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Abstract 
 

The introductory engineering dynamics course is widely regarded as one of the most difficult 
courses that the undergraduate engineering student takes.  Further, the rigid-body area of this 
dynamics course is considered much more difficult than the particle area.  One reason for the 
latter statement is that we have not yet progressed to the best steady-state teaching strategy in the 
area of rigid-body kinetics.  The purpose of this paper is to review the history and current state of 
affairs in this narrow area and then to advocate a better strategy.  Recommendations are made in 
regard to both diagrams and corresponding equations of motion. 
 
Introduction 
 
Dynamics did not become a significant issue until the beginning of the machine age.  
Mechanicists were accustomed to a zero on the right-hand side of the governing equations in 
statics, so the first direction of particle dynamics was to include a -ma term on the left side of 
dynamics equations so that the right-hand zero could be retained.  Although sometimes referred 
to as D�Alembert�s Principle, this technique should be called dynamic equilibrium 
(D�Alembert�s Principle is a virtual-work principle).  This -ma term has been called an inertia 
force, an effective force, a reversed effective force, etc.  The technical community eventually 
took the position that dynamics should not be treated as a special case of statics, but rather the 
other way around.  In other words, we soon placed the ma term on the right side of the equations 
of motion and included only real (contact and body) forces on the left side.  Some textbooks 
went through a period in which a kinetic diagram (sometimes called a resultant-force diagram) 
was drawn (in addition to the free-body diagram (FBD)).  This diagram merely showed an ma 
vector (or its components).  The usual arrangement was to draw the FBD and then write an equal 
sign with the kinetic diagram (KD) to the right.  Such practice seems to have been largely 
terminated for particle dynamics. 
 
It is the author�s position that, with the conventional teaching of particle dynamics as outlined 
above, we are in the steady-state, terminal teaching configuration.  We note that the teaching of 
particle statics and particle dynamics is now of identical format.  There is the same type of FBD 
showing only real forces, followed by application of governing equations.  The only difference is 
that, for particle dynamics, the right-hand sides of the governing equations are not zero. 
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The story is not yet complete in rigid-body dynamics, however.  Again, moving back to the dawn 
of the machine age, the first attempts at planar rigid-body dynamics were based upon the familiar 
customs of statics:  ma−  ( a  refers to the mass center here) and Iα−  vectors ( I  refers to the 
mass center) were placed directly on the FBD so that they could be treated as an effective force 
and couple, allowing the use of statics-like equations of motion.  As was the case in statics, the 
educational community eventually rebelled against considering the ma−  and Iα−  vectors to be 
the same as real forces and moments in association with the principle of dynamic equilibrium.  
Rather than eliminating these quantities completely from diagrammed material, however, they 
were moved to a second diagram (the kinetic diagram) as positive quantities � in effect, they 
were moved from the left to the right side of the governing equation for rotational motion.  The 
reason this second diagram became �necessary� had to do with the fact that the ma  vector might 
enter the moment equation (depending on what point was chosen as the moment center). 

 
Most of the popular introductory dynamics texts1-8 use the kinetic-diagram approach outlined 
above, but only for rigid-body kinetics and not for particle kinetics.  Thus, at present, the 
mainstream teaching strategy consists of one approach for particle and rigid-body statics and 
particle kinetics, but a different approach (in terms of diagrams) for rigid-body kinetics. 

 
The third approach to rigid-body kinetics is to use only a FBD and appropriate governing 
equations, so that all categories of statics and dynamics are treated in parallel fashions.  This 
philosophy, which was recommended by the author in 19829, will be expanded in the sections 
that follow. 
 
Discussion of the Three Methods 

 
In Figure 1, we show generic diagrams associated with the three approaches introduced above, as 
applied to an arbitrary two-dimensional slab.  In the dynamic-equilibrium approach of Figure 1a, 
we show the applied forces along with ma−  and Iα−  vectors.  The governing equations 
associated with this approach are 

 

  
F a 0

M α 0
G

m

I

− =

− =
�

�
 (1) 

 

 
 

Figure 1a:  The Dynamic-Equilibrium Approach 
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One of the disadvantages associated with this method, in addition to treating the kinetic results 
( ma  and Iα ) the same as if they were causing agents (the applied forces and couples), is that 
one must decide on a strategy for assuming the senses of a  and α.  Does one anticipate the 
correct sense of these two quantities (and then reverse them!), or does one always assume that 
they are in the positive coordinate directions? 

 
In Figure 1b, we show a conventional FBD on the left and on the right is the kinetic diagram 
indicating the ma  and Iα  vectors.  The governing equations associated with this approach are 
generally written as 

 

  
   F  a

    (or M ρ a)PP

m

M I mad I mα α

=

= + = + ×
�

� �
 (2) 

 

 
 

Figure 1b:  The Kinetic-Diagram Approach 
 

The governing rotational equation can be derived in at least two ways.  First, and best, one can 
develop it from first principles.  This may be done by considering a general three-dimensional 
system of particles or by considering a rigid slab as is done in Appendix A.  A second derivation 
is to perform a moment sum about any point in the FBD and equate the results to the moment 
sum about the same point in the kinetic diagram (KD).  The argument is that because the two 
diagrams are equivalent, performing the same operations in the respective diagrams must also be 
equivalent.  The author finds this second derivation somewhat lacking.  But, in fairness, it must 
be noted that the introductory course does usually not allow sufficient time for the first 
derivation.  And the first derivation does require more effort on the part of the student. 

 
An often-cited advantage of the KD approach is the ability to sum moments about a convenient 
point � that is, a point through which several unknown forces might pass.  As we will note 
below, this advantage is not confined to the KD approach.  Furthermore, the method involves the 
acceleration of the mass center G, which may not be known. 

 
As a final comment on the kinetic-diagram method, we note that its use in three-dimensional 
problems becomes quite labored.  A good question for all mechanics educators is �If we do not 
use the KD for 3-D problems, then why do we introduce it for 2-D problems?� 
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In Figure 1c is the pure FBD approach.  It is clear that we can always sum moments about the 
mass center G or about a fixed point O on the body (if one exists).  We list as the equation of 
rotational motion Eq. (A/9) of Appendix A, in order that we might cite its advantages.  The 
author believes that this form is much more powerful than Eq. (A/8), because it gives one the 
ability to conveniently sum moments about a point whose acceleration is known, which is a 
frequent occurrence.  It of course reduces to the familiar forms if P is the mass center or if P is a 
nonaccelerating point fixed to the body. 

 

 
   F  a

M α ρ aP PP

m

I m

=

= + ×
�

�
 (3) 

 

 
Figure 1c:  The Pure FBD Approach 

 
We now turn to a specific problem:  Suppose the 3000-lb car is brought to a halt by skidding all 
tires.  If the coefficient of kinetic friction is 0.8, determine the normal reaction force under the 
pair of front wheels, that under the pair of rear wheels, and the deceleration during the braking 
period. 

 
Figure 2:  A Sample Problem 

 
 

Three solutions to the problem are indicated below. 

P
age 7.1182.4



 

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

 
I.  Dynamic-Equilibrium Equations of Motion 
 

 
Figure 2a 

 

  

30000 :      0.8 0.8 0
32.2

0 :      3000 0

30000 :   5(3000)  9 (2) 0
32.2

x A B

y A B

A B

F N N a

F N N

M N a

= − − − =

= + − =

= − + + =

�

�

�

 

 
(Point A is chosen so as to reduce the number of unknowns in the rotational equation.) 
 
II.  Kinetic-Diagram Equations of Motion 

 
Figure 2b 

 

  

3000:              0.8 0.8
32.2

:              3000 0

3000:   5(3000) 9 0 (2)
32.2

xx A B

yy A B

A B

F ma N N a

F ma N N

M I mad N aα

= − − =

= + − =

= + − + = −

�

�

�

 

 
(Point A is chosen so as to reduce the number of unknowns in the rotational equation.) 
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III.  Pure FBD Equations of Motion 

 
Figure 2c 

 

  

3000:    0.8 0.8
32.2

:    3000 0

:   2(0.8 0.8 ) 5 4 0

xx A B

yy A B

G A B A B

F ma N N a

F ma N N

M I N N N Nα

= − − =

= + − =

= − + − + =

�

�

�

 

 
As an alternative to the choice of G as a moment center, we could choose point A: 
 

  3000M α ρ a :   5(3000)  9 0 2
32.2A AA BI m N a� �= + × − + = − � �

� �
�  

 
This is the same as the rotational equation for the kinetic diagram approach. 

 
This sample problem is chosen because it was part of a 1982 poll9 of 73 faculty members.  The 
results of that poll are shown in the table below.  The percentages shown indicate the degree of 
support for each of the three solutions above. 

 
 All Faculty Dynamics Faculty 
Solution I 
(Dynamic Equilibrium)

6.8% 2.6% 

Solution II 
(Kinetic Diagram) 

17.1% 7.9% 

Solution III 
(Pure FBD) 

76.0% 89.5% 

 
The pure FBD method was the clear choice of all faculty polled; an overwhelming major of those 
who list dynamics as their specialty prefer this method. 
 
As a final example, we look to a typical rigid-body vibrations problem:  Determine the equation 
of small motion for the pendulum whose pivot point P is subjected to the harmonic displacement 
xP = b cos tω . 
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Figure 3 
 

The solution begins with the FBD shown.  We choose the accelerating pivot point P as the 
moment center. 
 

  
2 2

M α ρ  a :

sin k k (sin i cos j) ( cos )i
P PPI m

mgL mL L m b tθ θ θ θ ω ω

= + ×

− = + − × −
�

��
 

 
Simplifying for small θ and equating coefficients of k yield the equation of motion 
 

  2 cosg b t
L L

θ θ ω ω+ =��  

 
We see that the pure free-body diagram method is extremely efficient for such problems. 

 
Conclusions and Recommendations 

 
The pure FBD method is hereby recommended for solving all rigid-body kinetics problems.  
Such consistent instruction should begin in the introductory dynamics course and be carried 
through all subsequent dynamics and vibrations courses.  The following reasons support this 
recommendation: 

 
1. The student uses the same diagram for all types of mechanics problems � statics and 

dynamics, particle and rigid-body.  Thus, use of the FBD approach would give a unity and 
simplicity to mechanics education. 

 
2. The necessary equation-of-motion developments are understandable by the average 

sophomore engineering student. 
 
3. The method involves no fictitious force or fictitious moment vectors. 
 
4. Fewer decisions (as to which direction acceleration vectors should have) are required. 
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5. The student is better able to see that the equation of rotational motion referenced to a mass 
center or a fixed point is a special case of the equation referenced to an arbitrary point. 

 
6. The method is as good as any other from the viewpoint of choosing convenient moment 

centers. 
 
7. At least one poll suggests that the majority of instructors, especially those whose specialty is 

dynamics, prefer this approach. 
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Appendix A 
 
Contained in this Appendix are fairly standard derivations for key equations of rotational motion 
for rigid bodies.  Clearly, there is nothing new here; the material is presented for the sole purpose 
of stressing its suitability for use in an introductory course. 
 
Consider the two-dimensional rigid body of Figure A/1.  Point G is the mass center, and point P 

is an arbitrary body-fixed point.  The vectors ρ ,  ρ ,
i i

′  and ρ  are position vectors.  The mass of 
the element is mi, and all summations below are understood to be taken over all such elements of 
the rigid slab. 
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Figure A/1 

 
The resultant force acting on the element of mass mi is 
 
  2F a (a α ρ ρ )ii ii i i

m m ω= = + × −�  
 
where α and ω are the angular acceleration and angular velocity, respectively, of the body. 
 
The mass center G as a reference point 
 
The moment about G of the resultant force acting on the element of mass mi is 
 
  M ρ a ρ (α ρ ) ρ a

iG ii i ii i i i
m m m= × = × × + ×  

 
The sum of all such moments is 
 
  M M ρ (α ρ ) ρ  a

iG G i ii i i
m m= = × × + ×� � �  

 
      2α ρ ai i i i

m mρ= + ×� �  
or 
  M αG I=  (A/1) 
 
A fixed point O as a reference point 
 
If a fixed point O, rather than the mass center G, is taken as the reference point and origin of 
coordinates in Fig. A/1, we obtain 
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  M αO OI=  (A/2) 
 
because a  in the above derivation is replaced by a 0.O =  
 
An arbitrary point P as a reference point 
 
The moment about the arbitrary point P of the resultant force acting on the element of mass mi is 
 

  2M ρ a ρ (a α ρ ρ )
iP ii ii i i i

m m ω′ ′= × = × + × −  (A/3) 
 
The sum of all such moments is 
 

  2M M [ρ (a α ρ ρ )]
iP P ii i i

m ω′= = × + × −� �  (A/4) 
 

Recognizing that ρ ρ ρ ,
i i
′ = +  we write the first term of Eq. A/4 as 

 

  

1 (ρ ρ ) a

     = ρ a ρ a

= ρ ρ a

ρ a

ii

i ii

i i i

T m

m m

a m m

m

= + ×

× + ×

× + ×

= ×

�

� �

� �
 (A/5) 

 
where the definition of the mass center G has been utilized. 
 
The second term of Eq. A/4 is 
 

  

2

2

(ρ ρ ) (α ρ )

ρ (α ρ ) ρ (α ρ )

ρ (α ρ ) α

α

ii i

i ii i i

i i ii

T m

m m

m m

I

ρ

= + × ×

= × × + × ×

= × × +

=

�

� �

� �
 (A/6) 

 
The third term of Eq. A/4 is 
 

  

2
3

2 2

2

(ρ ρ ) ( ρ )

ρ ρ ρ ρ

ρ ρ

0

ii i

i ii i i

i i

T m

m m

m

ω

ω ω

ω

= × × −

= × − ×

= ×

=

�

� �

�
 (A/7) 
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Again, the definition of the mass center has been used.  So Eq. (A/4) simplifies to 
 
  M α ρ aP I m= + ×  (A/8) 
 
Because /a a a a ,G P G P= = +  we can write Eq. (A/8) as 
 

  

2

2

2

M α ρ (a α ρ ρ)

α ρ a ρ (α ρ) ρ ρ

α ρ α ρ a

P P

P

P

I m

I m m m

I m m

ω

ω

= + × + × −

= + × + × × − ×

= + + ×

 

or 
  M α ρ aP PPI m= + ×  (A/9) 
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