
t ¬ t + 1 

select P(t) from P(t - 1) 
transform selected individuals in P(t) 

evaluate P(t)  } 
 

End 
 

 These evolved proofs are generated with a stochastic algorithm, and hence may produce proofs 
that were previously undiscovered by logicians and automatic theorem provers.  Evolved proof 
structures will be automatically discovered by the system, and may be used by mathematicians to 
solve previously unsolved dilemmas.   Having proofs that are evolved on the fly also eliminates 
the need for having a large corpus of pre-solved proofs on hand, and rids us of the time (and 
money) expenditures that we would incur in the hiring of experts to populate our database with 
solutions. 
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