Session 2558

Enhancing Engineering Education
with Writing-to-lear n and Cooper ative L ear ning:
Experiences from a Software Engineering Cour se

Lonnie R. Welch, Sherrie Gradin, and Karin Sandell
Ohio University
Athens, OH 45701
wel ch/gradin/sandel | @ohio.edu

1. Introduction

Current progressive teaching movements draw forth strong skepticism as they often seem
antithetical to engineering classes. Why would anyone want to switch from the lecture method of
teaching engineering to methods that employ active learning? Doesn’t lecturing produce the most
informed engineers? Isn't lecturing the best way to challenge students? To uphold the highest
standards? Many hold the view that active learning methods may be appropriate for * soft”
disciplines, but are inappropriate for engineering and the sciences. Others argue that students
won't take the course work seriously and that coverage of material would have to be sacrificed.
The presenters will question the validity of these objections by defining learning goals, such as
depth of learning, engagement, and retention, that should be considered during selection of
teaching methods.

It will be shown that teaching writing-to-learn and cooperative learning achieve these
goals and result in extraordinary transformation of both teacher and students. Student
engagement and excitement are elevated at the same time as the depth of learning increases.
Students become better engineers because they can think critically, solve problems individually
or in teams, write better, and orally present information. Teachers find themselves challenging
students with an even more demanding curriculum. Examples from a software engineering
course will illustrate how these methods can challenge students more, create higher standards for
learning, and produce better engineers than atypical lecture approach to teaching.

2. Organization and Goals of the Softwar e Engineering Course

This paper describes how cooperative learning and writing-to-learn have been employed
in Software Design (course CS 456™ in the School of EECS at Ohio University). The purpose of
the course is to provide students with skills needed in the software engineering profession. While
they have completed numerous courses requiring development of software (students take C S 456
in their senior year), they typicaly lack severa important perspectives. They have focused

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

T°90G°/ abed



amost exclusively on the implementation phase of software development, which is only one step
in the modern software development processes employed by softw are engineering professionals.
Thus, the skills taught in this course involve all the phases of the popular Unified Software
Development Process’.

Another goal of the course isto provide students with knowledge and experience relevant
to (1) working in a software engineering team and (2) interacting with a customer. The course
covers material about interpersonal communications®, both with members of a team and with a
customer; students apply the material by working in teams to perform software engineering tasks
for a customer.

In summary, students who successfully complete the course learn how to
§ perform all major phases of the software engineering lifecycle (requirements,
analysis, design, implementation and testing),

use the Unified Modeling Language (UML),

employ the Unified Software Development Process,

perform unit, integration, and system testing,

effectively participate in software engineering teams,

lead software engineering teams,

resolve conflicts,

interact successfully with customers, and

make formal presentations of software engineering products.

wn W W W W W N W

This is not a lecture-based course. The Professor is not a “sage on the stage,” but is a
“guide on the side.” Student learning in the course is typically very high, but students must take
responsibility for their own learning. The teaching methods that are used to facilitate learning
include (1) application of course material to case study problems, (2) writing-to-learn, (3)
discussion, (4) problem-based learning, and (5) cooperative learning. While these techniques
result in deep learning and increased knowledge retention, they do require students to be
prepared, present and engaged in al class meetings. This paper does not address all five of these
techniques, but focuses primarily on writing-to-learn and cooperative learning.

3. Cooperative Learning

Chickering and Gamson®, in a meta-analysis of research studies examining variables
linked to student learning outcomes, located seven principles for good practice in undergraduate
teaching, including “good practice encourages cooperation among students.” Working together
in teams, students become more involved in their learning and strive to assist each other in
attaining course goals. As students listen to each other and try to connect their peers
interpretations to their own, they improve their listening skills and their abilities to evaluate
different points of view.

The formal application of cooperation in the classroom, referred to as cooperative
learning (CL), is founded in the social psychological theories of Morton Deutsch and Karl
Lewin®. Similar in theory to collaborative learning, CL can be considered a subset that is more

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

2'90G°/ abed



highly structured and focused on a specific outcome, such as learning to master a procedure. The
socid theory supporting CL identifies several positive outcomes associated with working closely
in a supportive group of individuals. Learning something new often poses a certain amount of
risk and the social support of fellow team members provides the environment in which risk can
be managed productively. Involvement and motivation are both critical to the learning process
and both occur with highly functioning cooperative teams. Learning remains a socia activity
and CL groups emerge as communities of students where socia skills emerge hand-in-hand with
specific course learning goals”.

Research examining student achievement connected with CL has found increased
learning and increased satisfaction in CL classrooms™®. Solitary learning becomes a stressful,
competitive process, while working with others cooperatively becomes more satisfying and
stimulating. Students become committed to their fellow team members and work hard to
accomplish their mutual goals and not let each other down. Explaining their positions to each
other, CL team members gain confidence in what they know and are more likely to retain their
new knowledge.

The use of CL teams has caught on in many college classrooms for an additional reason.
Much of the workplace, including the workplace for software engineers, has become ateam
environment. Team experiences in the classroom become additional training and preparation for
successful transitions to the workplace. Team building skills are a natural outgrowth of CL in
the classroom and students thus enter the work force with the ability to contribute successfully in
anumber of different work settings.

The word “functional” appears in connection with “cooperative team” in the literature
exploring this pedagogical strategy and remains the key to successful applications of CL in the
classroom. The extensive reliance on group work and projects in some disciplines has led to
student dissatisfaction because a lack of planning by the instructor has resulted in
“dysfunctional” teams or groups. For example, group grades often are emphasized and the
pressure of grading often breaks down the CL atmosphere. Students simply assigned a mutual
task without supervision and without being accountable for their individual work may succeed,
but oftentimes fail as the burden of the task falls on the shoulders of one or two highly grade
conscious individuals. Group members shift their focus from learning to the graded outcome and
begin to respond as individuals concerned about their own graded outcome rather than as
members of a community concerned about each other’ s learning.

The goal of effective CL becomes creating and maintaining highly functional teams that
tackle complex problems with great energy and resources, working steadfastly until all their
members have successfully concluded their task. These groups work in the classroom; the
instructor turns over a certain amount of class materia to the teams for their work and they learn
together as they work through atask, rather than sit passively and listen to alecture. The
preparation ahead of time is considerable, as the instructor needs to carefully construct the
exercise to introduce the students to the targeted material. The required outcome needs to be
truly mutual and each student on every team needs to be individually accountable in some way
for this outcome. Finally, the instructor needs to monitor and intervene in the groups work, to

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

€'90G°/ abed



make certain that the teams know how to work effectively. Similarly, the student team members
need to reflect on the success of their teamwork and prepare to improve their work on future

: cncd
EXercises’.

Many models exist for using CL in the classroom. In the jigsaw?, the instructional
material for aclass session is divided up into a number of parts. Groups of students receive one
of the parts and work together to prepare to teach this part to other groups of students. In the
final step, teams are formed with someone representing each part of the material and the students
on the teams take turns teaching each other their parts. The group concludes by summarizing all
of the materia from the session. Other CL models build competition among teamsin the
classroom, perhaps assigning a particular software engineering problem for the class session and
awarding some bonus to the team of students that successfully solves the problem first or that
comes up with the best solution. Team members work together and as they conclude their work
any team member may be called upon to explain the outcome, thus ensuring that they have all
taken part in the exercise.

Working together, students can learn a great deal, both about the subject matter at hand,
as well as about the positive outcomes associated with cooperation and collaboration. Asthe
demands of the curriculum grow, instructors need to explore ways to effectively engage students,
enhance their critical abilities and assist them in assimilating an increasingly complex body of
knowledge. Just as teams of software engineers are assembled in the workplace to manage the
demands for high quality outcomes, teams of students can be assembled in the classroom to meet
the need for high quality learning.

The remainder of this section presents examples of cooperative learning from the
software engineering class.

Cooperative Learning Activity 1: Software Engineering Team Project

One of the fundamental concepts taught in this course is a software engineering process.
The reason for thisis that even moderately mature software development organizations employ a
documented, standardized process. In addition to applying arigorous software process, a
software engineer needs to function productively in ateam. To obtain experience in ateam
project, teams of students apply the software engineering process and group communication
skills taught in the course to solve areal problem. Students also learn how to make a formal
presentation to a customer and have the opportunity to practice this skill through presentation of
the project artifacts.

The team project lasts the entire term and provides a problem that helps to create adesire
in the students for learning. Each class session allows students to learn a new software
engineering concept and to work with team members to apply the concept to their project. The
team project is used in a variety of cooperative learning activities, including the following:

§ mini-lecture with immediate in-class application,
§ peer teaching, and
§ small group discussion.

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

¥'905°/ abed



Cooperative L earning Activity 2: Mini-lecture with Immediate I n-class Application

With this technique, new materia is presented in a mini-lecture. A concept is taught and
an example is given; students spend the subsequent portion of the class session working with
their software engineering teams to apply the material to their projects. For example, alecture
about white box testing could be followed by an activity in which students, having completed the
implementation of software artifacts, develop white box tests for the artifacts.

When the transition from lecture format to an active learning format was initiated in CS
456, it was noticed that when the students begin to apply the material in class they would “wake
up” and start asking questions about the material; this caused the realization that the students
often were not engaged during lectures (and thus did not learn much from the lectures) but that
they are engaged and learning when trying to use new material to solve problems.

Cooperative Learning Activity 3: Peer Teaching

The peer teaching activity, a variation of the jigsaw, has worked very well. In this
activity, software teams are divided into 2 sub-teams and each sub-team is given 10-15 minutes
to prepare to teach material to the other sub-team (each sub-team is given different material to
prepare). Following the preparation time, each sub-team spends 5-10 minutes teaching the
material to the other sub-team. Finally, teams apply what they’ ve learned to their team project or
to an interpersonal communication scenario.

For example, this method could be used to teach system testing. Students would be asked
to sit with their software engineering team members. Half of the students in each team would be
asked to prepare to teach the concepts of installation testing and configuration testing to the
remainder of their team; the remaining members of each team would be asked to prepare to teach
the concepts of negative testing and stress testing. The sub-teams would teach the concepts to
each other and then the teams would spend time in class producing one of each type of test case
(installation, configuration, negative and stress). During this activity, the instructor would move
around the classroom, monitoring the groups, and, if needed, helping them to understand how to
perform the assigned tasks.

It is exciting to watch the students discussing the course material among themselves
during thistime. The level of student engagement with the course material is high; furthermore,
it is rewarding to observe the students becoming immersed in course material on which | have
not even lectured. That the depth of learning and retention with this method are superior to what
can be achieved with the lecture method is self-evident when one observes this method in
operation.

Cooperative L earning Activity 4: Small Group Discussion

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

G905’/ abed



Another way that new materia islearned in CS 456 is by having groups of 2-3 students
discuss how the material appliesto a particular situation or problem. Below is an example that
was used to help the students to learn the stages of group devel opment.

Interview an individual who is NOT a member of your software
engineering team to obtain answers to the following questions.
Write the answers in the spaces provided. After you have completed
the interview, switch roles and let that person interview you.

1. What is the current stage of development of your software
engineering team? Why do say that? (See pages 246-249 for
descriptions of the stages.)

2. Name the stages of development that you have observed in your
team. What are the specific behaviors that you observed in each
of the stages?

This activity worked very well. It was not necessary to lecture on the stages of group
development. The students were interested in knowing the stages of development traversed by
their groups and thus eagerly learned the material from the textbook. The act of discussing the
stages with another provided a cooperative, supportive setting for learning new material; the
discussion also helped students to learn the material more deeply, because of the need to
articulate understanding to another person. Applying the material to their own group situations
also helped students to learn.

Cooperative learning has been effective in the software engineering course. Additionaly, the
reflective, individual approach of writing-to-learn has improved student engagement and
learning in the course.

4. Writing-to-learn (WTL)

Writing-across- the curriculum (WAC) programs arose in the United States in the 1970s
as aresponse to longstanding complaints about students’ writing abilities and to the call for
progressive education” °. Two primary components of most WAC programs are working with
faculty to understand writing as a specialized discourse in adiscipline or field, and writing as a
tool for learning and mastering subject matter. We focus this paper on writing-to-learn rather
than specialized discourse.

As atheoretical model, writing-to-learn posits that informal and process approaches to
writing engage students in cognitive activities that foster critical thinking and deep learning.
Scholarsin fields as varied as rhetoric, psychology, and language theory have argued that writing
isitself a cognitive and thinking process that when enacted is “connective,” “selective,” “active,
engaged, personal,” and “integrative in perhaps the most basic possible sense: the organic, the
functional . . . [involving] the fullest possible functioning of the brain . . .” &, Practical
applications of writing-to-learn theory suggest important changes in how we deliver our
curricula, imagine acts of student learning, and assign writing.

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

9'905’/ abed



Writing-to-learn activities and strategies differ substantially in means and ends from
traditional, formal writing. The following comparison highlights a few of these differences.

TRADITIONAL
ASSIGNMENTS:

Assigned as homework
(often arelatively lengthy paper
or report)

Process - & Product
(student’ s intellectual work
finished when the product is
turned in)

Graded on A/B/C/D/F basis by
teacher (i.e., heavy investment of
teacher’ stime)

Writing to test
(is student writing/thinking right
or isit wrong?)

Asks students to be sure about
what they write (“what’ s your
thesis?’)

Students see writing assignments
as penalty situations (no one ever
gets 100% on this test)

WRITING-TO-LEARN
ACTIVITIES:

Assigned impromptu, often
completed in class, may also be
homework, often short (lessthan a

page)

Process & More Process
(writing=thinking=more thought)

Usually ungraded, but credit given
or not given based on clear
criteria(i.e., lessformal grading
by teachers)

Writing to think

(Intellectual engagement is
goal; error isanatural part of
learning)

Allows students to voice and
explore questions

Students see writing as a tool,
away to help them think
about new material

If writing IS thinking then constructing writing-to-learn activities serves our students
learning by asking them to push beyond a surface understanding, by asking them to engagein a
process of knowledge making, by asking them to think through a variety of perspectives,
theories, or ideas, and by taking at least some responsibility for their own learning. The strategies
for inviting students into this learning through writing to learn are numerous. Project logs,
dialogue journals, memo exchanges, dialectical notebooks, guided writing, exploratory writing,
and microthemes are just a few examples. Importantly, many of these strategies can be integrated
into an aready established curriculum without great disruption or terrific burden placed on the
teacher. Writing-to-learn activities can be as long or short as teachers need them to be, placed

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

/'90G"/ abed



throughout the course or at selective key moments, read and responded to at length or not at al
by the teacher, graduate assistants, or other class members.

Examples of writing-to-learn activities used in the software engineering course are
provided in the remainder of this section. It isimportant to note that these are different from
short-answer questions or quizzes. WTL questions are intended to be exploratory and to help
students to examine the possibilities. WTL isinformal, so the point is not to offer atidy, singular
answer, but rather to explore what, why, and how something might be answered.

Writing-To-Learn Activity 1: Guided Writing

New concepts are sometimes introduced to students through in-class writing-to-learn
activities. Instead of lecturing on atopic, students are asked to read short segments of an article
or of the textbook and to answer questions regarding the reading. The writing activities are
typically followed by discussion. This method of teaching is superior to the lecture method,
because every student isinvolved in the learning process and the level of engagement is deeper
than when facts are presented by a teacher. This section presents 2 examples of this form of
writing-to-learn. The first example involves learning software unit testing methods and the
second example involves learning how to prepare a speech goal for a software engineering
presentation.

EXAMPLE 1: Unit Testing Activity

The following questions refer to the article 1Bridging the gap
between black box and white box testing,T by Brain Bryson.

Read page 1 of the article (and read the first two sentences at
the top of page 2) and then follow the instructions below.

According to the paragraph at the bottom of page 1, what are
iblack box testingT and i1white box testing?T

The last paragraph on page 1 illustrates the concepts of black
box (BB) and white box (WB) testing for a soda machine. Write
your thoughts about what BB and WB testing would involve for
software.

Read the first complete paragraph at the top of page 2 and then
perform the following steps.

You will now perform a series of steps that will lead you through
the development of BB tests for one of the components for your
team project.

1. Select a software component that you have already implemented.
What is the name of the component?

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

8'905’/ abed



2. Briefly describe the specification (set of requirements) for
the component.

3. Define a series of inputs that can be used to perform BB
testing of the component. For each input, indicate the expected
output.

4. 1s the test suite sufficient? Would you assume liability for
the software after running your tests? Why or why not?

Read the second complete paragraph on page 2 of the article and
then perform the steps below.

You will now perform a series of steps that will lead you through
the development of WB tests for the components for which you
developed BB tests.

1. How many execution paths are there through the code of the
component? (Note: each if-statement results in two or more
paths.)

2. What percentage of the paths would be covered by performing
your BB tests?

3. Produce a series of inputs that will exercise every line of
code in the component. For each input, indicate the expected
output.

4. Would it be safe to say that the component is bug-free after
you have performed your BB and WB tests? Explain.

EXAMPLE 2: SPEECH GOAL ANALYSIS

Each team uses powerpoint to make presentations of the software products that it
produces. Each student must make part of each presentation. To teach them how to
prepare a speech/presentation, students are given a set of questions, which guide them
through the process of preparing a speech; they learn the concepts by doing them in class.
Thisis an effective method because the questions posed motivate them to learn the
material. The specific questions used to teach students how to write a speech goal are:

1. According to Communicate!?, an important step in preparing a
formal presentation is determining the goal. The general goal is
the intent of the speech, which can be to entertain, to inform or
to persuade. What is the general goal for the presentation that
you will make in the next class?

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

6°90G"/ abed



2. The specific goal is a single statement that specifies the
exact response the speaker wants from the audience. Write the
specific goal for the presentation that you will make in the next
class. Write at least three different versions of the goal. Make
sure the goal contains only one idea and that it indicates the
specific audience reaction desired. (See fig. 12.5 of
Communicate! for examples of specific goals.)

3. Read the accompanying speech and then answer the following
questions. (Use the back of this sheet if necessary.)

. What were the speakeris general goal and specific goal?

. Was the goal clearly stated in the introduction?

. Was the goal implied but clear?

. Was it unclear?

. How can this analysis help you to clarify your own speech
goal?

OO OTQD

Writing-To-Learn Activity 2: Toulmin Analysis of an Article

Students perform Toulmin Analysis of a journal article about software engineering.
While this activity teaches students important state-of-the-art concepts about software
engineering, it also introduces them to an effective critical thinking strategy and exposes them to
graduate research. The following is the in-class activity that is performed:

Analysis of Research Articles using Toulmin Logic: To prepare for
scholarly work leading to a thesis and/or to conference and journal
article publications, graduate students will read articles related
to their research topic. For each article, students will analyze the
soundness of the authorsi arguments by employing Toulmin logic.
Toulmin logic is used by identifying the following:

Claim(s)
Grounds
Warrant
Backing
Rebuttals

wn W W W W

A claim is a hypothesis, conclusion or proposition made in the
article.

The grounds support the claim; these may include proofs, quotations
of experts, analyses, or experimental results.

The warrant provides a justification for the grounds and shows their
relevance to the claim.

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

0T°'90G" . abed



Support for the warrant is referred to as backing.

Rebuttals are counter arguments, counter examples, conflicting
information, flaws, and other reasons for not accepting the claim,
grounds, warrant and/or backing.

Read the accompanying article (1A usage-model-based approach to test
therac-25,T by P. Hsia and others, 1995) and identify the claim(s),
grounds for each claim, warrant and backing. Produce your own
rebuttals. In addition, if the author has presented rebuttals,
identify those.

Writing-To-Learn Activity 3: Minute Paper

A minute paper is sometimes used to assess student learning. At the end of a class
session, students are asked to summarize what they learned. To limit the lengths of their
responses and to cause them to write focused responses, they are usually asked to write their
responses on 3x5 index cards. This has resulted in valuable feedback about the areas where
student understanding is inadequate. Below is a minute paper assignment from a recent class:

In the space below write an informal inoteT summarizing what you
understand about the entire analysis workflow. Explain where you
had difficulties, questions and/or issues.

Feedback received from this prompt included “1 am having difficulty with the organization of the
textbook,” and “1 don’t understand how what we' ve learned fits into the overall software
engineering process.” This feedback was helpful, because it provided aredlization that the
students were struggling with contextual issues. In response, email messages were sent to the
entire class, providing guidance about how to use the textbook and explaining the overall
software engineering process.

5. Summary and Conclusions

When one observes Professor Welch’s software engineering course it is apparent that the
course is fundamentally different from the traditional lecture course. At first glance the
classroom looks chaotic. Chairs are not in straight rows. Professor Welch is not at the front of the
classroom delivering the day’ s course material. Students are not quiet. Instead, students are
huddled in groups, talking, pointing out passages in the text to each other, and writing. Professor
Welch moves around the room, stopping to listen to groups of students and offering information
and explaining concepts if necessary. What might appear chaotic isin reality students at work in
an engaged, active manner. Activities change throughout the period from exercises where the
students teach each other a concept, to taking individual quizzes followed by group quizzes on
the same material (where students discuss and argue about why they answered the quiz questions
in the manner in which they did). Why do this? As an outside observer it seems that students

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

T1°90G" . abed



really have to learn the material because they have to defend their answers and explain why they
think one answer is better than another.

But are students learning more than in the traditional lecture classroom? The answer is
not without complexity. When asked this question several students were not sure. There were
things they liked about the lecture style of teaching. And yet, they all spoke about Professor
Welch's alternative approach as a class where they could not get away with not reading, with not
taking responsibility for learning the material. They all recognized that they were now better
prepared to face conflict and to explain their ideas and concepts to others. Some felt their formal
writing had not gotten significantly better, and yet, most of them recognized that the writing-to-
learn activities helped them understand the course material more fully. Two Asian students
commented that the interactive group work and problem solving as well as the writing hel ped
them hone their English communication skills—both oral and written. They were both aware
that they would be working in aglobal community in which English was the primary language of
idea exchange. One young woman, an advanced undergraduate in her fifth year, argued
elogquently that this course has taught her more in afew weeks than all of her lecture courses had
in four years. She explained that she understood concepts fully, engaged in the material deeply,
now had an understanding of how to work in ateam context, and finally, that she could face
problems and contexts with a positive end result.

In summary, this paper discussed cooperative learning and writing-to-learn in genera and
showed how these methods can be used in software engineering education. The results reported
in this paper are regarding the use of the techniques in a software engineering course over the
past two years. During this time its has been observed that

§ student learning improves,
§ engagement (of both students and teacher) increases,
§ depth of learning increases,
§ students enjoy in-class activities more than listening to lectures, and
§ students have to work harder and are responsible for their own learning.
However, there al'so can be negative aspects of these approaches. Students may resent
having to take responsibility for their learning. Furthermore, students who are in early stages of
intellectual and ethical development™ *? may be scared by the new context, wherein the
professor is not a guru who imparts knowledge and wisdom for the entire class session, and
students must sort through information and draw their own conclusions.
We have found that negative effects can be lessened in several ways. Adopt new teaching
methods gradually. Early use of cooperative learning and writing-to-learn methods in the

software engineering class were not well received by the students, in part because too many
changes were made too quickly. Do not get discouraged if you see many negative responses

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

21'90G° . abed



when you first employ these techniques; this is commonly occurs for approximately the first
three times that the techniques are used. Try to gain perspective; when negative responses are
observed, focus on the deep learning and increased student engagement and remember that
students may be resisting your attempts to cause them to work hard.

There are several important factors to consider regarding groups. Keep group sizes small;
three personsisideal. If you need to employ larger sized groups, begin with an initial part of the
exercise that includes three people and then combine the two small groups into a group of six for
the rest of the exercise. Vary the composition of groups. This helpsto increase learning by
exposing individuals to many different perspectives and by making the class activities more
interesting and exciting. Carefully set up each activity. For example, in an activity that considers
conflict management styles, groups could be asked to summarize each style and to tell how it
applies to a specific scenario that is given by the instructor. Allow adequate time for groups to
perform activities. This requires observing each group, monitoring progress, and asking groups
how much time they need to finish; completing activities before all groups are finished is
frustrating to students who are deeply engaged with course material. Provide adequate summary
time at the end of an activity. This can be accomplished by having students write a minute paper
about the group feedback they received or about what they learned in the activity; this can be
followed by the instructor enumerating the points that the students should have learned and
asking the students if they would like more information about any of the points. An alternate
summary method is to ask one or two groups to report to the class about what they learned from
each other and about how they answered the questions, addressed the issues or covered the
points.

6. Acknowledgements

This work was supported in part by a grant from the Undergraduate L earning Pool of the
Ohio University 1804 Endowment.

Many of the techniques described in this paper were evolved from ideas learned from
from workshops conducted by Ohio University’s Center for Teaching Excellence and Center for
Writing Excellence and from Engaging Ideas: The Professor’s Guide to Integrating Writing,
Critical Thinking, and Active Learning in the Classroom ™.

7. References

1. 1. JACOBSON, G. BOOCH and J. RUMBAUGH, The Unified Software Devel opment Process, 1998, Addison
Wesley Longman, Inc.

2. R. F. VERDERBER and K.S. VERDERBER, Communicate!, 10" Edition, 2002, Wadsworth Publishing
Company.

3. E. ARONSON et d., The Jigsaw Classroom, Sage Publications, Beverly Hills, CA, 1978.

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

€1°90G"/ abed



4.D. W. JOHNSON et a., Active Learning: Cooperative in the College Classroom, Interaction Book Company,
Edina, MN, 1991.

5.B.J MILLISand P. G. COTTELL, Jr., Cooperative Learning for Higher Education Faculty, Oryx Press,
Phoenix.

6. A. W. CHICKERING and Z. F. GAMSON, “Seven Principles for Good Practice in Undergraduate Education,”
AAHE Bulletin, 3-7, 1987.

7. C. BAZERMAN and D. R. RUSSELL, eds. Landmark Essays on Writing Across the Curriculum. Hermagoras
Press, Davis, CA, 1994,

8. J. EMIG, “Writing as aMode of Learning,” in Landmark Essays on Writing Across the Curriculum, Charles
Bazerman and David R. Russdll, eds., Hermagoras Press, Davis, CA,1994.

9. C. THAISS, The Harcourt Brace Guide to Writing Across the Curriculum, Harcourt Brace, New York, NY, 1998.

10. J. C. BEAN, Engaging ldeas: The Professor’s Guide to Integrating Writing, Critical Thinking, and Active
Learning in the Classroom, Jossey-Bass, San Francisco, CA, 1996.

11. W. PERRY, Forms of Intellectual and Ethical Development in the College Years: A Scheme, Holt, Rinehart and
Winston, New York, NY, 1970.

12. W. PERRY, “Cognitive and Ethical Growth: The Making of Meaning,” in The Modern American College,
Arthur W. Chickering et al., eds., Jossey-Bass, San Francisco, CA, 1981.

13. L. R. WELCH, CS456: Software Design and Development, http://zen.ece.ohiou.edu/cs456.html.

“ Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright O 2002, American Society for Engineering Education”

¥1°90G" . abed



