
2006-1761: ADDING SYSTEMS ENGINEERING ACTIVITIES TO THE
SOFTWARE CURRICULUM

Harry Koehnemann, Arizona State University
Dr. Harry Koehnemann is an Associate Professor in the Division of Computing Studies at
Arizona State University where he performs teaching and research in the areas of distributed
software systems, software process, and modeling software-intensive systems. Prior to joining
ASU in 2001, Harry worked several years as a software architect and software developer on
software systems ranging from large enterprise applications to embedded control systems. Harry
has also provided training and consulting services in software tools and technologies, software
modeling, and software process.

© American Society for Engineering Education, 2006

P
age 11.159.1

Adding Systems Engineering Activities to the Software

Curriculum

Abstract

This paper motivates the need for introducing systems engineering activities into the software
curriculum and describes the changes made to an embedded software course to support systems
engineering concepts. While still a hotly debated topic, the role of what some consider
traditional software techniques are useful and becoming established activities during the systems
engineering of large, complex systems. As software engineers play a larger role in the systems
engineering activity, understanding those activities and their role in systems engineering are vital
for software engineering education.

The addition of systems engineering activities in and embedded software course has led to many
successful outcomes. Students understand the approach for solving complex systems. They also
observed first hand the benefits of modeling a solution before committing to an implementation.
In fact, student remark that once their model is correct, building for the target platform is
relatively simple. Finally, the value of showing UML notation and the various diagrams in the
context of systems development is vital for students, as these activities are becoming common in
the systems engineering community.

1 Introduction

Systems engineering activities are responsible for many decisions in complex systems. They
specify the system’s behavior, partition behavior into hardware and software components, define
the communication between components, establish the assembly and deployment strategies for
components, and specify the associated hardware and software architectures. In practice,
systems engineering teams have historically been under-represented by software advocates and
their results have been historically weak in areas of software concerns, particularly lifecycle
development process, tools, and architecture.

Systems are more commonly selecting off-the-shelf hardware resulting in less need for
application-specific hardware solutions and therefore more demand on software specifications.
At the same time, system integration responsibilities have become more prevalent, requiring
interface and control though means such as networking and the web. For example, the Object
Management Group’s (OMG) Common Object Request Broker Architecture (CORBA) is now
commonly used to abstract communication across different processors in embedded systems ([1]
as an example). In fact, most OMG meetings are now dominated by embedded systems
developers in contrast with the information technology (IT) developers who dominated meetings
less than a decade ago. Embedded systems are also employing other IT strategies such as web
services and enterprise service bus architectures to handle their integration requirements ([2] as
an example).

In addition, system size and complexity have changed dramatically over the past several years.
While still a hotly debated topic, the role of what some consider traditional software techniques

P
age 11.159.2

are useful and becoming established activities during the systems engineering of large, complex
systems. Solutions include use case requirements elicitation and management, modeling,
component-based development, and the specification of lifecycle process and tool usage [3] [4].
As software engineers begin to play a larger role in the systems engineering activity,
understanding those activities and their role in systems engineering are vital to software
engineering education. Preparing software engineering students for a role in the systems
engineering process has become an important factor for the student’s success as well as the
success of large systems.

This paper discusses the addition of systems engineering activities to an existing course titled
“Internet-enabled Embedded Devices.” The course is offered in the Division of Computing
Studies at Arizona State University at the Polytechnic Campus. The course objectives originally
introduced students to systems built from loosely coupled embedded devices communicating via
a network. Projects were fairly substantial and ranged from making embedded devices
accessible through the web (e.g., a browser-controlled sprinkler timer) to systems built from
loosely coupled devices communicating via the Internet (e.g., integrated traffic control signals).
The device control issues were relatively simple serial communication so the course focused on
network communication via the web. While this paper describes modifications to a single
course, the success of these additions has led to changes within other courses. The goal of these
changes is to standardize on common methods and a common hardware platform for hardware
and embedded students across the program.

2 Background

This section provides background material for the course changes. First, the term systems
engineering is discussed and defined for the context for this paper. Second, modeling and its use
for representing system behavior and then generate software artifacts (e.g. source code,
deployment descriptors). The third section discusses system requirements and the final section
discusses build and deployment processes.

2.1 Systems Engineering

Since this paper motivates and describes systems engineering additions to the software
curriculum, defining the systems engineering discipline is an important first step. While the
definitions vary across communities, below are some common characteristics of the systems
engineering discipline:

‚ Problems are cross-discipline and require a wide vary of expertise

‚ Problems and solutions are complex and commonly hierarchically composed into
subsystems to facilitate multi-site and multi-vendor development

‚ Solutions are highly heterogeneous including hardware (FPGAs, DSPs, general purpose
processors), software (languages, descriptor files, binary formats), and tools (compilers,
cross-compilers, debuggers, emulators, test platforms, build and deployment scripts)

P
age 11.159.3

‚ Projects have long life-spans, ten to twenty or more years, where methods for life cycle
processes are vital to the system’s long-term success

‚ Projects require significant management skills for budgeting (product development,
staffing, tools, development platforms, manufacturing, and support and maintenance),
utilizing subcontractors and vendor partners, considering time-to-market, and managing
project risk

Like the characteristics, the activities required for systems engineering are also broad reaching
and open for debate. However, typical activities performed for a systems engineering effort
include specifying the system’s behavior, making significant hardware and software architectural
decisions including tradeoff analysis, and defining the system’s lifecycle processes including
development process and tools.

2.2 Modeling

Of all the engineering disciplines, software development as an overall community lags the others
in its use of modeling to analyze problems and then synthesize solutions. Early modeling efforts
in the software community tried to abstract software source code into models so a tool could
translate the models into a complete software solution [5]. These efforts met with limited
success. While they were good at generating a system’s structure (classes and method
declarations), they did little to generate the system’s behavior (the method implementations).

Other, more successful efforts modeled the system’s behavior based interactions between
components. The goal was not to model the end source code, but to model the system itself by
specifying its elements, their internal behavior, and their interactions. With this approach, a
system is partitioned into components (and possibly nested components) that communicate
through well defined interfaces, commonly called ‘ports’. These ports are typed and provide the
only communication path between components. The port types specify the signals (a.k.a.
messages, events) both sent and received on those ports. Internal component behavior is
specified with state diagrams whose transitions are the response to external events received on
the component’s ports. Many system engineering notations [6] [7] advocate component-based
approach for systems development.

The example in Figure 1 shows a Switch component that provides two ports, one of type
Electricity and one of type Toggle. A Bulb component consumes Electricity and can therefore
be connected (a.k.a. ‘wired’) with a Switch component on the Electricity port. Switch and Bulb
can be created completely independent of one another so long as they agree to a common
communication protocol defined by Electricity.

Electricity

Toggle

Figure 1: Component Diagram

P
age 11.159.4

Internal component behavior is modeled using state diagrams. State diagrams specify the
component’s response to messages (a.k.a signals, events) sent to its ports. The response can
include an internal state change as well as possibly generating a message out one of its ports.
Figure 2 shows an example state diagram for the Switch component. When entering the Off
state, the switch sends the stop message out its Electricity port. When the Switch receives a click
message on its Toggle port, it transitions to the On state which causes the Switch to send the
flow message out its Electricity port. Other components connected to the Electricity port receive
the ‘stop’ and ‘flow’ messages and respond accordingly.

Many component models use port-based communication and several tools that support this
approach to modeling systems. The Unified Modeling Language (UML) [6] and Systems
Definition Language (SDL) [7] are industry standard notations for modeling large systems and
provide facilities for partitioning a system (components) and defining the component’s behavior
(state diagrams). UML-based tools include IBM-Rational Rose RealTime and ILogix Rhapsody
while SDL tools include Telelogic Tau. These tools are commonly used in large systems to
define the control logic and, once modeled, can be used to simulate the system’s behavior as well
as generate significant portions of the source code.

2.3 System requirements

System success depends on all stakeholders (customers, developers, domain experts, end users,
etc.) agreeing on a system’s requirements. As behavioral requirements for embedded systems
have grown in complexity, the community has looked for new approaches to discovering,
specifying and communicating requirements. For example, early cellular phone systems
provided the ability to dial and connect. Modern cellular phones include call history, phone
book, settings, ring tones and images, messaging, games, web browsers, etc. Most of this added
behavior has little if any association with the real-time communication control logic of the
embedded device. Consequently, large-scale software systems have adopted more traditional
software requirements techniques, such as Use Cases, to specify certain types of behavior.

The Use Case approach [10] to requirements managements and elicitation is well known in the
software community and is slowly being adopted by the systems community. Use Cases view

Toggle.click

Figure 2: State Diagram for Switch

Off
entry/ Electricity.stop

On
entry/ Electricity.flow

Toggle.click

P
age 11.159.5

the system from an external perspective, specifying how a system responds to external events
from its users and other devices or systems with which it interacts. As behavioral requirements
become more complex, Use Cases are a useful tool for managing them.

2.4 Run-time and deployment architecture

As discussed earlier, large systems are typically heterogeneous and include multiple types of
devices, languages, and tools. In addition systems engineering is responsible for defining the
lifecycle processes as well as defining the budget for development. System-level decisions play
a significant role in the lifecycle costs of system development. Obviously, the hardware
architecture directly dictates much of the product’s material costs and for many large systems the
production hardware environment represents a significant overall cost. However, there are more
subtle decisions that impact the lifecycle costs of system development.

First, developers must be able to build and execute their portion of the system . Large systems
may have hundreds of developers and it is unrealistic to expect they will all develop using
production hardware configurations. Systems engineering commonly specifies tiers of
development environments including simulators for host platforms and subsets of the production
hardware for target-level testing. While final testing will be performed with production
hardware, host platforms are sufficient for testing many behavioral requirements and production
subsets can reveal many timing issues without requiring the full hardware environment.

Second, large systems require the involvement of many people with diverse skills. The hardware
and software architectures must be designed to support concurrent development as well as the
ability to outsource portions of the system to other organizations. The component-based designs
discussed must consider development across organizational boundaries and address issues
including intellectual property, safety, and security.

While constructing large, complex systems is challenges, releasing, deploying, and upgrading
those systems presents similar challenges. Systems engineering efforts must define strategies for
releasing new versions of the system, how those versions will be deployed, and how running
systems will be upgraded. As with concurrent development, component-based designs provide
assistance by partitioning the system. But system engineering must formulate a plan for the
system’s lifecycle.

3 Curriculum modification

This section defines course modification made to an existing embedded devices course offered
each spring in the Division of Computing Studies at Arizona State University’s Polytechnic
Campus. The first offering began in spring 2002 and the modifications were implemented in
spring 2004 and 2005. Those modifications drove several faculty discussions involving the
hardware and embedded program offerings within the Division which is leading to changes in
several embedded and hardware courses. These changes are discussed further in the conclusions.

Section 3.1 describes the original embedded course, Internet-Enabled Embedded Devices, and its
goals and outcomes. Section 3.2 discuses modification made in spring 2004 and 2005 to add
systems engineering activities presented in the background section. Section 3.3 discusses

P
age 11.159.6

changes made to the embedded track within the Division for 2006 including the modified courses
and the changes made to those courses.

3.1 The Internet-Enabled Embedded Devices course

The course was originally designed to expose students to multi-processor embedded systems that
communicate via a network and to connect devices to a network using socket-based protocols.
The original course topics included some minimal device interfacing through serial and other
communication but focused on network protocols and communication strategies for embedded
devices.

The course uses the Dallas Semiconductor Tiny INternet Interface (TINI) [11] as the hardware
platform which runs a scaled-down Java virtual machine. The device supports 1 meg of flash for
the kernel and 1 meg of battery-backed SRAM for the file system and program execution. The
TINI also supports a wide variety of interface ports including serial, 1-wire, and TCP/IP.
Motivating factors for this device were its low cost (< $100), free development tools, and support
for the Java language which is widely used in the program’s curriculum. Using the Java
programming language in an embedded software course was a questionable decision and one we
will revisit later. The motivating factors for Java were its 1) extensive use in the curriculum, 2)
excellent support for socket communication as well as open source solutions for web servers and
distributed object communication and finally 3) support interfaces for connecting external
devices.

The course addresses both system-to-system and system-to-person communication. The system-
to-system protocols included custom, byte-level protocols, distributed object protocols such as
Java’s RMI, and standard-based protocols such as XML-RPC and SOAP. Students discovered
the ability of limited embedded devices to process requests using each of these protocols.
System-to-person communication protocols used HTTP and the ability to serve dynamic web
pages with images and java script. Most projects have some form of user input requiring the
embedded device to support a web interface.

An example project from the course might be an Internet-enabled sprinkler timer which provides
a web-based user interface for settings and uses the weather forecast via the Internet in its
decision process for watering. Projects like this included device interface to open and close
sprinkler valves, networking to check the weather forecast from the web, and some web-based
user interface to set the watering strategy for the various zones. There are several advantages of
this Internet-enabled device over the current electronic devices. First the Internet enabled device
provides a much richer user interface for scheduling watering timing based on time of year than
can be offered economically through the push buttons of the electronic device. Second the
device is more predictive by including weather forecasts from the Internet in the watering
decision algorithm.

While the original course met its goals of exposing students to Internet-enabled embedded
devices, glaring needs arose during the first two offerings (1992 and 1993). First, students had
fewer problems with the technical parts of the course (the networking protocols and device
interfaces) than they did with the problems themselves. P

age 11.159.7

3.2 Adding systems engineering activities

This section discusses the added activities made to the course. The additions are specifying the
system’s requirements, modeling the system’s architecture, and describing both the host and
target build and deployment and physical architecture. All modeling and code generation, both
host and target, is performed in Rational’s Rose RealTime.

3.2.1 Specifying behavioral requirements

Students specify behavioral requirements for the system early with Use Cases. They represent
the specifics of each Use Case with a UML activity diagram following the approach advocated in
 [4]. Defining behavior early in the project forces students to think about the entire project’s
before implementing a solution. An example for a traffic light system is shown below.

In normal operation mode, the light cycles between green, yellow, and red lights. It must also
detect and synchronize with other traffic lights. An operator can send the light into an
emergency mode which flashes red and configure the traffic light for default light timing as well
as configure properties for communication (network ports, etc.). As in [4], the system’s
behavioral response to each Use Case is further described with a UML Activity diagram. The
authors in [4] advocate a single Use Case Event Diagram for each Use Case that describes the
ordering of external events received by the system. Each event in the Event Diagram can also
have an optional Event Response Diagram describing the externally visible system behavior that
occurs as a result of that event. The figure below shows an example Use Case Event Diagram
for the Emergency Mode Use Case.

Transition green light to yellow

Flash all red lights

Emergency

Toggle

<<event>>

Emergency

Toggle

<<event>>

Restart Normal operation

Use Case
Event Diagram

Corresponding
Event Response
Diagrams

Configure

EmergencyMode

NormalOperation
TrafficLight

Operator

Figure 3: Traffic Light Use Case Diagram

Figure 4: Emergency Mode Event Diagram and Event Response Diagrams

P
age 11.159.8

3.2.2 Modeling system architecture

Next, students design architectural solutions using UML models. Modeling the system’s logical
software architecture forces students to consider the system’s components and the messages sent
between them. Students are given an introduction to UML emphasizing diagrams and notation
for describing system and software architecture, Use Case, Class, State, and Sequence diagrams.
Particular attention is also given to diagrams in the 4+1 View Model [12] as those architectural
views are heavily used in Rational Rose RealTime. The course also discusses other architectural
views used to specify large systems [13].

The Figure 5 shows the components for the traffic light system. Of note is the Controller which
contains three Lights (the 3 multiplicity on the relationship between Controller and Light) which
represent red, green, and yellow light devices. The Light component abstracts the behavior of a
light device which can toggle between on and off. The logic for this behavior is described with a
simple state diagram moving the Light between on and off states. The controller determines
which light is illuminated at any given time and sends appropriate messages via ports to the three
Light components. Figure 6 shows a portion of the Controller’s state diagram. The left diagram
represents the controller’s main diagram which toggles between normal and emergency states.
The right diagram describes the internal behavior for the Normal state, which runs lights from
red to green to yellow.

Also of note in Figure 5 is the Light Device class. Recall systems engineering must consider
both the host and target development environments. On the target system, the Light abstraction
will be turning a physical device on and off, while in the host environment no such device will
exist. Light abstract the system’s behavior for the physical light and invokes the appropriate
LightDevice to change its state. The system defines two implementation of LightDevice, a
LightStub for operation on the host and a DS2406Light, which has appropriate device interface
code to connect to the TINI LEDs.

Figure 5: Traffic Light System Logical Components

Light

deviceClass : Class

address : String

device : LightDevice

+ / control : LightControl~

+ / init : LightInit

<<Capsule>>

(from lightsystem)

SyncData

state : int

timingR : int = 0

timingG : int = 0

timingY : int = 0

(from lightsystem)
Synchronize

syncData (SyncData)

<<Protocol>>

(from lightsystem)

LightDevice

setAddress()

turnOn()

turnOff()

toggle()

(from lightsystem)

EmergencyCenter

startEmergency()

endEmergency()

sendToSkel()

<<Capsule>>

(from lightsystem)

eCenter,

address
EmergencyImplHost

eCenter : EmergencyCenter

address : String

EmergencyImplHost()

run()

(from lightsystem)

LightStub

(from lightsystem)

DS2406Light

(from lightsystem)

Controller

<<Capsule>>

(from lightsystem)

3

lightR1

3

lightR1

3

syncIn

<<Port>>

syncIn

<<Port>>

syncOut

<<Port>><<Port>>

P
age 11.159.9

The other classes, SyncData and EmergencyControl handle distributed communication.
SyncData packets are transmitted to synchronize multiple traffic lights and the
EmergencyController broadcasts the emergency event to all traffic lights when an operator
transitions the system into emergency mode.

All components communicate through ports. The Controller turns Lights on and off by sending
signals to the Light’s control port. Likewise, synchronization is performed for each traffic light’s
sync ports – note the syncIn and syncOut for receiving and sending sync data.

EmergencyNormal

startEmergency

endEmergency

startEmergency

endEmergency

Red

Green
Yellow

goRed

goYellow

syncYellow

syncRed

syncGreen goGreen

Initial

goRed

goYellow

syncYellow

syncRed

syncGreen goGreen

Initial

3.2.3 Describing deployment and physical architecture

Once behavior has been assigned to logical components, students specify the system’s physical
deployment architecture where the logical components from above are mapped to physical
components. Figure 7 shows the physical components for the Traffic Light system. Rose
RealTime provides scripts to compile and deploy each component. Notice there are separate
physical components built for the host (LightSystemHost) and target (LightSystemTini)
environments. Those components will use different compilation tools and include different
logical components (e.g. LightStub in the host and DS2406Light in the target). Also notice the
application for toggling the emergency signal is its own application which runs on the host.

EmergencyCenterHost

<<RTJava Project>>

c lasses

<<RTJava

(from java)

c lasses

<<RTJava

(from rosert)

LightSystemTini

<<RTJava

LightSystemHost

<<RTJava

Figure 7: Traffic Light System Physical Components

Figure 6: Controller’s state diagram and expansions of the Normal state

P
age 11.159.10

3.2.4 System and project management

Student projects end up with many devices and wires connected to a breadboard for their final
demonstration. To motivate student understanding of systems engineering, they must also report
their project’s final production and development environments including associated costs. They
must consider what devices are needed, how they can be manufactured, and discuss opportunities
for reducing those costs. In addition, students must report the development environment costs
including devices required and what system behavior could be created without physical devices
or by stubbing those devices on a host environment.

3.3 Future course modifications

As discussed earlier, several faculty members within our Division have discussed more
collaborative projects. Large-scale embedded applications require a broad range of expertise and
our goal is to provide some of that experience. Devices executing in those applications include
FPGAs, DSPs, as well as general purpose processors. Our goal is to combine projects from these
types of courses to create more realistic system opportunities for students.

We are currently reviewing the Xilinx XUP Virtex II Pro Development System [14] as a
common platform for hardware and embedded courses. It uses a multi-core processor that
supports two PPC 405 cores along with substantial FPGA space. It also provides several
interface ports (serial, network, video), switches, LEDs, and buttons for interfacing and supports
linux and the gcc toolset for compilation.

From a systems engineering perspective, this board will allow students to engineer more realistic
systems and collaborate with students from other disciplines. An example project might be an
MP3 player where buttons are used for fast forward and rewind. Such a system would require
components that include hardware designs that are loaded onto the FPGAs. The systems
engineering must consider this development process and design a solution for interfacing the
FPGAs with the rest of the software as well as build and deployment strategies in both the host
and target environments.

4 Results and conclusions

This paper described systems engineering activities added to an embedded software course. The
additions were motivated by student’s problems developing larger projects. While students
understood the device interface and network communication issues, they struggled with
understanding and implementing non-trivial embedded systems. The following system
engineering activities were added to the course to address this problem: 1) specifying the
system’s behavioral requirements, 2) modeling the systems logical architecture and interfaces
between logical components, 3) establishing the system’s physical architecture and build and
deployment processes, and 4) consider overall development and production cost implications of
their architectural choices. The course uses Rational Rose RealTime for modeling system
behavior and generating a significant portion of the resulting software code for both the host and
target environments.

The first offering with modeling was spring 2004. Initially students did not like the learning
curve associated with a commercial development tools like Rose RealTime. In addition, most

P
age 11.159.11

felt the added activities discussed above were simply busy work and did not add value to the
creation of their projects. A couple practice exercises using Rose RealTime were added in the
spring 2005 offering which helped the learning curve. By the end of the semester most students
appreciated the value of modeling the system’s behavior, primarily because it generated a
majority of their code. By the end of the semester, students became so confident their host
models would run on their target system they would wait until the last day to actually run on the
target hardware. While obviously not a recommendation, it did emphasize the importance of
modeling and understanding a system as well as the value a host development environment plays
in system development. Unfortunately, most students never gained an appreciation for the
behavioral requirements effort.

A side benefit also occurred for a handful of students who received job offers primarily from
their understanding of UML and model driven development obtained in the course. Modeling is
becoming more prevalent in the software community, particular in the systems area, and
knowledge of how modeling can be used to drive development is a value for students.

On the negative side, using a commercial tool, commercial methods, and a unique hardware
platform for a single course can be substantial effort and risk for faculty. First, the software
licensing and installation issues must be resolved. Rose RealTime is available for academic use
through IBM’s Academic Initiative. Every student in the class installed the software on their
personal or work computers, so there was no issue with campus IT for installation.

Faculty members can expect to become the technical support contact for installation and
configuration issues as well as product usage questions. Assigning no-credit exercises using the
tool (Rose RealTime in this course) helps as does a class discussion board so students can answer
each other’s questions. But faculty will be the final point of contact for technical problems. In
this particular course, the author had prior experience with Rational Rose RealTime with
industry applications. So, product knowledge was less of an issue than it may be for others.

In conclusion, the activities added to this course were typical of those performed in the practice
and important for student’s education. As systems become larger in scope, the need for software
students to understand and interact with other disciplines becomes increasingly important. This
paper provides a set of activities to use in the classroom.

Bibliography

[1] Dohse, D., Bush, L., Osborn, G., Christensen, E., “Successfully Introducing CORBA Into the Signal Processing
Chain of a Software Defined Radio”, COTS Journal, January 2003.

[2] The System of Systems Common Operating Environment (SOSCOE) for the Future Combat System, see
http://www.army.mil/fcs/factfiles/overview.html for reference.

[3] Alexander, I., Zink, T., “An Introduction to Systems Engineering with Use Cases”, Computing and Control
Engineering Journal, December, 2002.

[4] Coats, M., Mellon, T., “Integration CMOS with UML”, Dr. Dobb’s Journal, June 2001.

[5] Booch, G., Object-oriented Analysis and Design with Applications, 1993.

P
age 11.159.12

[6] Object Management Group, System Engineering Domain Special Interest Group (SE DSIG),
http://syseng.omg.org/

[7] SysML Forum, http://www.sysml.org/

[8] Unified Modeling Language, Version 2.0 http://www.omg.org/technology/documents/formal/uml.htm

[9] Specification and Description Language, Z. 100, ITU-T recommendation

[10] Jacobson, Ivar, Christerson, M., Jonsson, P., and Overgaard, G., Object-Oriented Software Engineering: A Use
Case Driven Approach, Addison-Wesley, 1992.

[11] The TINI Specification and Developer’s Guide, Don Loomis, 2001.

[12] Krutchen, P. "The 4+1 View Model of Archite cture",IEEE Software, 12 (6), 1995

[13] Garland, J., and Anthony, D., Large-Scale Architecture: A Practical Guide using UML, 2003.

[14] Xilinx XUP Virtex II Pro Development System , http://www.xilinx.com/univ/xupv2p.html

P
age 11.159.13

