
Session 2220

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Using Real Signals with Simulated Systems

Joseph P. Hoffbeck

University of Portland

Abstract

Students often find real systems more interesting than simulations, but using real systems in a
course can be impractical. One compromise between using real systems and pure simulation is
to capture signals from real systems and have the students process them using simulated systems.
The advantages of this approach include exposing the students to deviations from the ideal such
as noise and timing imperfections, and allowing them to experiment with different solutions in
software. An example of this method is presented where a caller identification signal is captured
from the telephone system, and is demodulated using the numeric computation package
MATLAB.

Introduction

It is often necessary to rely on simulations of complex systems in order to demonstrate their
behavior to a class since access to real systems can be limited due to cost, space, and time
constraints. While simulations are sometimes the only practical approach, they can be too far
removed from real systems to be convincing to the students or to really capture the imagination
of the students. Furthermore, simulations often produce results that are too good in that they
often do not include the imperfections associated with real systems such as noise, distortion, and
timing imperfections.

Capturing signals from real systems and processing them using simulated systems has the
advantage of using real world signals recorded directly from actual systems, and at the same time
retaining the flexibility and convenience of using simulated systems. Only the instructor needs
to have access to the actual system to record the signals, and the students can process the results
using appropriate software, experimenting with different methods simply by making changes in
software.

To demonstrate this teaching method, a project is described that captures the caller identification
(CID) signal that is used to transmit the name and number of a telephone caller, and demodulates
the signal using the numeric computation package MATLAB. A recording of a CID signal can
be made with a telephone coupler that converts the telephone line signals to line level, or
alternatively a recording can be obtained from the author (by sending email to
hoffbeck@up.edu). The CID signal is demodulated with the routines in the Communications
Toolbox, which is an optional package for MATLAB. Decoding the signal allows the students
to discover the name and number that is encoded in the CID signal, gives the students exposure
to a real communications protocol, and gives them an interesting introduction to the simulation
capabilities of MATLAB. The CID signal is a good candidate for this exercise because it is

P
age 7.1272.1

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

easily recorded, is relatively simple to decode, is short enough to be examined manually, and is a
signal that many of the students have actually used. Furthermore, the students can examine a
graph of the signal and can listen to the CID signal by sending it to the PC's sound card which
should appeal especially to the students who prefer sensory information1. Many other systems
could be studied in a similar way, although recording radio frequency (RF) signals would require
special equipment.

The Caller ID Signal

The CID signal, which is used to transmit the time and date, the telephone number, and in some
cases the name of the calling party, is sent between the first ring and second ring2,3. Since the
CID signal is terminated if the user picks up the phone, telephone users never hear the CID
signal. The signal consists of several sections as shown in Figure 1.

First
Ring

Channel
Seizure Signal

300 Bits
Alternating

0 and 1

Mark Signal
180 Bits
(All 1's)

Caller ID Data
(SDMF or

MDMF)
Variable
Length

Checksum
1 Byte

Second
Ring

Figure 1. The Format of the Caller ID Signal

The channel seizure signal consists of 300 bits of alternating zeros and ones, starting with zero
and ending with one. It is used to alert the user's CID equipment that a CID signal is about to be
transmitted. The mark signal is 180 bits of all ones and allows the CID equipment to prepare for
the CID data. Next is the CID data which can be sent in one of two different formats: Single
Data Message Frame (SDMF) which encodes the time, date, and number of the calling party, or
Multiple Data Message Frame (MDMF) which allows the name of the calling party to be sent
along with the time, date, and number.

The SDMF consists of a header and a body as shown in Figure 2. The SDMF header contains a
message type byte whose value is 4 in decimal and a message length byte whose value is the
number of bytes in the body.

Message Type
Parameter

1 Byte
Value = 4

Message
Length

1 Byte
Value = 18

Month

2 Bytes
ASCII

Day

2 Bytes
ASCII

Hour

2 Bytes
ASCII

Minute

2 Bytes
ASCII

Phone
Number

10 Bytes
ASCII

Header Body

Figure 2. The SDMF Format

P
age 7.1272.2

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

The message length byte is followed by the date field (two bytes that represent the month and
two bytes that represent the day), the time field (two bytes that represent the hour and two bytes
that represent the minute), and the number field (ten bytes that represent the telephone number of
the calling party). The date, time, and number are all represented by ASCII characters.

Like the SDMF, the MDMF also consists of a header and a body as shown in Figure 3, but the
format of the MDMF is more flexible and allows the name to be transmitted along with the date
and number. The MDMF header contains a message type byte with a value of 128 in decimal
and a message length byte whose value is the number of bytes following in the body (i.e. the
message length value does not include the message type byte or the message length byte).
Typically the body of the MDMF format contains three parameter messages, one that represents
the time/date, one that contains the telephone number, and one that contains the name.

Message Type
Parameter

1 Byte
Value = 128

Message
Length

1 Byte

Header Body

Parmeter Messages

Figure 3. The MDMF Format

As shown in Figure 4, the time/date parameter message begins with a parameter type byte with
the value 1 which is followed by the parameter message length byte which indicates the number
of bytes in the body. The body of the parameter message consists of two bytes that represent the
month, two bytes that represent the day, two bytes that represent the hour (in 24 hour format),
and finally two bytes that represent the minute. The month, day, hour, and minutes are
represented by ASCII characters.

Parameter
Type

1 Byte
Value = 1

Message
Length

1 Byte
Value = 8

Month

2 Bytes
ASCII

Day

2 Bytes
ASCII

Hour

2 Bytes
ASCII

Minute

2 Bytes
ASCII

Header Body

Figure 4. Time/Date Parameter Message Format

As shown in Figure 5, the number parameter message begins with a parameter type byte with a
value of 2 which is followed by the parameter message length byte. The body of the parameter
message consists of the ten-digit telephone number in ASCII.

P
age 7.1272.3

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Parameter
Type

1 Byte
Value = 2

Message
Length

1 Byte
Value = 10

Phone Number

10 Bytes
ASCII

Header Body

Figure 5. Number Parameter Message Format

The name parameter message begins with a parameter type byte of 7 which is followed by the
parameter message length byte that indicates the number of bytes in the body (see Figure 6). The
body of the parameter message consists of the name of the calling party in ASCII characters.

Parameter
Type

1 Byte
Value = 7

Message
Length

1 Byte

Name

ASCII

Header Body

Figure 6. Name Parameter Message Format

The SDMF or MDMF message is followed by a checksum byte (see Figure 1) which is
computed by adding, with MOD256 addition, all the bytes in the SDMF or MDMF format. The
checksum includes the message type byte, message length byte, and all the bytes in the Caller ID
data, but not the checksum byte itself or the channel seizure signal or the mark signal. Then the
2's complement (complement each bit and add one) of the sum is taken. The user's CID
equipment computes the checksum on the received data, and if it does not match the checksum
byte transmitted by the telephone system, there was an error in transmission. There is no
mechanism to correct errors, and not all errors will be detected. For example say the least
significant bit (LSB) of a byte was supposed to be a one, but was incorrectly received as zero,
and the LSB of another byte was supposed to be a zero, but was incorrectly received as a one,
these two errors offset each other and they will not be detected.

The CID signal is sent as an asynchronous serial bit stream using continuous-phase binary
frequency-shift-keying (BFSK) modulation with logic 0 represented by a 2200 Hz tone and logic
1 represented by a 1200 Hz tone. The baud rate is 1200 Hz, which means that the duration of
each symbol (either a 0 or a 1) is 1/1200 = 833.3 µs. The bits in each byte are sent LSB first, and
a start bit (logic 0) is sent before each byte and a stop bit (logic 1) is sent after each byte.
Additionally, up to 10 mark bits (logic 1) may be inserted between the message bytes if the
telephone system is loaded heavily, and up to 10 mark bits may be transmitted after the
checksum.

P
age 7.1272.4

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Recording the Caller ID Signal

A CID signal can be obtained from the author or can be recorded from a phone line with the CID
feature available from the local phone company. CID signals are relatively easy to record since
they are low frequency audio signals that can be recorded using a standard PC sound card and
standard audio processing programs such as the Sound Recorder program in Windows or
CoolEdit (www.syntrillium.com). The recording can be saved to a sound file in .wav format
which can be read by MATLAB (www.mathworks.com). Alternatively MATLAB can also be
used to directly record the signal with the Data Acquisition Toolbox.

It is important to note, however, that only equipment specifically designed to be connected to the
telephone system should ever be connected to a phone line. The phone line carries fairly high
voltages, such as the ring signal and noise spikes, that could destroy unprotected circuitry. Also,
it is important to avoid connecting equipment to the phone line that could damage the telephone
company's equipment or present a hazard to people working on the telephone lines.

A telephone coupler is a device designed to connect to a phone line and convert the signal to line
level that can be recorded using a standard PC sound card. One manufacturer of telephone
couplers is Getner Communications Corporation (www.gentner.com). The CID signal can then
be recorded using the system shown in Figure 7.

Telephone
Line

(with CID
service)

Telephone
Coupler

PC Sound
Card

Figure 7. System Used to Record the CID Signal

Since the highest frequency that the telephone line transmits is less than 4 kHz, the sampling
frequency used to record the signal can be as low as 8 kHz4. The CID signal only lasts about a
second, so recording it requires very little memory or disk space.

Decoding the CID Signal

Once the CID signal is recorded and saved in a sound file, the following MATLAB commands
can be used to plot the signal (see Figure 8) and send the signal to the speakers so the students
can listen to it:

[x,fs] = wavread('filename.wav'); % load file (replace "filename" with the name of the file)
plot(x) % plot signal
soundsc(x,fs) % send signal to speakers
 P

age 7.1272.5

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Figure 8. Graph of a CID Signal

The MATLAB routines used to demodulate the signal require that the sampling frequency be an
integer multiple of the baud rate, which for the CID signal is 1200 Hz. Therefore the recording
must be converted to a sampling frequency such as 9600 Hz (which is 8 times the baud rate and
means there will be 8 samples in the signal for each bit). The following MATLAB commands
illustrate how to convert a signal that was recorded at 8000 Hz to a signal having a sampling
frequency of 9600 Hz:

y=resample(x,6,5); % change sampling rate from 8000 Hz to 8000*6/5 = 9600 Hz
fs = fs*6/5 % compute new sampling rate and print result

The following commands set up some constants that are used by the demodulation routines:

fc = (2200 + 1200)/2; % carrier (center) frequency (Hz)
fd = 1200; % baud rate (Hz)
m = 2; % M-ary value (m = 2 for binary)
tone = 2200 - 1200; % frequency separation (Hz)
N = fs/fd; % number of samples in each bit (must be an integer)

In order to properly demodulate the signal, the location where the bits start and stop must be
determined. A routine called findoffset.m is available from the author that computes the
correlation for all possible offsets (since there are 8 samples per bit, there are 8 possible offsets),
and finds the one with the best correlation. The eye diagram is another method used to find the
best offset. Finding the bit boundaries is an example of a required function for real
communication systems that is often ignored in simulations.

offset = findoffset(y); % find best offset (this routine available from the author)
y(1:offset) = []; % delete first few samples to make new offset = 0
y(ceil(length(y)/N)*N)=0; % pad the vector so its length is an integer number times N

% which is required by the routine ddemod

P
age 7.1272.6

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

Now we are ready to demodulate the signal using the ddemod routine that is part of the
Communications Toolbox. This routine determines whether the signal has a higher correlation to
a 0 bit or a 1 bit for each bit interval, and returns the result. Non-coherent FSK demodulation is
employed since we do not know the phase of the carrier. (In simulations, coherent demodulation
is sometimes used because the phase of the carrier is known.) The ddemod routine returns a 0 if
the signal matched the lowest frequency and a 1 if it matched the higher frequency, which is
opposite of how the signals are defined in the CID signal (logic 0 is represented by a 2200 Hz
tone and logic 1 is represented by a 1200 Hz tone). Therefore the ones and zeros must be
swapped using the MATLAB symbol for logical NOT "~". Also for convenience the transpose
is taken by placing an apostrophe after the variable.

z = ddemod(y,fc,fd,fs,'fsk/noncoherence',m,tone); % demodulate the CID signal
z = ~z' % swap ones and zeros, take transpose
 % and print out bits

Now the vector z contains the demodulated signal where each element of z contains a single bit,
and it can be examined to extract the CID information. If the recording begins before the
beginning of the CID signal, the first few bits will be random ones and zeros based on the noise
in the recording before the first bit. Next there should be 300 bits that alternate between zero and
one from the channel seizure signal followed by 180 ones from the mark signal. Then the caller
ID data begins with the message type byte of 4 for SDMF or 128 for the MDMF format. Note
that a start bit (i.e. a zero) will be sent first, then the byte with the LSB first, followed by the stop
bit (i.e. a one). It is convenient to have MATLAB convert the 8 bits that make up the byte to
decimal and to ASCII as follows:

i = 481 % set the variable i to the index of the first start bit (i.e. 0) following the

% mark signal in YOUR vector z. This value may vary.

bits = z(i:i+9),byte = bin2dec(char(bits(9:-1:2)+48)),ascii = char(byte),i=i+10;
 % Print the bits to make sure the start bit is 0, and the stop bit is 1.

% Get the byte and flip the bits around since LSB is sent first,
% then convert the bits to decimal and print the
% decimal number and the corresponding ASCII character
% Then advance the pointer to the next start bit.

The command above can be executed repeatedly to convert all the bytes in the message. To
repeat a command in MATLAB, simply press the up arrow and then press the return key. If the
value of the start bit is not zero, then there may be some extra stop bits between bytes. In this
case, the pointer needs to be advanced to the next start bit before the byte is converted.

In order to check for bit errors, the checksum can be calculated as follows:

temp = sum([128, 39, 1, 8, etc.]) % sum all the bytes except the checksum byte
 % replace the numbers (and the etc.) in the square brackets

% with YOUR converted decimal values
checksum2 = bitcmp(mod(temp,256),8) + 1 % compute MOD256, and the 2's complement

P
age 7.1272.7

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright 2002, American Society for Engineering Education

If the transmitted checksum byte does not equal the computed value of checksum2, one or more
errors have occurred.

A MATLAB program called CallerID_Decode1.m is available from the author which
automatically performs all the steps above, extracts the CID information, and performs error
checking.

Discussion and Conclusion

Decoding an actual CID signal exposes the students to a real communication protocol with
features like the channel seizure signal, mark signal, and checksum. Also, some of the required
functions of real communication systems can be illustrated that are often ignored in simulation,
such as finding the start and end of bits and words, and the need for non-coherent demodulation.
Demodulating a real signal makes it much more clear why these functions are required. The
students can demodulate the signal using the MATLAB Communication Toolbox, or can write
their own demodulation algorithms and experiment with variations.

Bibliography

[1] Richard Felder and Linda Silverman, "Learning and Teaching Styles in Engineering

Education," Engineering Education, Vol. 78, April 1988, pp. 674-681.
[2] LSSGR: Voiceband Data Transmission Interface (FSD 05-01-0100), GR-30-CORE,

Issue 2, Telcordia Technologies Generic Requirements, www.telcordia.com, December
1998.

[3] Implementing Caller ID Functionality in MC68HC(7)05 Applications, Motorola
Application Note AN1733, Derrick Forte and Hai Nguyen, www.motorola.com, Austin,
Texas, 1998.

[4] Modern Digital and Analog Communication Systems, 3rd ed., B.P. Lathi, Oxford
University Press, New York, 1998, p. 251.

Joseph P. Hoffbeck

Joseph P. Hoffbeck is currently an Assistant Professor of Electrical Engineering at the University
of Portland, Oregon, and had previously worked on digital cellular and PCS telephone systems at
Lucent Technologies, New Jersey. He received his Ph.D. from Purdue University and is a
member of ASEE and IEEE. His technical interests include communication systems, digital
signal processing, and remote sensing. Email: hoffbeck@up.edu

P
age 7.1272.8

