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Abstract 
Industrial engineering programs have typically adopted the new ABET accreditation criteria with 
more enthusiasm than other engineering programs, in part since the principles of continuous 
improvement and statistical measurement are commonly taught in most curriculums, and skills 
such as team work and data analysis are staples of modern IE curricula.  However, such 
complementary skills should not limit the expertise that industrial engineers use to improve 
engineering programs. Mathematical models can be effective tools for both enhancing learning 
and assessment.   This paper presents a number of modeling approaches that a team, consisting 
primarily of industrial engineers at the University of Pittsburgh has developed in conjunction 
with colleagues at the Colorado School of Mines over the course of several years to demonstrate 
the efficacy of this approach to ABET’s requirement of continuous improvement.  Using both 
logistic regression analysis and various neural network algorithms, we have employed empirical 
modeling to successfully improve retention in engineering, predict probation during the first 
year, and determine proper placement in math courses.  We are also in the early stages of 
developing similar models to determine a student’s intellectual development, determine student 
achievement based on students’ attitudes towards engineering and themselves, as well as predict 
various EC 2000 outcomes based on students’ attitudes.  We describe each of theses models 
separately in this paper to emphasize the need for modeling as a viable tool for evaluation in 
engineering education.   
 
Introduction 
The Accreditation Board for Engineering and Technology’s (ABET) performance-based criteria, 
“EC 2000,” require that each engineering program’s faculty implement and maintain a closed-
loop, continuous improvement system [1].  As part of that system, faculty must demonstrate that 
the program’s graduates have, in fact, acquired certain knowledge and skills including a 
minimum set of eleven outcomes.  In addition, the system must be flexible enough to allow for 
the continuous identification of areas for improvement and the ability to measure resultant 
improvements.  Understanding the direct and indirect relationships among student attributes and 
outcomes is crucial because such knowledge can provide the foundation for continuous 
improvement in engineering education and a key to realizing the promise of the new ABET 
criteria.  Industrial engineering departments possess and teach many of the skills necessary to be 
successful in the new ABET perspective, specifically statistics and quality management 
techniques.  This paper focuses on another set of valuable skills – that of empirical modeling, 
which can be employed to achieve the objectives of the new accreditation criteria.   
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One ultimate objective would be the ability to track students from the point that they enter 
engineering through graduation, measuring achievement of various outcomes at different points 
in their education.  In doing this we may wish to address certain questions, including: 
 
• To what extent can we predict retention of students?   
• Which students will go on first-term probation?  
• Can students be properly placed into critical courses such as Calculus to ensure success 

during the first year? 
• Can we measure a student’s intellectual development over the course of four years?   
• Can we determine how GPA is influenced by the achievement of various educational 

outcomes? and  
• Can we classify students’ level of achievement based on their attitudes toward engineering?   
 
These are all issues that can be addressed by modeling.  This paper describes six such empirical 
models that have been developed to continuously improve engineering education.  A team of 
faculty from the University of Pittsburgh and Colorado School of Mines has developed these 
models. In the following sections we will describe some of the models that we have developed 
that have enabled us to begin to address these and other questions. Though many of the models 
describe here have been implemented by the University of Pittsburgh School of Engineering, 
some of the models described are still under development.  Outside industrial engineering, few 
engineering disciplines have taken full advantage of the usefulness of modeling to improve 
various aspects of engineering education.  Through the following examples, this descriptive 
paper hopes to provide further insights to the usefulness of empirical modeling in engineering 
education. 
 
Background on Modeling in Engineering Education 
For the past ten years a team of industrial engineering faculty and students along with 
engineering education and evaluation specialists have been developing a series of predictive 
models to address critical aspects of the engineering education system at the University of 
Pittsburgh.  Utilizing empirical data, our models have enabled us to improve engineering student 
retention during the freshman year from 72% in 1996 to 88% in 2001 and, we believe, enhance 
learning.  Such models also enable faculty to better understand the educational system and hence 
better assess learning as students matriculate through the system.  If properly developed and 
validated, such models could also identify those students who might be “outliers” (i.e., not 
achieving one or more outcomes; or have a high probability of leaving engineering even though 
they are academically successful).  Second, by relating various educational outcomes to such 
measures as graduation rates or GPA (grade point average), engineering educators obtain a better 
understanding of the system within which they work.  Hence, knowledge of these relationships 
would allow for more targeted interventions and improvements for both individual students and 
groups of students. 
 
Empirical modeling is commonly used to draw correlated inferences and define relationships 
among different factors (i.e., process elements and outcomes of a system).  It can also be used for 
classification purposes (i.e. classify a set of students according to certain defined criteria).  
Empirically derived models may also be used to predict system outputs given information about 
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the inputs and processes (i.e. determining graduation GPA based on factors other than grades).  
While a diverse number of systems have been successfully modeled, it is only recently that 
attention has turned to the engineering education system.  To date, many of the empirical 
modeling applications in engineering education have focused on retention or performance [2, 3, 
4, 5, 6, 7, 8].  At the University of Pittsburgh, we have developed logistic regression models to 
predict attrition and performance in our freshman engineering program using quantified 
measures of student attitudes [9].  Further, we have developed and tested a model to predict those 
students who are at risk to go on first term probation [10].  Full implementation of these models 
will allow freshman advisors to better inform students of opportunities that engineering offers, 
devise programs of study that take advantage of students’ varied interests, and set realistic 
retention goals.  Our modeling of the engineering education system and its components has 
helped us quantify, define, and evaluate relationships among student attributes, their educational 
experiences and now the educational outcomes.   
 
In addition to our previous work modeling critical aspects of the freshman year [11, 12], we have 
also developed and evaluated an empirical model of the engineering education system [13, 14].  
This latter model is based on the assumption that the educational processes a student experiences 
(i.e., curriculum, in-class instruction, experience, etc.) are related to the graduate’s engineering 
knowledge, skills, and attitudes.  To model the results of an engineering education, we 
hypothesized a conceptual model of the system using the engineering education literature in 
conjunction with input from working engineers obtained through focus groups.  Using this 
conceptual model, an alumni questionnaire was developed to measure various aspects of the 
model.  Alumni responses from the questionnaire then were used to evaluate and verify the 
conceptual model.  
 
Modeling Approach  
The majority of the models described in this paper are classification problems. Depending on the 
model, we employed one of two different empirical modeling methods: logistic regression 
analysis or neural networks using a learning vector quantization (LVQ) algorithm.  Logistic 
regression analysis was used for the first-term probation, retention and characteristics of 
graduation models, whereas the LVQ neural networks models was applied to the math 
placement, intellectual development, and level of achievement (based on one’s attitudes) 
problems.  Each modeling approach is described separately. 
 
Logistic Regression 
Regression analysis is one of the most widely applied empirical modeling techniques for 
determining relationships among variables, specifically between a dependent (or response) 
variable and one or more independent (or predictor) variables.  The dependent variables used in 
our models are dichotomous (zero or one) variables.  For example, the resulting dependent 
variable can take on the following values: 
 

1 = if the student goes on first term probation, and  
0 = if the student does not go on first term probation.   

 
In general, a multiple linear regression model can be expressed as: 

y = ß0 + ß1x1 + ß2x2 + ... +ßpxp + e 
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where 
 y is the dependent (response) variable, 
 xi is the ith independent variable, 
 bi is the ith regression coefficient, 
 b0 is the intercept, 
 p is the number of independent variables, and 
 e is the error with mean zero. 
 
To estimate the unknown parameters, the method of least squares is typically used. If the 
dependent variable is dichotomous (0 or 1), logistic regression is commonly used to estimate the 
model parameters.  In a logistic regression the estimators no longer have the same statistical 
properties as with multiple linear regression such that the parameters of a model predict the 
proportion of a particular outcome, ki/ni (e.g., the proportion of freshman engineering students 
who go on first term probation).  This can be described by the following logistic function:   
  E(ki/ni) = eu / (1 + eu) 
where 
  E(ki/ni) is the predicted proportion, and  
  u = ß0 + ß1X1 + ß2X2 + ... +ßpXp. 
 
Instead of using the least squares method, model parameters are estimated by the maximum 
likelihood method.  The resulting estimated regression coefficients for the model can be 
interpreted in the same manner as ordinary least squares regression coefficients.  To assess the 
adequacy of an estimated logistic regression model, we used the Hosmer-Lemeshow [15] 
goodness-of-fit test.  This statistic tests the hypothesis of how well the derived model fits the 
data.  The larger the p-value indicates that the predicted values fit the data in the model.  SPSS 
version 10.0 and its Logistic Regression routine was used to developed the models described.   
 
Neural Networks Learning Vector Quantization (LVQ) 
A neural network is an information processing system that uses highly interconnected groups of 
neurons that process information in parallel.   Depending on the algorithm, weights are 
established between the neurons (denoted as input, hidden, and output layers) by learning 
through example and repetition.  As a result, the network can receive input information 
(independent variables) and it will provide an answer at the output layer (dependent variable). 
Over the past ten years, a number of emerging algorithms have made neural networks a popular 
method for empirical modeling.   
 
Learning vector quantization (LVQ) is a pattern classification method in which each dependent 
variable, Yj, represents a particular class.  The weight vector for an output unit is often referred to 
as a reference vector for the class that the unit represents.  During training, the output units are 
positioned to approximate the decision surfaces of the theoretical Bayes classifier.  After 
training, an LVQ network classifies an input vector by assigning it to the same class as the output 
unit that has its weight vector closest to the input vector.  The architecture of an LVQ is given in 
Figure 1. 
 
For our modeling applications, MatLab version R12 with its neural net toolbox and NeuralWorks 
version 5.3 were used to develop the majority of the networks used. 
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Figure 1.  Architecture of a Simple LVQ model 

 
Description of the Models Developed 
The following sections describe several models used in engineering education.  The first three 
sets of models focus on the quality of freshman engineering, the other three sets of models look 
at the development of engineering students as they matriculate through their undergraduate 
careers and focus more directly on the eleven enunciated outcomes. 
 
Retention 
One of the most productive avenues for modeling has been, and will continue to be retention.  It 
is widely recognized that retention/attrition is one of the major challenges currently facing 
engineering educators. Almost 50% of the students entering an engineering program leave before 
graduation with a large part of this occurring during the first year [16, 17].  Some of the most 
influential work has been done by Seymour and Hewitt [18] and Tinto [19] who collectively 
have confirmed such causal factors as:  
 

• Lose interest in engineering; find more interest in other majors. 
• Poor teaching by engineering faculty. 
• Overwhelming pace and load of engineering programs. 
• Discouraging grading systems in engineering courses. 

 
The developers of ABET’s EC-2000 criteria recognized the importance of retention by 
specifically asking programs to measure and track it.  Efforts to understand and reduce attrition 
[20, 21] have included predictive model development [22, 23] and the use of retention rates for 
benchmarking [24]. These applications helped identify and confirm the factors that affect 
retention allowing more appropriate, and effective interventions to be designed; e.g., the 
introduction of specific courses [25, 26].  A serious limitation of a number of the models to 
predict retention is the inclusion of independent variables whose values can only be obtained at 
the end on the freshman year. Consequently, such models are of little use when trying to identify 
those students who have a high probability of leaving engineering during the first year, when, as 
noted the substantial part of the attrition occurs.  Besterfield-Sacre, et. al. have developed a 
model to predict students who leave in good standing based on variables obtained prior to 
students beginning their freshman year (e.g. attitudes about engineering and themselves, high 
school rank) [27].  
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First Term Probation 
Both first term and second term probation are important contributors to overall attrition in 
engineering and, in general, graduation from college. First term performance is particularly 
crucial for the engineering student’s future academic success.  Budny, LeBold and Bjedov found 
a strong correlation between first-term GPA and retention; they also observed that good 
performance in basic mathematics and physics gave students the confidence to succeed [28].  We 
have verified this at the University of Pittsburgh, documenting that a substantial portion – 
approximately 50% - of students placed on first term probation drop or transfer out of 
engineering, many without getting off of probation. In contrast, no more than a fourth of those 
who are in good academic standing at the end of their freshman year leave without graduating 
[29].   
 
Because of the importance of first-term probation as a precursor of attrition from engineering, we 
have developed a series of models to predict those students most likely to be placed on probation 
after one term. In doing this, we wanted to utilize those factors that could be measured before 
freshmen began their course work.  This would enable us to then introduce targeted interventions 
for those students with the highest probability of being placed on probation after one term.  If we 
could improve the first term performance of these at risk students, then the chance of their 
completing the engineering program would be substantially increased.  In order to estimate the 
probability of being placed on first-term probation, we have utilized logistic regression [30]. 
 
Two logistic regression models were developed to identify students at risk of being placed on 
first term probation.  Data from entering freshman classes for 1995-96 through 1999-00 were 
used in either fitting these models or served as an independent test set. Subjective and objective 
measures collected for each student included measures reflecting initial preparedness, ability, 
attitude and self assessed confidence, and first term performance (e.g. GPA).  
 
The first model developed includes SAT, the square root of high school rank and a categorical 
variable that measures students’ self-assessed confidence in their current study habits, as 
measured by the Pittsburgh Freshman Engineering Attitudes SurveyÓ PFEAS [31]. After 
considerable analysis, a threshold limit 0.15 was chosen in order to classify the student as having 
a high probability of being placed on first-term probation. Hence, a student with a probability 
larger than or equal to 0.15 is predicted to be positive (i.e., proportion of a particular outcome, 
ki/ni, is likely to be placed on probation is ³ 0.15). Otherwise, he /she is predicted to be in good 
academic standing. 
 
Because the SAT score and/or the high school rank were not available for some students, a 
second model (Model 2) was developed which did not include these two variables.  Again, a 
threshold limit of 0.15 was selected.  In fitting Model 2, the following factors were found to be 
significant: 
 

• Confidence in problem solving abilities (as measured by the PFEAS), 
• Confidence in engineering abilities (as measured by the PFEAS), 
• Confidence in study habits (as measured by the PFEAS), and  
• High risk admission through a bridge program. 
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Surprisingly, a number of potential predictors were found not to affect the probability of being 
placed on first-term probation.  These included gender, confidence in basic engineering 
knowledge, and such extrinsic factors like financial or family influences, to name a few. 
 
In implementing these models, the first is used if SAT score and high school class rank are 
available, whereas the second model is used when the first is not applicable due to incomplete 
information.  Table 1 summarizes the classifications results obtained from applying both models 
to the 1999-00 entering freshmen (this data were not used in the initial model development). The 
table shows that 54 out of 63 positives (students who were placed on first term probation) were 
identified (86%). In contrast, another 94 were incorrectly predicted to go on probation (false 
positives). That is, there is a “cost” of 1.74 false predictions for each correct prediction. The 
percentage of true positives could be increased to 100% by decreasing the threshold. However, 
the incremental cost in terms of increased false predictions would become unacceptable. Table 2 
shows that the models performed equally well for special student populations (women, 
minorities and those in our pilot integrated curriculum), indicating the models’ robustness.  
 

Table 1. Classification Results First Term Probation Model 
 Predicted Probation 

Observed 
Probation 

No Yes 

No 174 94 
Yes 9 54 

 
Table 2. Predictions for Special Populations - First Term Probation Model 

Special Case True Positives (Yes) Cost 
Male 86% 1.75 
Female 83% 1.70 
Integrated Curriculum 100% 1.86 
Minority Program 85% 1.00 

 
These models allow us to direct interventions to those freshmen that are at the highest risk of 
going on first term probation. Specifically, for the entering class of 1999-00, they allowed us to 
focus on slightly over a third of the class, and in that manner capture 86% of those who went on 
first term probation. This ability to hone in on those most in need reduces the cost of applying 
the interventions that included reducing the first term course load by not placing them in physics, 
and providing these students with special workshops and tutoring.  
 
Freshman Math Placement 
As noted, the first term is extremely important for engineering students; the first-term 
mathematics and physics courses have been found to be the incisive courses for overall success.  
All the freshman engineering students placed on probation after the Fall 2000 semester had done 
poorly in their mathematics course.  Like most engineering programs, University of Pittsburgh 
students are given mathematics placement tests.  Here students whose Math SAT scores are 
below 650 must first take an algebra and trigonometry achievement test to determine if they are 
ready to start in Calculus. Students whose Math SAT is 650 or above and who have taken 
calculus in high school, may take a calculus placement test to determine if they are qualified to 
take Calculus 2 or Honors Calculus. We observed that a substantial number of students who were 
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placed into Calculus 1 ended up with a grade below C.  An examination of their math placement 
tests and their Math SAT scores indicated no apparent pattern.  In order to improve the 
placement of these students we adapted a “Mathematics Inventory” test that had been used 
successfully by Budny at Purdue to place students [32].  The inventory consists of the concepts 
covered in the first two semesters of a college calculus sequence.  For each concept, students rate 
their degree of familiarity from “never heard of it” to “understand it and know how to apply it.” 
To improve placement, we decided to model this process using a neural network approach.  Data 
were available from 284 freshmen engineering students and included the Algebra-Trigonometry 
Placement Examination (individual scores from six sections†), Calculus Placement Examination 
(total score) the Math Inventory (scores from nine sections), the PFEAS, the Force Concept 
Inventory (for placement in honors physics), Math SAT and high school class rank.  The first 
semester math grade was used as the dependent variable.  In total, 38 factors, which possibly 
affect the math performance, were considered.  After conducting preliminary statistical analysis, 
we found that most of the students who took the calculus placement exam did well in their math 
course – whether it was Calculus 1, 2 or Honors Calculus.  In contrast, poor math performance 
tended to be confined to those students who took the Algebra-Trigonometry Placement exam. 
Hence model development was focused on this reduced dataset of 110 students.  
 
Using both neural networks and regression analysis, several models were produced.  A Learning 
Vector Quantization neural network model yielded the best results, and was selected as the 
standard model. The resultant network was composed of four input nodes. Each node represented 
one of the following independent variables: gender, score for the fifth section (most difficult) of 
the Algebra-Trigonometry Placement exam, student attitude towards math, and background in 
differential calculus‡ as reflected from that section of the Math Inventory.  Two output nodes or 
classes - good (C or better) and poor (C- or lower) performance in Calculus 1 were used.  Three 
different patterns of nodes (8, 12 and 14) were used in the network competitive layer – resulting 
in three different networks.  The dataset was randomly divided into 72 observations for the 
training set and 38 observations in test set data. Networks were trained first by LVQ1 and then 
followed by LVQ2. Predicted math performance was based on a “majority vote” (at least two out 
of the three results) from the three different competitive networks. The predicted results of test 
set observations compared to the actual results are shown in Table 3.  Although the test set was 
relatively small – 38 observations – the model correctly predicted 33 of the 38 results.  It 
identified 12 out of 15 poor performers and 21 out of 23 good performers.  Only 2 of the 14 
predicted poor performers actually did C or better work in their first semester calculus course.  
Results for the other model formats, while good, were not as accurate as the LVQ models.  
 
Table 3: Math Placement - Predicted vs. Actual Performance for Neural Network Test Set 

 Predicted Results 
Actual Results Good Poor 

Good (C or better) 21 2 
Poor (C- or lower) 3 12 

 

                                                
† The Algebra-Trigonometry Placement Examination was divided into five algebra sections of increasing difficulty 

and one trigonometry section. 
‡ Differential Calculus was the only section of the Math Inventory that appeared to yield significant results. 

P
age 7.868.8



 “Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright Ó 2002, American Society for Engineering Education” 

Given these results, it was decided to implement the model as part of the advising/testing process 
for the 2001-02 entering Freshman Class.  Advisers used the LVQ model predictions in 
combination with the first term probation predictions and an independent review of the math 
placement results.  If all three indicators suggested that the student should be placed in Pre-
calculus rather than Calculus, then the student was so advised.  In cases where the predictive 
models indicated conflicting results; e.g., “Pre-Calculus,” but not “first-term probation,” then 
placement was at the adviser’s discretion, using all six Algebra-Trigonometry sections as a final 
determinant.  As a result, the number of freshmen placed into Pre-Calculus doubled from the past 
year, going from approximately 25 to 48, even though the quality of the incoming class was 
comparable or slightly higher to the previous years as measured by SAT scores (no difference), 
high school class rank (slightly better), and percent of students in top 10% of high school 
graduating class (51% vs. 46%).  First semester grades have only been available for two weeks; 
preliminary results are shown in Table 4.   
 

Table 4. Math Placement Results Fall 2001-02 
Calculus 1 Performance    

Prediction Resigned Poor Good 
Go into Calculus 5 12 210 
Go into Pre-Calculus 1 3 17 

 
Pre-Calculus Performance 

   

Prediction Resigned Poor Good 
Go into Calculus 0 0 2 
Go into Pre-Calculus 0 13 10 
Other (N/A) 1 1 4 

 
On the surface the model appears to have improved first semester math performance.  The 
number of poor (C- or below) Calculus 1 grades has dropped from approximately 50 the 
previous year to 15.  In contrast, performance in Pre-calculus was not good, suggesting that these 
students may not have been ready for engineering and, hence, the placement was correct. Even 
though 17 students took Calculus 1 and did “good,” in spite of the model’s prediction, their grade 
distribution tended to be less than the students who were predicted to do well.  Given what we 
consider are very good results for the first year of using both models for placement, we will be 
refitting both the first-term probation and the math placement models for use with the 2002-03 
entering freshman class. 
 
Models to Predict Intellectual Development 
CogitoÓ is a software package under development at the Colorado School of Mines to measure 
intellectual development in college students. It was designed to replace an hour-long interview 
process followed by expert evaluation of a subject’s intellectual development level on the Perry 
and Reflective Judgment (RJ) scales [33, 34].  Both intellectual development models measure 
students’ position along a hierarchical construct of stages representing increasingly more 
sophisticated ways of understanding and solving complex problems. These range from an 
immature “right/wrong” view focused on letting authority (e.g., teacher, textbook) decide how to 
solve a problem through a relativistic view that all answers are equally valid to a more mature 
view of problem solving in context while addressing a variety of constraints. To emulate this 
process, CogitoÓ uses open-ended scenarios based on controversial topics as the mechanism for 
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collecting student responses.  Four scenarios have been written and tested; each focuses on a 
dilemma or controversy with posed questions for which test subjects provide responses during an 
interactive session.  As with the traditional interview method, the interest is on how the subject 
has developed a solution to the dilemma and the supporting evidence (if any) rather than the 
actual solution.  Response fields in the computerized scenarios have been carefully written to 
differentiate this type of information.   
 
We have been using a series of LVQ network models with the CogitoÓ data set, currently 
consisting of approximately 100 students who have undergone both an extensive RJ interview 
and then utilized CogitoÓ to evaluate three scenarios.  Using the RJ score as a dependent or 
outcome variable, we are attempting to fit the responses to the various scenarios in order to be 
able to predict a student’s RJ score based on his/her response to the scenarios.  Analysis using 
neural networks and statistical methods continues with the overall goal of having CogitoÓ predict 
a subject’s intellectual development level within approximately 0.5 of the levels obtained by 
interview measurements [35, 36].   
 
Classification of Level of Achievement  
We have also explored using an LVQ neural network to predict a student’s class status 
(freshman, sophomore or junior) based upon his/her self-assessed confidence in several 
engineering areas.  To do this, the Sophomore Engineering Learning and Curriculum Evaluation 
Instrument © (SELCEI) and the Junior Engineering Learning and Curriculum Evaluation 
Instrument © (JELCEI) were used with data from the PFEAS.  Like the PFEAS, both the 
SELCEI and the JELCEI solicit the students’ opinions about engineering.  The Sophomore and 
Junior Instruments cluster specific questions into seven categories:   
 

• Engineering as a career,  
• Engineering ability,  
• Enjoyment of math,  
• Engineering as an exact science,  
• Perception of the work engineers do,  
• Compatibility with engineering and  
• Ability to work in groups.   

 
These seven measures were used as the input variable for the LVQ model.  The output variables, 
class status, were represented as a “1” for freshman, “2” for sophomore and “3” for junior.  The 
size of the training set was determined by the amount of data available for each class and the 
desire to provide an equal number of data points for each target response group.  150 
observations were used to train the network, with 45 observations (15 observations for each 
class) used to test the network.  The network correctly classified 87% of the freshmen, 67% of 
the sophomores and 87% of the juniors in the test set.  The accuracy of the network to classify 
sophomores correctly was consistently lower than that for freshman and juniors.  It may be that 
sophomore-engineering students exhibit a reduced confidence after their first year of 
engineering, which limits the network’s ability to accurately classify them.   
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Characteristics at Graduation 
The following section describes several models to predict the characteristics of graduating 
seniors.  To do this, both linear and logistic regression were used with data from our attitudinal 
surveys, including data from the Senior Exit SurveyÓ, completed by all seniors when they apply 
for graduation. 
 
Graduating GPA 
Several models have been developed in an effort to relate graduating GPA to a number of factors 
including EC-2000 outcomes.  Independent variables included outcome measures obtained from 
the Senior Exit SurveyÓ, SAT scores and high school class rank, and variables representing 
educational enhancements while an undergraduate including internship, co-op, undergraduate 
research assistantship, study abroad, and plans to attend graduate school.  For example, using 
data from 121 graduating seniors (who entered engineering as non-transfers and graduated in 
2001), a model with an R = 0.758, R2 = 0.574 and adjusted R2 = 0.544 was obtained (i.e., over 
50% of the variation in GPA was explained by this model.  Significant variables included in 
order: Math SAT, High School Class Rank, Ability to Analyze Data, Knowledge of 
Contemporary Issues, Ability for Life Long Learning, Plan to Attend Graduate School, Co-op 
Experience, Ability to Use Modern Engineering Tools, Knowledge of Mathematics, Study 
Abroad Experience, and Ability to Communicate Effectively.  A model for graduating seniors 
from the previous year (2000) was comparable with a slightly smaller R-value (0.661) and also 
smaller R2 and adjusted R2.  However, the sample size for this model was also smaller.  Though 
very much in their infancy, these models suggest that it is possible to identify those outcomes 
that contribute the most to the students’ academic achievement. Clearly, the student’s academic 
ability and achievement upon entering as measured by high school class rank and Math SAT 
score are the two most important predictors of graduating GPA.   
 
Estimating Outcomes 
Efforts were made to estimate the achievement of the 11 EC-2000 outcomes as a function of 
students’ attitudes as obtained from the Senior Exit SurveyÓ.  At best, these models only 
explained between 9 and 36 percent of the variation in the data. Table 5 provides for outcome 
“k” – an ability to use the techniques, skills, and modern engineering tools necessary for 
engineering practice.  
 

Table 5. Estimation of Outcomes Using Seniors’ Attitudes 
Outcome R R2 Adjusted  

R2 
Predictor Variables 

Modern tools and techniques 0.602 0.363 0.322 • Engineering as a career  
• Perception of work engineers do 
• Engineering compatibility 

 
In order to explain a greater amount of the variation, additional items from the Senior Exit 
Survey that related to the students’ classroom experiences were introduced as dichotomous 
variables.  Quadratic models were fit in order to adjust for some of the non-linearities.  The result 
was a set of models with more explanatory power as shown in Table 6.  These results suggest 
that acceptable models can be built that will enable faculty to relate attitudes and processes to 
outcome.  This is an important step in better understanding what factors influence engineering 
outcomes, and offers the potential of developing additional outcome measures.  
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Table 6. Estimation of Outcomes – Quadratic Model and Additional Factors 

Outcome R R2 Adjusted  
R2 

Predictor Variables 

Design a system or 
component 

0.540 0.291 0.277 • Preparedness for engineering work 
• Solid background for an engineering 

career 
• Research experience 

Function on multi-
disciplinary teams 

0.589 0.347 0.311 • Preparedness for engineering work 
• Conducted undergraduate research 
• Solid background for an engineering 

career  
• Participated in study abroad 
• Importance of taking courses 

outside major 
• The importance of global 

perspective in courses 
• Life long learning emphasized 

Life long learning 0.633 0.401 0.380 • Life long learning emphasized 
• Preparedness for graduate work 
• Plans for graduate school 
• Participated in an internship,  
• Importance of taking courses 

outside major 
 
Besterfield-Sacre, et. al have described how regression modeling can be used to predict how well 
students might achieve specific outcomes [37].  They also show how individual models can be 
combined to produce an index that measures overall student achievement of the outcomes.  Such 
an index might serve as a measure of overall quality of education with respect to the EC 2000 
outcomes.  
 
Conclusion 
This paper has briefly described six areas in which empirical modeling may be used to improve 
engineering education.  Though many of the models described are still too immature for use, 
others have been used extensively for their proposed purpose and have resulted in improved 
student success. The contributions that industrial engineers can make to evaluation and 
assessment of engineering education should not be limited to statistical analysis and 
implementation of quality management techniques.  An overlooked area that IEs have a great 
impact to the mantra put forth EC 2000 is to provide usable empirical models to measure monitor 
and continuously improve educational systems.    
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