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Abstract 
 
Operating systems theory primarily concentrates on the optimal use of computing resources. The study of operating 
systems design and concepts by way of parametrically optimizing critical operating system functions is the focus of 
this work. Our work marks a new approach to teaching and studying operating systems design processes. The four 
specific operating system functions studied are those of CPU scheduling, memory management, 
deadlock/synchronization primitives and disc scheduling. The aim of the study is to first introduce and discuss the 
modules in light of previous research, discuss in details the affecting parameters and their interaction and attempt to 
optimize some of the lesser-established parameter-performance relationships by way of simulations. Results of the 
simulations of the four functions are then analyzed in light of specific parameters and the effect they have on the 
overall system performance. System performance is judged by many measures, including: average turn around time, 
average waiting time, throughput, CPU utilization, fragmentation, response time, and several other module specific 
performance measures. 
 
Some of the parameters studied in the CPU scheduling module include: the round robin time slot, aging parameters, 
preemption switches and context switching time. Simulation of multilevel feedback queues is attempted and the 
performance is judged in terms of the above mentioned performance measures. In the context of memory 
management, some of the parameters studied include: memory size, RAM and disc access times, compaction 
thresholds, memory placement algorithm choice, page size and the time quantum value. The attempted simulation 
uses the continuous memory scheme. In the deadlock/synchronization module, the parameters studied include: the 
total number of processes, the total number of available resources and the maximum number of resources required 
by the processes. Four deadlock handling mechanisms are discussed and a deadlock avoidance algorithm is 
simulated. The denial (rejection) rate of requests for resources quantifies system performance. Within the disc-
scheduling module, the parameters studied include: disc configuration/size, disc access time, disc scheduling 
algorithm choice, disc writing mechanism and all the parameters utilized in the memory management module. 
Performance is judged in terms of the above mentioned performance parameters and also the percentage seek and 
latency times. Some of the simulation specific results tend to highlight the role of optimizing the value of the round 
robin quantum in the modules, the importance of average seek and average latency times versus the system 
performance and the comparative performance of the various memory placement algorithms and disc scheduling 
algorithms. Lastly, an attempt to integrate the four specified modules is discussed to attain the final goal of 
designing an optimal operating system with the right permutation of design parameters to achieve excellent 
performance measures for various process mixes. 
 
1. Introduction 
  
The intended focus of the proposed research is to study operating systems design and concepts by way of 
parametrically optimizing critical operating systems functions. CPU scheduling, memory management, 
deadlock/synchronization primitives and disc scheduling are the four specific functions under scrutiny. The study 
proposes to introduce all the above and provide an in-depth discussion of the involved parameters. All the concerned 
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parameters will be elaborated upon, focusing on their effect on system performance as well as interaction with other 
parameters. The study also evaluates certain parameters of each module whose effect on system performance is not 
yet well established. Finally, the modules are discussed from an integrated perspective. 
 
2. Background 
 
The operating system is an essential part of any computer system, the operating system being the program that acts 
as an intermediary between a user of the computer and the computer hardware. The operating system has also been 
termed as the resource allocator. Much of the operating-system theory concentrates on the optimal use of computing 
resources. One important goal for an operating system is to make the computer system convenient to use and another 
goal is to use the computer hardware in an efficient manner [3]. The focus in this work is on the efficiency aspect.  
 
The development of operating system over the past 40 years has evolved from batch systems to time shared 
operating systems. Spooling and multiprogramming were some important concepts in the development of the latter 
systems. In these time-sharing operating systems, several jobs must be kept simultaneously in memory, which 
requires some form of memory management; the requisition of an on-line file-system which resides on a collection 
of discs necessitates disc management; the need for concurrent execution mechanism requires sophisticated CPU 
scheduling schemes; and the need to ensure orderly execution demands job synchronization and deadlock handling 
[3]. 
 
2.1. Processes And Process Control Block 
 
At the heart of the operating system is the process mix. A process is a program in execution. As a process executes, 
it changes state, which is defined by that process’s current activity. A process may be in a new, ready, running, 
waiting or terminated state. Each process is represented in the operating system by its own process control block 
(PCB) [1]. Figure 1 shows typical process mix and Table 1 illustrates an instance of a process mix.  

  
 
 

 
 
A PCB includes the following fields: 
· Process ID (PID): The unique identifier used by other processes for scheduling, communication and any other 

purpose. 
· Arrival Time: The time at which the process enters the process queue for scheduling purposes. 
· Estimated Execution Time: Used by scheduling algorithms that order processes by execution time. 
· Priority / Process Type: Used by scheduling algorithms that follow priority-based criterion. 
· Size: The size of the process in bytes. 
· Location: The memory location of a process. 
· Program Counter Value: The address of next instruction to be executed. 
· Registers / Threads: The state of different registers used by processes 
· Needed Resources: Indicates the quantities/types of system resources needed by a process. 

In other words, a Process Control Block is a data structure that stores certain information about each process [1].  
 

Process ID 
 

Arrival Time Priority Execution 
Time 

1 0 20 10 

2 2 10 1 

3 4 58 2 

4 8 40 4 

5 12 30 3 

Ø Process ID (PID) 
Ø Arrival Time 
Ø Execution Time 
Ø Priority 
Ø Size 
Ø Location 
Ø Program Counter Value 
Ø Registers / Threads 
Ø Needed Resources 

Figure 1.  A Typical PCB Table 1. A Sample Process Mix 
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2.2. Performance Parameters 
 
Quantifying performance is essential to optimization. Following are some of the common parameters used to 
benchmark performance. 
· CPU Utilization: The ratio of time that the CPU is doing actual processing to the total CPU time observed. 

This is a true measure of performance since it measures the efficiency of the system. An idle CPU has 0% CPU 
utilization since it offers null performance per unit cost. The higher the CPU utilization, the better the efficiency 
of the system. 

· Turnaround Time: The time between a process’s arrival into the system and its completion. Two related 
parameters that can be studied include the average turnaround time and maximum turnaround time. The 
turnaround time includes the context switching times and execution times. The turnaround time is inversely 
related to the system performance, i.e. lower turnaround times imply better system performance. 

· Waiting Time: Waiting time is the sum of the periods spent waiting in the ready queue. The CPU scheduling 
algorithm does not affect the execution time of a process but surely determines the waiting time. Mathematically, 
it is the difference between the turnaround time and execution time. Like turnaround time, it inversely affects the 
system performance and has two related forms: average waiting time and maximum waiting time.  

· Throughput: The average number of processes completed per unit time. Even though this is a reasonable 
measure of operating system performance, it should not be the sole performance criterion taken into account. 
This is so because throughput does not take into account loss of performance caused by starvation. In the case of 
starvation, the CPU might be churning out completed processes at a very high rate but there might be a process 
stuck in the scheduler with an infinite wait time. Higher throughput is generally considered as indicative of 
increased performance. 

· Response Time: The time difference between submission of the process and the first I/O operation. It affects 
performance inversely. However, it is not considered to be a good measure and is rarely used. 

 
2.3. Evaluation Technique 

 
When developing an operating system or the modules thereof, evaluation of its performance is needed before it is 
installed for real usage. Evaluation provides useful clues to which algorithms would best serve different cases of 
application [4]. There are several evaluation techniques. Lucas (1971, as cited in [4]) summarized and compared 
some frequently used techniques, including cycle and times, instruction mixes, kernels, models, benchmarks, 
synthetic programs, simulation, and monitor. All techniques can be basically classified into three types: the analytic 
method, implementation in real time systems, and the simulation method.  

 
In the analytic method, a mathematical formula is developed to represent a computing system. This method provides 
clear and intuitive evaluation of system performance, and is most useful to a specific algorithm. However, it is too 
simple to examine a complex and real system.  
 
Another technique is to implement an operating system in a real machine. This method produces a complete and 
accurate evaluation. One of the disadvantages of this technique is the dramatic cost associated with the 
implementation. In addition, evaluation is dependent on the environment of the machine in which the evaluation is 
carried out. 
 
Simulation is a method that uses programming technique to develop a model of a real system. Implementation of the 
model with prescribed jobs shows how the system works. Furthermore, the model contains a number of algorithms, 
variables, and parameters. By changing these factors in the simulation, one is able to know how the system 
performance would be affected and, therefore, to predict possible changes in the performance of the real system. 
This method has a reasonable complexity and cost. It was viewed as the most potentially powerful and flexible of 
the evaluation techniques (Lucas, 1971 as cited in [4]). 
 
The model for a full simulation of an operating system contains numerous parameters. Identification of the most 
important parameters in terms of system performance is useful for a complete evaluation and for a fair design of a 
real system [4].  
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2.4. Purpose Of The Study 
  
This study proposes to present an alternative approach to the study of operating systems design by way of 
parametrically optimizing critical operating systems functions. This shall entail detailed discussions of the four tasks 
of CPU scheduling, synchronization and deadlock handling, memory management and disc scheduling in terms of 
the involved parameters. In addition, it is also proposed to use the simulation technique to analyze some of the stated 
parameters in their respective modules: 
· CPU scheduling: round robin time quantum, aging parameters, a-values and initial execution time estimates, 

preemption switches, context switching time.  
· Synchronization and Deadlock Handling: total number of processes, total number of available resources, 

maximum number of resources required by the processes, rejection rate over time.  
· Memory Management: memory size, RAM and disc access times, compaction thresholds, memory placement 

algorithms, page size, page replacement algorithms, time quantum value, fragmentation percentage in time 
windows over time. 

· Disc scheduling: disc configuration/size, disc access time, disc scheduling algorithms, disc writing mechanisms 
and all the above mentioned memory management parameters. 

System performance shall be judged by many measures, including: average turnaround time, average waiting time, 
throughput, CPU utilization, fragmentation, response time, and several other module specific performance measures. 
Finally, it is proposed to discuss the integration of the four tasks into an optimal operating systems using the right 
permutation of design parameters. 
 
3. Parametric Optimization of Operating Systems Modules 
 
At the onset, this section presents a general outline of the methodology involved. Module-wise simulations include 
the description of the specific method of data collection.  
 
Each of the proposed four tasks of the operating system: CPU scheduling, synchronization and deadlock handling, 
memory management and disc scheduling are described with emphasis on the involved parameters. The parameters 
are discussed in terms of their interaction with the operating system function under study and their resultant effect 
on the system performance. 
 
A simulation technique is used to evaluate system performance in all the four modules. It is specifically used to 
explore the effect of parameters whose relation with system performance is not proportional. Evaluation of system 
performance against these parameters is conducted by analyzing a number of sample runs of the respective 
simulated modules.  
 
Every simulated module generates a random process mix. Assuming that there are six parameters in a specific 
module and each parameter can take ten possible values, the total number of possible permutations becomes one 
million (10x10x10x10x10x10). Furthermore, these one million permutations are applicable to the particular process 
mix only. Therefore, each run of a specific simulated module uses the same process mix in our case. This enables 
the analysis of the studied parameter versus performance measures to have a uniform base for comparisons. An 
exhaustive study of all possible permutations is beyond the scope of this study. Moreover, the purpose of this study 
is to provide an alternative approach to studying operating systems design. Hence, we include optimization of some 
parameters in each module to serve as a model example. 
 
Module specific methodology is included within the respective module and contains detailed information about the 
independent and dependent variables. The independent variables include the studied parameters in each of the 
operating system functions while the performance measures like percentage CPU utilization, average turnaround 
time, average waiting time, throughput, fragmentation percentage, rejection/denial rate, percentage seek time and 
percentage latency time constitute the dependent variables. 
 
Next, we elaborate on a module wise discussion of the four studied operating system functions, namely: CPU 
scheduling, synchronization and deadlock handling, memory management and disc scheduling. At the end of this 
section, the integration of the four modules into an optimal operating system is explained. 
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3.1. CPU Scheduling 
 
An operating system must select processes (programs in execution) for execution in some order. The selection 
process is carried out by an appropriate scheduling algorithm. CPU scheduling deals with the problem of deciding 
which of the processes in the ready queue is to be allocated the CPU. There are many different CPU scheduling 
algorithms, for example, first come first served, shortest job first, priority, round-robin schemes. 

 
Another class of scheduling algorithms has been created for situations in which processes are easily classified into 
different groups/types. A multilevel queue-scheduling algorithm (see Figure 2) partitions the ready queue into 
several separate queues. The processes are assigned to a queue, generally based on some property of the process. 
Each queue has its own scheduling algorithm.  
 
Processes are assigned to a queue depending on their type, characteristics and priority. Queue 1 gets processes with 
maximum priority such as system tasks and Queue 4 gets processes with the lowest priority such as non-critical 
audio/visual tasks. The idea is to separate processes with different CPU-burst characteristics.  
 
Each queue has a different scheduling algorithm that schedules processes for the queue. Processes in Queue 2 get 
CPU time only if Queue 1 is empty. Similarly, processes in Queue 3 receive CPU attention only if Queue 1 and 
Queue 2 are empty and so forth.  
 
However, if the above-described method is implemented as is, processes in queues 2, 3 and 4 have a potential of 
starvation in case Queue 1 receives processes constantly. To avoid this problem, aging parameters are taken into 
account. Aging means that processes are upgraded to the next queue after they spend a pre-determined amount of 
time in their original queue. For example, a process spends a pre-determined amount of time unattended in Queue 4 
will be moved to Queue 3. Processes keep moving upwards until they reach Queue 1 where they are guaranteed to 
receive CPU time (or execute in other queues before reaching Queue 1). 
 
In general, a multilevel feedback queue scheduler is defined by the number of queues, the scheduling algorithm for 
each queue, the method used to assign the entering processes to the queues and the aging parameters. 
 
Although a multilevel feedback queue is the most general scheme, it is also the most complex and has the potential 
disadvantage of high context switching time. 
 
Many of the scheduling algorithms use execution time of a process to determine what job is processed next. Since it 
is impossible to know the execution time of a process before it begins execution, this value has to be estimated. a, a 
first degree filter, is used to estimate the execution time of a process as follows: 
zn  = azn-1 + (1 - a) tn-1 

Figure 2. A Multi-Level Feedback Queue 

Queue 1 System Jobs Round Robin 

Queue 2 Computation Intense SJF with preemption 

Queue 3 Less intense calculation Priority-based 

Queue 4 Multimedia Tasks FIFO  
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where, z is estimated execution time 
t is the actual time  
a is the first degree filter and 0 £ a £ 1 

The following example provides a deeper understanding of the issue at hand. 
 

 
 
 

 
 
Thus, an estimated execution time for the first process is assumed and then the filter is used to make further 
estimations (see Table 2). However, the choice of the value of a affects the estimation process. Following is the 
scenario when a takes the extreme values: 

· a = 0 means that zn does not depend on zn-1 and is equal to tn-1 
· a = 1 means that zn does not depend on tn-1 and is equal to zn-1 

 
Consequently, we start with a symbolic value of a and 
obtain f (a) i.e. the sum of square difference (see Table 
3). Further, differentiation of this and equating it to zero 
gives the value of a for which the difference between the 
actual time and estimated time is minimum. The 
following exemplifies a-update in the above example. 
In the above example, at the time of estimating execution 
time of P3, we update a as follows. 
 
 

The sum of square differences is given by, 
SSD = (2+4a)2 + (4a2+2a-2)2 = 16a4 + 16a3 + 4a2 + 8a + 8 
And, d/dx [SSD] = 0 gives us, 
 8a3 + 6a2 + a + 1 = 0  (Equation 1) 
Solving Equation 1, we get a = 0.7916. 
Now,   
z3 = az2 + (1-a) t2 
Substituting values, we have 
z3 = (0.7916) 6 + (1-0.7916) 6  
    = 6 
We shall now discuss the parameters involved in a CPU scheduler using the multilevel feedback queue algorithm.   
 
3.1.1. Parameters Involved 
 
Parameters that influence the system performance are hereby enumerated: 

· Time slot for the round robin queue (Queue 1) 

Processes zn tn 

P0 10 6 

P1 8 4 

P2 6 6 

P3 6 4 

P4 5 17 

P5 11 13 

P6 12 …. 

zn tn Square Difference 

10 6  

(a) 10 + (1-a) 6 = 
6 + 4a 

4 [(6+4a) – 4]2 = (2+4a)2 

(6+4a)a + (1-a) 4 
= 4a2+2a+4 

6 [(4a2+2a+4) – 6]2 = 
(4a2+2a-2)2 

Here, 
a = 0.5 
z0 = 10 
 

Then by formula, 
z1 = a z0 + (1-a) t0 
     = (0.5) (10) + (1-0.5) (6) 
     = 8 

and similarly z2, z3….z6 are calculated. 

Table 2. Calculating Execution 
Time Estimates 

Table 3. a-updating scheme 
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· Aging time for transitions from Queue 4 to Queue 3, Queue 3 to Queue 2 and Queue 2 to Queue 1, i.e. the 
aging thresholds for FIFO, priority-based and SJF queues  

· a-values and initial execution time estimates for the FIFO, SJF and priority-based queues. 
· Choice of preemption for the SJF and Priority based queues. 
· Context switching time 
 

Effect of Round Robin Time Slot: The choice of the round robin queue can make the performance vary widely. For 
example, a small time quantum results in higher context switching time, which in turn translates to low system 
performance in form of low CPU utilization, high turnaround times and high waiting times. On the other hand, a big 
time quantum results in FIFO behavior with effective CPU utilization, lower turnaround and waiting times but with 
the potential of starvation. Thus, finding an optimal time slot value becomes imperative for maximum CPU 
utilization with lowered starvation problem. 
 
Effect of Aging Thresholds: A very large value for the aging thresholds makes the waiting and turnaround times 
unacceptable. These are signs of processes nearing starvation. On the other hand, a very small value makes it 
equivalent to one round robin queue. Zhao [6] enumerates the aging parameters of 5, 10 and 25 for the SJF, Priority-
based and FIFO queues respectively as the optimal aging thresholds for the specified process mix. Some of the 
process mix specifications being: process size vary from 100KB to 3MB; estimated execution time range from 5 to 
35ms; priority values vary from 1 to 4; memory size is 16MB; disc drive configuration is 8 surfaces, 64 sectors and 
1000 tracks. 
 
Effect of a-values and initial execution time estimates: Su [4] has studied the effect of prediction of burst time on 
system performance of a simulated operating system as part of her study. She has used an a update scheme as was 
previously discussed. For her specified process mix, she reports that the turnaround time obtained from predicted 
burst time is significantly lower than the one obtained by randomly generated burst time estimates. The a value is 
recomputed/updated after a fixed number of iterations. 
 
Effect of choice of preemption: Preemption undoubtedly increases the number of context switches, and increased 
number of context switches inversely affects the efficiency of the system. However, preemptive scheduling has been 
shown to decrease waiting and turnaround time measures in certain instances [3]. There are two preemption switches 
involved in this module, one for the SJF queue (Queue 2) and the other for the priority-base queue (Queue 3). In SJF 
scheduling, the advantage of choosing preemption over non-preemption is largely dependent on the CPU burst time 
predictions, but that is a difficult proposition in itself. 
 
Effect of Context Switching Time: An increasing value of context switching time inversely affects the system 
performance in an almost linear fashion. The context switching time tends to affect system performance inversely. 
As the context switching time increases, so does the average turnaround and average waiting time. The increase of 
the context switching time pulls down the CPU utilization. 
 
In keeping with the above discussion, the simulation of the above module and the analysis of the collected data 
focus on the optimal round robin time quantum and effect of the a updating scheme. 
 
3.1.2. Simulation Specifications and Method of Data Collection 
 
The implemented multi-level feedback queue scheduler consists of four linear queues, the first is FIFO, the second 
queue is priority-based, the third one is SJF and the fourth (highest priority) is round robin. Feedback occurs through 
aging; aging parameters differ, i.e., each queue has a different aging threshold before a process can migrate to a 
higher priority queue. Processes are assigned to one of the queues upon entry. A process can migrate between the 
various scheduling queues based on the aging parameter of the queue it was initially assigned.  
 
Round robin time quantum, the preemptive switches for the SJF and priority-based queues, aging parameters for the 
SJF, priority-based and FIFO queues, context switching time, initial execution time estimates and a values for the 
FIFO, SJF and priority queues are some of the independent variables in this module. To optimize any one of them, 
we need to keep every other parameter fixed and vary the studied parameter. We have attempted to optimize the 
round robin time and the effect of the a update scheme to serve as a model. Thus, the round robin time was the 
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variable parameter in our case and all other parameters were fixed parameters. The dependent variables of the 
module are the performance measures: average turnaround time, average waiting time, CPU utilization and 
throughput.  

Data was collected by means of multiple sample runs. The output from the sample run indicates a timeline, i.e. at 
every time step, it indicates which processes are created (if any), which ones are completed (if any), processes which 
aged in different queues. The following excerpts from an output file (see Figure 3) illustrate the aging of process 1 
from the priority based queue to the SJF queue (the aging parameter for Queue 3 was set to be 3 in this run). Figure 
3, part (a) shows process mix snapshot at time step 1. Five processes are created at this instance and the PCB 
parameters for process number 1 are displayed. Part (b) illustrates the contents of the queue at this time step. Process 
1 is assigned to the priority queue. Given an aging parameter of 3 for the priority queue, process 1 should migrate to 
the SJF queue at time step 4 unless it finishes execution before that. Snapshots at time step 2 (part (c)) and time step 
3 (part (d)) show that process 2 and process 6 get CPU attention since they are in the round robin queue (queue with 
highest priority). Therefore, process 1 does not get the opportunity to execute and migrates to the SJF queue at time 
step 4 (part (e)). Part (f) illustrates the completion of process 8 and inclusion of the same in the done queue. A 
complete walkthrough of this sample run for the CPU scheduling module is available at 
www.bridgeport.edu/~sobh/SampleRun1.doc  

 
3.1.3. Simulation Results and Discussion 
 
Table 4 and the corresponding charts (Figure 4 (a) – (d)) illustrate the effect of varying the round robin quantum 
time over the various performance parameters. This parameter plays a critical role as, whenever present, it is the 
processes in this queue that are being scheduled for execution.  
 
It can be clearly seen from the Table 4 how the time slot of the round robin queue affects the various performance 
parameters. While the throughput is observed to be inversely proportional, the other three performance measures 
seem to be directly proportional. In other words, with increasing the time slot the round robin queue moves towards 
the behavior of a FIFO queue with high average turnaround times and average waiting times.   The throughput 
decreases but the percentage CPU utilization improves at a steady rate.  

(a) Snapshot at time step 1 
SCHEDULING STARTED 
Scheduling Started 
 
Total Process Created = 5 
 
Process Number = 1 
Queue Number   = 2 
Execution Time = 1 
Priority       = 3 
Arrival Time   = 1 
 

(b) Snapshot at time step 1 
 
FifoQ Content : 5 
PriorityQ Content : 1 4 
SJFQ  Content : 3 
RRQ   Content : 2 
DoneQ Content : 
 
 
Process# 2 is executing. 
 

(c) Snapshot at time step 2 
Total Process Created = 3 
 
FifoQ Content : 5 7 
PriorityQ Content : 1 4 
SJFQ  Content : 3 
RRQ   Content : 2 6 8 
DoneQ Content : 
 
Process# 2 is executing. 
 

(d) Snapshot at time step 3 
 
Total Process Created = 2 
 
FifoQ Content : 5 7 9 
PriorityQ Content : 1 4 
SJFQ  Content : 
RRQ   Content : 6 8 2 3 10 
DoneQ Content : 
 
Process# 6 is executing. 
 

(e) Snapshot at time step 4 
Total Process Created = 4 
 
FifoQ Content : 7 9 14 
PriorityQ Content : 5 11 13 
SJFQ  Content : 1 4 
RRQ   Content : 8 2 3 10 6 12 
DoneQ Content : 
 
Process# 8 is executing. 
 

(f) Snapshot at time step 5 
Total Process Created = 1 
 
FifoQ Content : 9 14 
PriorityQ Content : 5 11 13 7 15 
SJFQ  Content : 1 4 
RRQ   Content : 2 3 10 6 12 
DoneQ Content : 8 
 
Process# 2 is executing. 
 
 

Figure 3. Snapshot of process mix at time steps 1-5 
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Table 4. Effect of Round Robin Time Slot on the Performance Parameters 

 

Since the round robin is the highest priority queue in the multilevel feedback queue scheduler, it has the greatest 
influence over the scheduler performance. With CPU Utilization of 80% and throughput of 0.024, time slot value of 
4 time units comes out to be the optimal value in this simulation for the specific process mix. 
 
Next we illustrate the effect of a updating on the system performance. Table 5 compares the performance measures 
as the value of round robin time slot is varied with a updated at regular intervals. The performance measure values 
in the bracket are the corresponding values when the a updating scheme was not implemented. 

 

RRTimeSlot Av.Turnaround Time Av. Waiting Time CPU Utilization Throughput 
2 19.75 17 66.67 % 0.026 
3 22.67 20 75.19 % 0.023 
4 43.67 41 80.00 % 0.024 
5 26.5 25 83.33 % 0.017 
6 38.5 37 86.21 % 0.017 

RRTimeSlot Av.Turnaround Time Av. Waiting Time CPU Utilization Throughput 
2 19.75 (19.75) 17 (17) 66.67 (66.67) % 0.026 (0.026) 
3 22.67 (22.67) 20 (20) 75.19 (75.19)% 0.023 (0.023) 
4 43.67 (43.67) 41 (41) 80.00 (80.00)% 0.024 (0.024) 
5 26.5 (26.5) 25 (25) 83.33 (83.33)% 0.017 (0.017) 
6 38.5 (38.5) 37 (37) 86.21 (86.21)% 0.017 (0.017) 

(b) (a) 

0

50

RRTimeSlot vs. Average 
Turnaround Time

RRTimeSlot

Av.Turnaround
Time 0

50

RRTimeSlot vs. Average Waiting 
Time

RRTimeSlot

Av. Waiting
Time

0

50

100

RRTimeSlot vs. CPU Utilization

RRTimeSlot

CPU
Utilization

RRTimeSlot vs. Throughput

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

RRTimeSlot
Throughput

Figure 4. Charts illustrating effect of round robin 
quantum over performance measures 

Table 5. Comparing performance measures of a CPU scheduler with a-update and one with no a-update (the 
values for the scheduler with no a-update is in brackets) 
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As is evident from Table 5, a updating did not affect system performance in our case. Again, the result is specific 
for our particular process mix. 
 
To summarize, it is the optimal value of the round robin quantum along with smallest possible context switching 
time that tends to maximize performance in context of CPU scheduling in  our simulation. a-updating did not tend to 
affect performance. 
 
3.2. Synchronization And Deadlock Handling 
 
To ensure the orderly execution of processes, the operating system provides mechanisms for job synchronization 
and communication, and ensures that jobs do not get stuck in a deadlock, forever waiting for each other. 
 
Synchronization: Synchronization problems arise because sections of code that constitute the critical sections 
overlap and do not run atomically. A critical section is a part of a process that accesses shared resources. Two 
processes should not enter their critical sections at the same time, thus preventing the problem. To run a critical 
section atomically means that the section is executed either as a whole or not at all [5]. Once the cr itical section of a 
process begins, it must be completed or rolled back. Thus, important points to note about critical sections are: 

· Critical sections of code must be run atomically 
· Mutual exclusion must be ensured of more than one critical section 

 
The above is ensured by using pieces of code that block a process that attempts to run its critical section while the 
critical section of another process is being executed. The process is then unblocked when the other process’s critical 
section completes execution. This is known as Sleep and Wakeup. The above can be implemented by using 
semaphores, monitors and message passing. Table 6 shows a comparison between the three synchronization 
methods. 

 

 
Deadlock Handling: A deadlock state is a state of indefinite wait by one or more processes for an event that can be 
triggered only by one of the waiting processes. Such an event is commonly termed as a resource. The resource could 
be tangible such as an I/O resource or intangible e.g. shared data [5]. Figure 5 shows a visual representation of a 
deadlock where process 1 is holding resource 2 and requesting resource 1 and process 2 is holding resource 1 and 
requesting resource 2. 

Four necessary conditions for occurrence of 
deadlock are: 

· Mutual exclusion of resources: Inability of a 
resource to be used by more than one process 

· Hold and wait: A process holds a resource while 
waiting for another one  

· No preemption: The system is incapable of 
grabbing a resource from a process 

· Circular wait. 
Algorithms to tackle deadlock conditions are based 
on the idea of prevention, detection and recovery, 

Implementation Synchronization Mutual 
Exclusion 

Advantages Disadvantages 

Semaphores Ö Ö ·  · Low-level 
implementation 

· Can cause deadlock 
Monitors Ö Ö · High level 

implementation 
·  

Message Passing Ö Ö ·  ·  

P1

P2 

Resource 
1 

Resource 
2 

request 
edge 

request 
edge 

assignment 
edge 

assignment 
edge 

Figure 5. Visual representation of a deadlock 

Table 6. A Comparison of three Synchronization Methods 
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avoidance and ignoring the condition. Ignoring deadlocks is by far the most widely used method. 
Deadlock prevention is a set of methods for ensuring that at least one of the necessary conditions cannot hold. Of the 
four necessary conditions, mutual exclusion cannot be stopped since it is the nature of the process. Hold and wait 
can be stopped by never assigning a resource to a process unless all the other needed resources are available. 
However, it suffers from possible starvation of processes. Moreover, resource utilization may be low, since many of 
the resources may be allocated but unused for a long period. The necessary condition of no preemption can be 
stopped by using the following rule. If a process that is holding some resource requests another resource that cannot 
be immediately allocated to it, then all resources currently being held are preempted to stop this condition. As 
evident, it also suffers from potential starvation. One way to ensure that the circular-wait condition never holds is to 
impose a total ordering of all resource types, and to require that each process requests resources in an increasing 
order of enumeration. But the stated method turns out to be expensive in terms of time complexity.  
 
In the environment of handling deadlocks using detection and recovery, the system must provide: 
· An algorithm that examines the state of the system to determine whether a deadlock has occurred 
· An algorithm to recover from the deadlock 
 
A deadlock detection and recovery algorithm involves the following steps: reducing a process-resource graph to a 
wait-for graph; finding cycles in the graph; determining non-redundant cycles; and finally determining the 
minimum number of preemptions required. However, it is important to realize that detection and recovery scheme 
requires overhead that includes not only the run-time costs of maintaining the necessary information and executing 
the detection algorithm, but also the potential losses inherent in recovering from deadlock.  

   
A deadlock avoidance algorithm dynamically examines the resource 
allocation state to ensure that there can never be a circular-wait 
condition. The resource allocation state is defined by the number of 
available and allocated resources, and the maximum demands of the 
processes. A state is safe if the system can allocate resources to each 
process in some order and still avoid deadlock. More formally, a 
system is in a safe state only if there exists a safe sequence. If no safe 
sequence exists, then the state is said to be unsafe and has the 
potential of a deadlock situation (see Figure 6). The following 
example illustrates this deadlock handling method. 
 
 Consider a system with five processes P0 through P4 and a resource 
with 10 instances. Table 7 shows the snapshot of the system at time 
T0. 

 
    Now, we need to decide if it is a safe state. At 
this time, it is a safe state since the safe 
sequence <P1, P3, P4, P0, P2> exists. Suppose 
now that P4 requests an instance of the resource. 
We pretend that this request has been fulfilled 
and arrive at the new state shown in Table 8. 
 

  Now, we must determine if this 
new system state is safe. Since 
the safe sequence <P3, P1, P4, P0, 
P2> exists, thus, the state is safe 
and the request of P4 can be 
granted. However, if P2 requests 
an instances of the resource and 
we pretend the request has been 
granted, then the new state 
configuration will be as shown in 
Table 9. 

Process # Current Allocation Maximum Needs 
P0 3 7 
P1 1 3 
P2 3 9 
P3 1 2 
P4 0 4 

Process # Current Allocation Maximum Needs 
P0 3 7 
P1 1 3 
P2 3 9 
P3 1 2 
P4 1 4 

Table 7. Snapshot of system at time T0 

deadlock 

unsafe 

safe 

Figure 6. Safe and Unsafe State 

Table 8. Snapshot of new state pretending request of P4 is granted 
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This state, however, is an 
unsafe state since there is 
no sequence in which the 
instances of the resource 
may be granted such that 
the needs of all the 
processes are met. Hence, 
the request of P2 is not 
granted in the first place.  
   

 
In a real system, there are multiple resources, each with one or more instances. Thus, implementing this algorithm in 
a real system would entail maintaining the table of resources for each resource. Likewise, there could be multiple 
requests at a given time instance for the resources present, and a deadlock avoidance algorithm would have to 
determine whether each of the requests would put the state in a safe or unsafe condition. It is evident that this 
algorithm proves to be an expensive one. 
  
In a subsequent subsection, our simulation emulates this deadlock avoidance algorithm using one resource.  
 
3.2.1. Parameters Involved 
 
The parameters worthy of study in this module are: 
· Total number of processes  
· Total number of available resources 
· Maximum number of resources required by the processes 
 
Effect of number of processes: An increase in the number of processes will increase the number of requests for 
resources. 
 
Effect of number of available resources: The more the number of available resources, the more requests can be 
granted, since for the same requirement there are more resources available.  
 
Effect of maximum number of resources required by the processes: This parameter is directly linked to the number 
of requests and thus, determines the demand for the resources required. The more the resources required, the more 
the probability of declined requests. 

 
3.2.2. Simulation Specifications and Method of Data Collection 
 
The deadlock avoidance module uses one resource type. The input is a table of resources that specifies the current 
usage of the resource and the maximum usage of the resource process-wise and a resource request by one of the 
processes. The output is either a granted request or a rejected request depending on whether the same generates a 
safe or unsafe state in terms of deadlock. 
 
Performance in this module is quantified by means of rejection rate or denial rate. It is the percentage of rejected or 
denied requests over the total number of requests. A higher rejection rate by all means is a sign of poor system 
performance.  
 
The total number of processes, the total number of resources and the maximum resource requisitions of the process 
are the independent variables here. The effect of each one is studied on the dependent variable of rejection/denial 
rate separately while keeping the other ones fixed. Rejection/denial rate over time is also studied. Sample runs of the 
module with brief parameter-wise analysis are available at www.bridgeport.edu/~sobh/SampleRun2.doc  
 
 

Process # Current Allocation Maximum Needs 

P0 3 7 

P1 2 3 

P2 3 9 

P3 1 2 

P4 0 4 

Table 9. Snapshot of new state pretending request of P2 is granted 
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3.2.3. Simulation Results and Discussion 
 
Rejection Rate versus Total Number of Processes 
Fixed Parameters for this part: 
Total Number of Resources: 6 
Maximum Resources per process:  
Process 1 2 3 4 5 6 7 
Resources 5 4 5 4 5 4 5 

 
Table 10 shows the collected data and Figure 7 shows the 
corresponding graph. The statistics show a trend of increasing 
rejection rate as the number of processes increases with everything 
else kept constant. The number of requests made also increases and 
influences the same too. 
 

Rejection Rate versus Total Number of Resources 
Fixed Parameters for this part: 
Total Number of Processes: 4 
Maximum Resources per process:  
Process 1 2 3 4  
Resources 5 4 5 4 

 
Table 11 shows the collected data and Figure 8 shows the 
corresponding graph. The statistics clearly indicate that as the 
number of available resources increases, more requests are 
successfully granted. The increase in the number of granted 
requests make the rejection rate move down steadily. In other 
words, an increase in the total number of resources tends to 
affect the rejection rate in a linear fashion. 
 
Rejection Rate versus Maximum Number of Resources Per Process 
Fixed Parameters for this part: 
Total Number of Processes: 4 
Total Number of Resources: 6 
 

Total Number of 
Processes 

4 5 6 7 

Rejection Rate 33.33% 42.5% 60.87% 49.2% 

Total Number of 
Requests 

27 40 69 63 

Total Number 
of Resources 

6 7 8 9 

Rejection Rate 33.33% 28% 18.18% 14.29% 
Total Number 
of Requests 

27 25 22 21 

Figure 7. Total number of processes vs. 
rejection rate 

Figure 8. Total number of resources vs. rejection 
rate 

Table 10. Total number of processes vs. Rejection Rate 

Table 11. Total number of resources vs. Rejection Rate 
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Figure 9. Maximum resources needed 
per process vs. rejection rate 

 

 
Table 12 shows the collected data and Figure 9 shows the corresponding graph. The statistics indicate that as the 
number of maximum resources needed for a process decreases so does the rejection rate. The total number of 
requests made is directly proportional to the maximum resources needed for a process. A decrease in the latter 
decreases the former and consequently decreases the rejection rate in a linear manner.  
 
Rejection Rate over Time 
Fixed Parameters for this part: 
Total Number of Processes: 5 
Total Number of Resources: 10 
Maximum Resources per process:  
Process 1 2 3 4 5  
Resources 7 5 9 2 4 

 
Table 13 shows the collected data and Figure 10 shows the corresponding graph. As the simulation starts, initially 
all requests are granted, as the resources are available and the rejection rate is null at this point. As more resources 
are allocated, the available resource number lowers and thus process requests are rejected if they lead to an unsafe 
state. Rejection increases as more and more resources are allocated. Then comes the phase when enough resources 
have been granted to meet the maximum need of some processes. At this time, these processes whose maximum 
resource needs have been met start releasing the resources. Thus, the available resources start increasing and 
consequently the denial rate decreases finally coming back to the state of null rejection. As is evident from Figure10, 
the shape of the rejection rate over time graph closely resembles a normal curve. 
 

Distribution of Maximum Number 
of  
Resources (MaxR) per Process (P) 

Rejection 
Rate 

Total 
Number 
of 
Requests 

P           1     2     3     4  
MaxR   5     4     5     4 

33.3% 27 

P           1     2     3     4  
MaxR   3     4     5     4 

20% 20 

P           1     2     3     4  
MaxR   2     4     5     4 

16.67% 18 

P           1     2     3     4  
MaxR   2     3     5     4 

12.5% 16 

Time Window (5 time units) Rejection Rate (%) 
0 to 5 0 

5 to 10 0 
10 to 15 20 
15 to 20 60 
20 to 25 60 
25 to 30 80 
30 to 35 60 
35 to 40 0 
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Figure 10. Rejection rate over time 
Table 13. Rejection rate over time 

Table 12. Maximum Resources needed per process vs. Rejection Rate 
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To summarize, the rejection rate is controlled by the dynamic mix of the number of processes, the number of 
available requests as well as the maximum resource requirement per process. In addition, another crucial 
determining factor is the order in which the requests are made. More available resources and fewer resource requests 
improve performance in a linear manner. However, if the number of maximum resource requirement per process 
exceeds the number of available resources, deadlock is inevitable. On the other hand, if the number of resources 
available is at least equal to the sum of the maximum resource requirement per process, the system can boast of a 
null rejection rate. The rejection rate over time curve closely resembles a normal curve. 
 
3.3. Memory Management 
 
Memory is an important resource that must be carefully managed. The part of the operating system that manages 
memory is called the memory manager. Memory management primarily deals with space multiplexing. All the 
processes need to be scheduled in such a way that all the users get the illusion that their processes reside on the 
RAM. Spooling enables the transfer of a process while another process is in execution. The job of the memory 
manager is to keep track of which parts of memory are in use and which parts are not in use, to allocate memory to 
processes when they need it and deallocate it when they are done, and to manage swapping between main memory 
and disc when main memory is not big enough to hold all the processes.  
 
Three disadvantages related to memory management are: 
· the synchronization problem 
· the redundancy problem  
· the fragmentation problem 
The first two are discussed below and the fragmentation problem is elaborated upon a little later. 
 
Spooling, as stated above, enables the transfer of one or more processes while another process is in execution. It 
aims at preventing the CPU from being idle, thus, managing CPU utilization more efficiently. The processes that 
are being transferred to the main memory can be of different sizes. When trying to transfer a very big process, it is 
possible that the transfer time exceeds the combined execution time of the processes in the RAM. This results in the 
CPU being idle which was the problem for which spooling was invented. This problem is termed as the 
synchronization problem. The reason behind it is that the variance in process size does not guarantee 
synchronization. 
 
The combined size of all processes is usually much bigger than the RAM size and for this very reason processes are 
swapped in and out continuously. The issue regarding this is the transfer of the entire process when only part of the 
code is executed in a given time slot. This problem is termed as the redundancy problem. 

 
There are many different memory management schemes. Memory management algorithms for operating systems 
range from the single user approach to paged segmentation. Some important considerations that should be used in 
comparing different memory management strategies include hardware support, performance, fragmentation, 
relocation, swapping, sharing and protection. The greatest determinant of any method in a particular system is the 
hardware provided. 

 
Fragmentation, Compaction and Paging: Fragmentation is encountered when the free memory space is broken into 
little pieces as processes are loaded and removed from memory. Fragmentation can be internal or external. 
 
Consider a hole of 18,464 bytes as shown in Figure 11. Suppose 
that the next process requests 18,462 bytes. If we allocate exactly 
the requested block, we are left with a hole of 2 bytes. The 
overhead to keep track of this hole will be substantially larger than 
the hole itself. The general approach is to allocate very small holes 
as part of the larger request. Thus, the allocated memory may be 
slightly larger then the requested memory. The difference between 
these two numbers is internal fragmentation – memory that is 
internal to a partition, but is not being used [3]. In other words, 
unused memory within allocated memory is called internal 
fragmentation [2]. 

operating system 

P7 

P43 

Figure 11. Internal fragmentation 

Hole of 
18,464 bytes 

Next request is 
for 18,462 bytes 
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External fragmentation exists when enough total memory space exists to satisfy a request, but it is not contiguous; 
storage is fragmented into a large number of small holes. In Figure 12 two such cases can be observed. In part (a), 
there is a total external fragmentation of 260K, a space that is too small to satisfy the requests of either of the two 
remaining processes, P4 and P5. In part (c), however, there is a total external fragmentation of 560K. This space 
would be large enough to run process P5, except that this free memory is not contiguous. It is fragmented into two 
pieces, neither one of which is large enough, by itself, to satisfy the memory request of process P5. This 

fragmentation problem can be severe. In the worst case, there could be a block of free (wasted) memory between 
every two processes. If all this memory were in one big free block, a few more processes could be run. Depending 
on the total amount of memory storage and the average process size, external fragmentation may be either a minor 
or major problem.  
 
One solution to the problem of external fragmentation is compaction. The goal is to shuffle the 
memory contents to place all free memory together in one large block. The simplest compaction 
algorithm is to move all processes toward one end of the memory, and all holes in the other 
direction, producing one large hole of available memory. Figure 13 shows different ways to 
compact memory. Selecting an optimal compaction strategy is quite difficult. 
 
Compaction is an expensive scheme. Given a 128 MB RAM and an access speed of 
10ns per byte of RAM, the compaction time becomes twice the product of the two, in 
this case, 2.56 seconds (2 x 10 x 10-9 x 128 x 106). Supposing, we were using a round robin 
scheduling algorithm with a time quantum of 2ms, the above compaction time turns out to be equivalent to 1280 
time slots. 

Figure 13. Different ways to compact memory 

Figure 12. External Fragmentation 
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Compaction is usually defined by the following two thresholds: 
· Memory hole size threshold: If the sizes of all the holes are at most a predefined hole size, then the main 

memory undergoes compaction. This predefined hole size is termed as the hole size threshold. For example, if 
we have two holes of size ‘x’ and size ‘y’ respectively and the hole threshold is 4KB, then compaction is done 
provided x <= 4KB and y<=4KB. 

· Total hole percentage: The total hole percentage refers to the percentage of total hole size over memory size. 
Only if it exceeds the designated threshold, compaction is undertaken. Taking the two holes with size ‘x’ and 
size ‘y’ respectively, total hole percentage threshold equal to 6%, then for a RAM size of 32MB, compaction is 
done only if (x + y)> = 6% of 32MB. 

 
Another possible solution to the external fragmentation problem is to permit the physical address space of a process 
to be noncontiguous, thus allowing a process to be allocated physical memory wherever the latter is available. One 
way of implementing this solution is through the use of a paging scheme. We discuss paging in greater details a 
little later in this section. 
 
Memory Placement Algorithms: A fitting algorithm determines the selection of a free hole from the set of available 
holes. First-fit, best-fit, and worst-fit are the most common strategies used to select a free hole. 
· First-fit: Allocate the first hole that is big enough. Searching can start either at the beginning of the set of holes 

or where the previous first-fit search is ended. Searching stops as soon as a large enough free hole is found. 
· Best-fit: Allocate the smallest hole that is big enough. The entire list needs to be searched, unless the list is kept 

ordered by size. This strategy produces the smallest leftover hole. 
· Worst-fit: Allocate the largest hole. Again, the entire list has to be searched, unless it is sorted by size. This 

strategy produces the largest leftover hole, which may be more useful than the smaller leftover hole from a best-
fit approach. 

If memory is lost due to internal fragmentation, the choice is between first fit and best fit. A worst fit strategy truly 
makes internal fragmentation worse. If memory is lost due to external fragmentation, careful consideration should be 
given to a worst-fit strategy [2]. 
 
3.3.1. Continuous Memory Allocation Scheme 
 
The continuous memory allocation scheme entails loading of processes into memory in a sequential order. When a 
process is removed from main memory, new processes are loaded if there is a hole big enough to hold it. This 
algorithm is easy to implement, however, it suffers from the drawback of external fragmentation. Compaction, 
consequently, becomes an inevitable part of the scheme. 
 
3.3.1.1. Parameters Involved 
 
Some of the parameters that influence the system performance in terms of memory management are hereby 
enumerated: 
· Memory size  
· RAM access time  
· Disc access time  
· Compaction algorithms 
· Compaction thresholds – Memory hole-size threshold and total hole percentage 
· Memory placement algorithms  
· Round robin time slot (in case of a pure round robin scheduling algorithm) 
 
Effect of Memory Size: As anticipated, the greater the amount of memory available, the higher would be the system 
performance.   

 
Effect of RAM and Disc access time: The higher the values of the access times, the lower the time it would take to 
move processes from main memory to secondary memory and vice-versa thus increasing the efficiency of the 
operating system. Disc access time is composed of three parts seek time, latency time and transfer rate. The RAM 

P
age 7.911.17



“Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright Ó 2002, American Society for Engineering Education” 

access time plays a crucial role in the cost of compaction. Compaction entails accessing each byte of the memory 
twice, thus, the faster the RAM access, the lower would be the compaction times. 
 
Effect of Compaction Algorithms: Choosing an optimal compaction algorithm is critical in minimizing compaction 
cost. However, selecting an optimal compaction strategy is quite difficult.   
 
Effect of the Compaction Thresholds: The effect of compaction thresholds on system performance is not as 
straightforward and has seldom been the focus of studies in this field. Optimal values of hole size threshold largely 
depend on the size of the processes since it is these processes that have to be fit in the holes. Thresholds that lead to 
frequent compaction can bring down performance at an accelerating rate since compaction is quite expensive in 
terms of time. 
 
Effect of Memory Placement Algorithms Silberschatz and Galvin in [3] state that simulations have shown that both 
first-fit and best-fit are better than worst-fit in terms of decreasing both time and storage utilization. Neither first-fit 
nor best fit is clearly best in terms of storage utilization, but first-fit is generally faster. 
 
Effect of Round Robin Time Slot: Best choice for the value of time slot would be corresponding to transfer time for 
a single process (see Figure 14). For example, if most of the processes required 2ms to be transferred, then a time 
slot of 2ms would be ideal. Hence, while one process completes execution, another has been transferred. However, 
the transfer times for the processes in consideration are seldom a normal or uniform distribution. The reason for the 
non-uniform distribution is that there are many different types of processes in a system. The variance as depicted in 
Figure 14 is too much in a real system and makes the choice of time slot a difficult proposition to decide upon. 

 
In keeping with the above discussion, the simulation of the above module and the analysis of the collected data 
focus on the optimal round robin time quantum, the memory placement algorithms and fragmentation percentage as 
a function of time. 
 
3.3.1.2. Simulation Specifications and Method of Data Collection 
 
The attempted simulation implements a memory manager system. The implemented system uses a continuous 
memory allocation scheme. This simulation uses no concept of paging whatsoever. Round robin mechanism is the 
scheme for process scheduling. 
 
Following are the details of the involved independent variables: 
Fixed parameters: 
· Memory Size (32 MB) 
· Disc access time (1ms (estimate for latency and seek times) + (job size (in bytes)/500000) ms) 

Figure 14. Ideal Process Size Graph and Realistic Process Size Graph 

Process size 

Ideal Process Size Graph     Realistic Process Size Graph 
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· Compaction threshold (6% and hole size = 50KB) 
· RAM Access Time (14ns) 
Variable parameters: 
· Fitting algorithm (a variable parameter – First Fit, Best Fit, Worst Fit) 
· Round Robin Time Slot (a variable parameter, multiple of 1ms) 

In addition to the above enumerated parameters, the process sizes range from 20KB to 2MB (multiple of 10KB) and 
the process execution times vary from between 2 ms to 10 ms (multiple of 1ms). The disc size is taken as 500MB 
and is half filled with jobs at the beginning of the simulation. 
 
In context of memory management, compaction is the solution for fragmentation. However, compaction comes at its 
own cost. Moving all holes to one end is an expensive operation. To quantify this parameter, percentage of 
compaction time against total time is a performance measure that has been added in this module. This measure along 
with all the other performance measures constitutes the dependent variables in this module. 
 
Data was collected by means of multiple sample runs. A walkthrough of a sample run for this module is available at 
www.bridgeport.edu/~sobh/SampleRun3.doc  

 
3.3.1.3. Simulation Results and Discussion 
 
The round robin time quantum is one of the two variable parameters studied in this simulation. Table 14 and Figure 
15 illustrate the effect of varying the round robin quantum time over the various performance parameters in context 
of the first fit algorithm. 
 
Table 14. Round Robin Time Quantum vs. Performance Measures 
Time 
Slot 

Average 
Waiting 
Time 

Average 
Turnaround 
Time 

CPU 
Utilization 

Throughput  
Measure 

Memory 
fragmentation 
percentage  

2 3 4 5% 5 29% 

3 4 4 2% 8 74% 

4 5 6 3% 12 74% 

5 12 12 1% 17 90% 

 
The trends of increasing throughput and increasing turnaround and 
waiting times are in keeping with round robin scheduling moving towards 
FIFO behavior with increased time quantum. However, we observe that 
the CPU utilization is declining with increase in time slot values. This can 
be attributed to the expense of compaction. Analyzing the fragmentation 
percentage, it looks like a time slot value of 2 time units is particularly 
favorable to the same. 
The simulation data collected to compare the three memory placement 
algorithms by studying the effect of varying round robin time slot over 
the performance measures for each of the algorithms is given in Table 
15 and Figure 16((a) to (e)).  
  
                                                                                                                 

Figure 15. Effect of Round Robin Time 
Quantum over Performance Measures 
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For our particular process mix, best-fit and worst-fit memory placement algorithms gave identical results. None of 
the memory placement algorithms emerged as a clear winner. However, best-fit and worst-fit algorithms seemed to 
give more stable fragmentation percentage in the simulations. The aspect of first-fit being faster did not surface in 
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the results due to the nature of the implementation. In the implementation, the worst-fit and best-fit algorithms scan 
the hole list in one simulated time unit itself. In reality, however, scanning entire hole list by best-fit and worst-fit 
would make them slower that first-fit, which needs to scan the hole list only as far as it takes to find the first hole 
that is large enough. 
  
Fragmentation percentage in a given time window over the entire length of the simulation was also studied. The 
entire simulation was divided into twenty equal time windows and the fragmentation percentage computed for each 
of the time windows. The trend was studied for four different values of round robin time slot. Since our total hole 
size percentage threshold was specified as 6%, time frames with fragmentation percentage values higher than that 
were candidates for compaction [see Table 16 and Figure 17]. 

 
However, compaction was undertaken in any of the above candidate frames only if the hole size threshold 
specification was also met. Looking at Figure 16, we can say that while compaction (if done) for time slot values of 
3 and 4 was done in time frames 6 and 7, that for time slot value of 5 was undertaken in the latter ha lf of the 
simulation.  
 
To summarize, two time units emerged as the optimal 
time quantum value but none of the memory placement 
algorithms could be termed as optimal. Studying the 
fragmentation percentage over time gave us the 
probable time windows where compaction was 
undertaken. 
 
 
 
 
 

%Fragmentation 
Time Window Time Slot = 2 Time Slot = 3 Time Slot = 4 Time Slot = 5 

1 0.34 0.30 0.27 0.27 
2 0.79 0.45 0.45 0.41 
3 3.70 0.85 0.73 0.45 
4 4.00 3.00 1.90 0.79 
5 8.90 5.20 3.60 2.40 
6 8.10 7.70 7.70 4.40 
7 8.30 6.40 7.70 9.10 
8 8.30 3.60 5.60 2.20 
9 9.00 3.60 3.60 3.60 
10 8.40 3.60 3.60 5.50 
11 8.40 3.60 3.60 6.70 
12 8.40 3.60 3.60 6.70 
13 8.40 3.60 3.60 7.20 
14 8.40 3.60 3.60 7.10 
15 8.40 3.60 3.60 10.00 
16 8.40 3.60 3.60 11.00 
17 8.40 3.60 3.60 10.00 
18 8.40 3.60 3.60 9.50 
19 8.40 3.60 3.60 7.30 
20 8.40 3.60 3.60 7.30 

Figure 17. Fragmentation percentage over time 

Table 16. Fragmentation percentage over time 
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3.3.2. Paging Scheme 
 
Paging entails division of physical memory into many small equal-sized frames. Logical memory is also broken into 
blocks of the same size called pages. When a process is to be executed, its pages are loaded into any available 
memory frames. In a paging scheme, external fragmentation can be totally eliminated. However, as is illustrated 
later, paging requires more than one memory access to get to the data. Also, there is the overhead of storing and 
updating page tables. 
 
In paging, every address generated by the CPU is divided into two parts: a page number and a page offset. The page 
number is used as an index into a page table. The page table contains the base address of each page in physical 
memory. This base address is combined with the page offset to define the physical memory address. Two of the 
more significant parameters in a paging scheme are: page size and page replacement algorithms.  
 
We, hereby, discuss a paging example with a 64MB RAM and 2KB page 
size. 64MB (226) memory size can be represented by 26 bits. Likewise, a 
2KB page can be represented by 11 bits. Thus, for the page table [see 
Figure 18], 15 bits are needed for the page number and 11 bits for the 
page offset. Since there are 215 pages, there shall be 215 entries in the page 
table. Therefore, 

Size of page table = 215 x 30 bits » 123KB 
In the above example, if the page size were 1KB, then a 16 bit 

page number and 10 bit offset would be needed to address the 64MB 
RAM. In this case, 

Size of page table = 216 x 32 bits = 256KB 
Consequently, it can be said that a smaller page size results in larger sized 
page tables and the page table size becomes an overhead itself.  
 
Fragmentation, synchronization and redundancy as discussed in the previous section are three problems that need to 
be addressed in a memory management setting. In a paging scheme, there is no external fragmentation. However, 
internal fragmentation exists. Supposing the page size is 2KB and there exists a process with size 72,700 bytes. 
Then, the process needs 35 pages and 1020 bytes. It is allocated 36 pages with an internal fragmentation of 1028 
bytes (2048 – 1020). If the page size were 1KB, the same process would need 70 pages and 1020 bytes. In this case, 
the process is allocated 71 pages with an internal fragmentation of 4 bytes (1024 – 1020). Thus, a smaller page size 
is more favorable for reduced internal fragmentation.  
 
In the worst case scenario, a process needs ‘n’ pages and 1 byte, which results in an internal fragmentation of almost 
an entire frame. If process size is independent of page size, then  
 Average internal fragmentation = ½  x  page size  x  number of processes 
Hence, it can be observed that a large page size causes a lot of internal fragmentation. On the other hand, a small 
page size requires a large amount of memory space to be allocated for page tables. One simple solution to the 
problem of large size page tables is to divide the page table into smaller pieces. One way is to use a two-level paging 
scheme, in which the page table itself is also paged. However, multilevel paging comes with its own cost – an added 
memory access for each added level of paging. 
 
Anticipation and page replacement deals with algorithms to determine the logic behind replacing pages in main 
memory. A good page replacement algorithm has a low page-fault rate. Some common page replacement algorithms 
are as follows. 
Time Stamp Algorithms 
· FIFO: A FIFO replacement algorithm associates with each page the time when that page was brought into 

memory. When a page must be replaced, the oldest is chosen.  
· LRU: Least Recently Used (LRU) algorithm associates with each page the time of that page’s last use. When a 

page must be replaced, LRU chooses the page that has not been used for the longest time.  
Count based Algorithms 
· LFU: The least frequently used (LFU) algorithm requires that the page with the smallest count be replaced. The 

reason for this selection is that an actively used page should have a large reference count. 

Figure 18. A Page Table 
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· MFU: The most frequently used (MFU) algorithm requires that the page with the largest count be replaced. The 
reason for this selection is that the page with the smallest count was probably just brought in and has yet to be 
used.  

 
Continuous Memory Allocation versus Paging Allocation 
Table 17 gives a comparison between the two studied memory management schemes.  
 
 

 
 
3.3.2.1. Parameters Involved 
The new parameters involved in this memory management scheme are: 
· Page Size  
· Page Replacement Algorithms 
 
Effect of Page Size: A large page size causes a lot of internal fragmentation. This means that, with a large page size, 
the paging scheme tends to degenerate to a continuous memory allocation scheme. On the other hand, a small page 
size requires large amounts of memory space to be allocated for page tables. Finding an optimal page size for a 
system is not easy as it is very subjective dependent on the process mix and the pattern of access. 
 
Effect of Page Replacement Algorithms: Least-recently used, first-in-first-out, least-frequently used and random 
replacement are four of the more common schemes in use. The LRU is often used as a page-replacement algorithm 
and is considered to be quite good. However, an LRU page-replacement algorithm may require substantial hardware 
assistance. 
To study the effects of the above parameters on system performance, a new performance measure, namely 
replacement ratio percentage, is added to the usual list of performance measures. The replacement ratio percentage 
quantifies page replacements. It is the ratio of the number of page replacements to the total number of page accesses. 
 
3.3.2.2. Implementation Specifics 
 
Though paging was not attempted as part of this study, the implementation specifics of Zhao’s study [6] are included 
here to illustrate one sample implementation. 
 
Zhao, in his study, simulated an operating system with a multilevel feedback queue scheduler, demand paging 
scheme for memory management and a disc scheduler. A set of generic processes was created by a random 
generator. Ranges were set for various PCB parameters as follows: 
· Process size: 100KB to 3MB 
· Estimated execution time: 5 to 35ms 
· Priority: 1 to 4 
 
A single level paging scheme was implemented. A memory size of 16MB was chosen and the disc driver 
configuration: 8 surfaces, 64 sectors and 1000 tracks was used. 
 
Four page replacement algorithms: LRU, LFU, FIFO, random replacement and page size were chosen as the 
independent variables in context to paging. The dependent variables for the study were average turnaround time and 
replacement percentage. 

Continuous Memory Allocation Scheme Paged Allocation Scheme 
Advantages: 
· An easy algorithm for implementation purposes. 

Advantages: 
· No external fragmentation, therefore, no 

compaction scheme is required. 
Disadvantages: 
· Fragmentation problem makes compaction an 

inevitable part. Compaction in itself is an expensive 
proposition in terms of time. 

Disadvantages: 
· Storage for page tables. 
· Addressing a memory location in paging scheme 

needs more than one access depending on the levels 
of paging. 

Table 17. Comparing continuous memory allocation scheme with paged allocation scheme 
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3.3.2.3. Implementation Results 
 
The data in Table 18 (taken from Zhao’s study [6]) show the effect of replacement algorithms on the replacement 
ratio. 
 
Table 18. Page Replacement Scheme vs. Replacement Ratio percentage 

Scheme FIFO LRU LFU Random 

Replacement Ratio % 31 30 37 31 

 
After having found the optimal values of all studied parameters except page size in his work, Zhao used those 
optimal values for 1000 simulations each for a page size of 4KB and 8KB. The latter emerged as a better choice.  
In his work, Zhao concludes that 8KB page size and the LRU replacement algorithms constitute the parametric 
optimization in context to paging parameters for the specified process mix.  
 
3.4. Disc Scheduling Integrated With Ram Manager Module 
 
Disc systems are the major secondary-storage I/O device on most computers. Requests for disc I/O are generated 
both by the file systems and by virtual-memory systems. Each request specifies the address on the disc to be 
referenced, which is in the form of a block number. The lower levels of the file-system manager convert this address 

into the hardware-level partition, cylinder, surface, and sector number.  
 
One of the functions of the memory manager is to manage swapping 
between main memory and disc when main memory is not big enough to 
hold all the processes. The disc, i.e. the secondary storage device, at the 
same time needs effective management in terms of disc structure  [see 
Figure 19] and capacity, the disc writing mechanism and the scheduling 
algorithm choice. Since most jobs depend heavily on the disc for program 
loading and input and output files, it is important that disc service be as 
fast as possible. The operating system can improve on the average disc 
service time by scheduling the requests for disc access. 
 
The disc movement is composed of three parts. The three distinct 
physical operations, each with its own cost, are: seek time, rotational 
delay/latency time and transfer time.  

 
To access a block on the disc, the system must first move the head to the appropriate track or cylinder. This head 
movement is called a seek, and the time to complete it is seek time [3]. In other words, seek time is the time 
required to move the access arm to the correct cylinder. The amount of time spent seeking during a disc access 
depends on how far the arm has to move. If we are accessing a file sequentially and the file is packed into several 
consecutive cylinders, seeking needs to be done only after all the tracks on a cylinder have been processed, and then 
the read/write head needs to move the width of only one track. At the other extreme, if we are alternately accessing 
sectors from two files that are stored at opposite extremes on a disc, seeking is very expensive. Seeking is likely to 
be more costly in a multiuser environment, where several processes are contending for use of the disc at one time, 
than in a single-user environment, where disc usage is dedicated to one process. Since it is usually impossible to 
know exactly how many tracks will be traversed in a seek, we usually try to determine the average seek time 
required for a particular operation. If the starting and ending positions for each access is random, it turns out that the 
average seek traverses one-third of the total number of cylinders that the read/write head ranges over [2]. 
 
Once the head is at the right track, it must wait until the desired block rotates under the read-write head. This delay 
is the latency time [3]. Hard discs usually rotate at about 5000 rpm, which is one revolution per 12ms. On average, 
the rotational delay is half a revolution, or about 6ms. As in the case of seeking, these averages apply only when the 
read/write head moves from some random place on the disc surface to the target track. In many circumstances, 
rotational delay can be much less than the average [2]. 
 

 
 

Figure 19. Hard Disc Structure 
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Finally, the actual transfer of data between the disc and main memory can take place. This last part is transfer time 
[3]. The total time to service a disc request is the sum of the seek time, latency time, and transfer time. For most 
discs the seek time dominates, so reducing the mean seek time can improve the system performance substantially. 
Thus, the primary concern of disc scheduling algorithms is to minimize seek and latency times. Some of the 
common disc scheduling algorithms include: FCFS, SSTF, SCAN, C-SCAN, LOOK and C-LOOK algorithms. 
 
3.4.1. Parameters Involved 
 
Parameters that influence the system performance in terms of memory management including disc scheduling are 
hereby enumerated: 
·  Disc access time (seek time, latency time and transfer time) 
· Disc configuration  
· Disc scheduling algorithm  
· Disc writing mechanism (where to rewrite processes after processing them in RAM) 
· Memory Size  
· RAM Access Time  
· Compaction thresholds – Memory hole-size threshold and total hole percentage 
· Memory placement algorithms  
· Round robin time slot  
 

Effect of Disc Access Time: The lower the value of this parameter, the better the system performance. As discussed 
earlier, seek time, latency time and transfer time together give the disc access time. Since seek is the most expensive 
of the three operations, lowering seek time is crucial to system efficiency. 
 
Effect of Disc Configuration: Disc configuration relates to the structural organization of the disc into tracks and 
sectors. Disc surfaces and tracks are determined by hardware specifications. However, some operating systems 
allow the user to choose the sector size that influences the number of sectors per track. It is an entire sector that is 
read or written when transfer occurs. This property determines efficiency of many computing algorithms and 
determines inter-record and intra-record fragmentation in terms of database operations. The number of tracks equals 
the number of cylinders. Reading and writing on one cylinder reduces the seek time considerably. Thus, even though 
this parameter does not necessarily affect operating system performance directly, it is nevertheless important to 
understand its implications. 
 
Effect of Disc Scheduling Algorithm: It is this parameter that primarily determines the possible minimization of 
seek and latency times. While FCFS algorithm is easy to program and is intrinsically fair, it may not provide the best 
service. SSTF scheduling substantially improves the average service time but suffers from the inherent problem of 
starvation of certain processes in case of continuing flow of requests. The SCAN, C-SCAN, LOOK and C-LOOK 
belong to the more efficient genre of disc scheduling algorithms. These are however, complicated in their respective 
implementations and are more appropriate for systems that place a heavy load on the disc. With any scheduling 
algorithm, however, performance depends heavily on the number and types of requests. In particular, if the queue 
seldom has more than one outstanding request, then all scheduling algorithms are effectively equivalent. In this case, 
FCFS scheduling is also a reasonable algorithm.  
 
Disc Writing Mechanism: In terms of disc writing mechanism, there is a choice between writing back to where the 
process was initially read from and writing back to the cylinder closest to the disc head. While the former is 
straightforward to implement, in no way does it attempt on optimization of seek time. The latter choice, however, 
results in increased overhead in terms of updating the location of the process every time it is written back to the disc. 
 
Effects of memory size, RAM access times, compaction thresholds, memory placement algorithms and round robin 
time slot have been discussed in section 3.3.1.1. 
 
In keeping with the above discussion, the simulation of the above module and the analysis of the collected data 
focus on the optimal round robin time quantum, average seek and latency times. Combination of disc scheduling and 
the memory placement algorithms also form the subject of the analysis, as does the sector size. 
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3.4.2. Simulation Specifications and Method of Data Collection 
 
The attempted simulation implements a memory manager system that includes disc scheduling. The implemented 
system uses a continuous memory allocation scheme.  Round robin mechanism is the scheme for process 
scheduling. 
 
Following are the details of the involved independent parameters: 
· Disc access time (seek + latency + (job size (in bytes)/500000) ms where, seek time and latency time are 

variable parameters) 
· Disc configuration (8 surfaces and 300 tracks/surface) – fixed parameter 
· Disc scheduling algorithm (a variable parameter – FIFO, SSTF) 
· Disc writing mechanism (processes are written at the same place they are read from) - fixed parameter 
· Memory Size (32 MB) – fixed parameter 
· Compaction threshold (6% and hole size = 50KB) – fixed parameters 
· RAM Access Time (14) – fixed parameter 
· Fitting algorithm (a variable parameter – First Fit, Best Fit) 
· Round Robin Time Slot (a variable parameter, multiple of 1ms) 

 
In addition to the above enumerated parameters, the process sizes range from 20KB to 2MB (multiple of 10KB) and 
the process execution times vary from 2 ms to 10 ms (multiple of 1ms). The disc size is taken as 600MB and is half 
filled with jobs at the beginning of the simulation. The jobs are written cylinder-wise on the disc. 
 
In context of disc scheduling, seek times and latency times play a very crucial role in determining the system 
performance. Hence, two additional parameters, namely, percentage seek time and percentage latency time are 
added to the array of performance parameters. Both of these parameters are calculated as a percentage of total time. 
More about seek time and latency time is included along with simulation results. These two, along with the other 
performance measures, constitute the dependent variables of this simulation. 
 
Data was collected by means of multiple sample runs. A walkthrough of a sample run for this module is available at 
www.bridgeport.edu/~sobh/SampleRun4.doc. The data was then systematically organized as described. 
 
Initially, the whole data set was divided into four broad categories. The four categories are the four possible 
combinations of the fitting algorithms (First Fit and Best Fit) and the implemented disc scheduling algorithms (FIFO 
and SSTF). These categories (FIFO-First Fit, FIFO-Best Fit, SSTF-First Fit, SSTF-Best Fit) were further branched 
into three groups based on the variable parameter which was chosen amongst average seek time, latency time and 
round robin time slot. At this level, the performance measures used were: Throughput, %CPU utilization, average 
turnaround time, average waiting time, % seek time and % latency time. The performance measures were studied as 
a function of the variable parameter. Performance measures were also studied in terms of sector size for the SSTF-
First Fit combination. 

 
3.4.3. Simulation Results and Discussion 
 
At the onset, there is an algorithm combination versus performance analysis that is succeeded by other parameters. 
These parameters include average seek time, average latency time, round robin time slot and sector size against the 
performance measures of throughput, %CPU utilization time, average turnaround time, average waiting time, % 
seek time and % latency time.  
 
Algorithm Combinations vs. Performance Measures 
Fixed Parameters: 
RR Time Slot: 2ms Average Seek Time: 8ms  
Sector Size: 1KB Average Latency Time: 4ms 
Simulation Time: 3000ms 
 
SSTF surely outperforms FIFO in all respects. However, what is interesting to note is that while First Fit algorithm 
seems to be markedly more efficient in terms of throughput, average turnaround and average waiting time; the best-
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fit algorithm tends to outshine percentage CPU utilization and 
percentage seek time [see Table 19 and Figure 20]. The higher CPU 
utilization percentage can be explained as a function of lowered seek 
time. 
 

 
 
From this point on discussion is done focusing on the SSTF-First Fit and FIFO-First Fit algorithm combinations. 
 
Average Seek Time vs. Performance Measures 
 
Measures of seek time include track-to-track, full stroke and average seek time. It is the last that has been used. It is 
the time (in ms) that the head takes to cover half of the total tracks. It tends to vary between 8 to 10ms. State of the 
art machines boast of a seek time of 4ms [7]. This explains the average seek time range under scrutiny. 
 
Fixed Parameters: 
RR Time Slot: 2ms Simulation Time: 3000ms 
Sector Size: 1KB Average Latency Time: 4ms 

  
As evident from the above Tables 20 and 21 and their corresponding graphs [see Figures 21 and 22], average seek 
time tends to affect CPU utilization. Higher average seek times relate to higher seek time % which pulls down the % 
CPU utilization. As a special note, the total latency time is unchanged (e.g. in all cases it was 2748ms in case of 
SSTF-First Fit). It is the increasing seek time that pulls down the % latency time. It should not be misunderstood 
that higher average seek times improve latency times. 
 
The variable parameter tends to show little if any effect on the other performance measures.  
 
 

 

 

Algorithm 
CombinationThroughput %CPU 

Utilization

Average 
Turnaround 
Time 

Average 
Waiting 
Time 

%Seek 
time  

%Latency 
Time 

FIFO, First 
Fit 99 7.94 1077 1073 55.08 21.48 
FIFO, Best 
Fit 82 16.78 944 940 11.07 31.21 
SSTF, First 
Fit 99 14.85 1068 1064 15.99 40.17 
SSTF, Best 
Fit 82 18.62 943 939 1.32 34.64 

Avg 
Seek 
Time 

Throughput %CPU 
Utilization 

Avg 
Turnaround 
Time 

Avg 
Waiting 
Time 

% 
Seek 
time  

% 
Latency 
Time 

4 99 10.96 1071 1068 38.00 29.64 
6 99 9.21 1074 1070 47.90 24.91 
8 99 7.94 1077 1073 55.08 21.48 
10 99 6.98 1080 1076 60.51 18.88 

Avg 
Seek 
Time 

Throughput %CPU 
Utilization 

Avg 
Turnaround 
Time 

Avg 
Waiting 
Time 

% 
Seek 
time  

% 
Latency 
Time 

4 99 16.14 1067 1064 8.69 43.66 
6 99 15.47 1068 1064 12.49 41.84 
8 99 14.85 1068 1064 15.99 40.17 
10 99 14.28 1069 1065 19.22 38.62 

Figure 20. Algorithm Combination vs. 
Performance Measures 

Algorithm Combination vs. Performance Measures
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SERIES INDEX                              PERFORMANCE MEASURES INDEX
Series1 FIFO, First Fit                  1. Throughput                 5. % Seek Time
Series2 FIFO, Best Fit                  2. CPU Util %                  6. % Latency 
Time
Series3 SSTF, First Fit                 3. Av. Turnaround
Series4 SSTF, Best Fit                 4. Av. Waiting

Table 20. Average Seek Time vs. Performance 
Measures (FIFO–First Fit) 
 

Table 19. Algorithm Combination vs. Performance Measures 

Table 21. Average Seek Time vs. Performance 
Measures (SSTF–First Fit) 
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Average Latency Time vs. Performance Measures 
 
Latency time is objectively measured as average latency time which is time taken for half rotation of the disc 
platters. Measured in ms, average latency time is derived by the spindle speed. Typical average latency times vary 
from 2ms to 8ms [7]. For this reason, the average latency time was varied as depicted. 
 
Fixed Parameters: 
RR Time Slot: 2ms             Simulation Time: 3000ms  
 Sector Size: 1KB            Average Seek Time: 8ms 
  

 

 
 

Similar to the effect of average seek time discussed earlier, the average latency time tends to affect CPU utilization 
[see Tables 22 and 23 and Figures 23 and 24]. Higher average latency times relate to higher latency time percentage 
that pulls down the % CPU utilization. As a special note, the total seek time is unchanged (e.g. in all cases it was 
7047ms in case of FIFO-First Fit and 1094 in case of SSTF-First Fit). It is the increasing latency time that pulls 
down the % seek time. It is important to understand this fact for the associated risk of misinterpreting that higher 
latency rates improve seek times. 
 

Avg 
Latency 
Time 

Throughput  %CPU 
Utilization 

Avg 
Turnaround 
Time 

Avg 
Waiting 
Time 

% 
Seek 
time  

% 
Latency 
Time 

2 99 8.90 1075 1071 61.7012.03 
4 99 7.94 1077 1073 55.0821.48 
6 99 7.17 1079 1075 49.7329.10 
8 99 6.54 1081 1077 45.3435.36 

Avg 
Latency 
Time 

Throughput  %CPU 
Utilization 

Avg 
Turnaround 
Time 

Avg 
Waiting 
Time 

% 
Seek 
time  

% 
Latency 
Time 

2 99 18.58 1066 1062 20.0125.13 
4 99 14.85 1068 1064 15.9940.17 
6 99 12.36 1070 1066 13.3150.18 
8 99 10.59 1073 1069 11.4157.31 

Table 22. Average Latency Time vs. Performance 
Measures (FIFO–First Fit) 

Average Seek Time vs. Performance 
Measures 

using FIFO-First Fit algorithm 
combination
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Figure 21. Average Seek Time vs. Performance 
Measures (FIFO–First Fit) 
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using SSTF-First Fit algorithm 
combination
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Figure 22. Average Seek Time vs. Performance 
Measures (SSTF–First Fit) 

Table 23. Average Latency Time vs. Performance 
Measures (SSTF–First Fit) 
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The variable parameter tends to show little if any effect on the other performance measures. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Round Robin Time Slot vs. Performance Measures 
 
Fixed Parameters: 
Average Seek Time: 4ms       Simulation Time: 3000ms  
Average Seek Time: 8ms       Sector Size: 1KB  

 

 
Many interesting trends can be studied here as is evident from the above tables and their corresponding charts [see 
Tables 24 and 25 and Figures 25 and 26]. Increasing the time slot markedly increases the CPU utilization and 
throughput, and decreases the average turnaround and average waiting time. All these are indicative of the FIFO 
behavior. Though performance measures tend to make increased time slot look like a very lucrative proposal, 
associated disadvantages of possible starvation of processes apply. As the context switch decreases with increasing 
time quantum, so does the percentage seek and latency times.  All this collectively increases the % CPU utilization.  
 
 
 
 
 

RR 
Time 
Slot 

Throughput %CPU 
Utilization 

Avg 
Turnaround 

Time 

Avg 
Waiting 

Time 

% 
Seek 
time  

% 
Latency 

Time 

2 99 7.94 1077 1073 55.08 21.48 
4 168 13.66 719 716 50.89 20.13 
6 200 17.32 277 274 47.77 19.77 
 8 247 20.51 263 259 45.9 19.14 

RR 
Time 
Slot 

Throughput % CPU 
Utilization 

Avg 
Turnaround 

Time 

Avg 
Waiting 

Time 

% 
Seek 
time  

% 
Latency 

Time 

2 99 14.85 1068 1064 15.99 40.17 
4 168 23.43 714 710 15.73 34.55 
6 200 28.39 272 269 14.39 32.41 
8 247 34.64 258 254 8.65 32.31 

 Table 24. Round Robin Time Slot vs. 
Performance Measures (FIFO-First Fit) 

Table 25. Round Robin Time Slot vs. Performance 
Measures (SSTF-First Fit) 

Figure 23. Average Latency Time vs. 
Performance Measures (FIFO-First Fit) 

Figure 24. Average Latency Time vs. 
Performance Measures (SSTF-First Fit) 

Average Latency Time vs. Performance 
Measures using FIFO-First Fit algorithm 
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Sector Size vs. Performance Measures 
Fixed Parameters: 
Average Seek Time: 4ms Simulation Time: 3000ms  
Average Seek Time: 8ms  RRTime Slot: 2ms 
 

 
This parameter was studied for the SSTF-First Fit algorithm 
combination and due to lack of interesting results, further 
data was not collected. The parameter of sector size was 
varied over the range of 1KB to 8KB and showed little 
effect on any of the performance measures [see Table 26 
and Figure 27]. It can be explained by the fact that sector 
size does not affect disc allocation markedly and has no say 
in transfer rate. Moreover, process sizes varied from 20KB 
to 2MB in multiples of 20KB. 
 
 

Sector 
Size 
(KB) 

Throughput  %CPU 
Utilization 

Average 
Turnaround 
Time 

Average 
Waiting 
Time 

% 
Seek 
time  

% 
Latency 
Time 

1 99 14.85 1068 1064 15.99 40.17 
2 99 14.85 1068 1064 15.99 40.17 
4 99 14.85 1068 1064 15.99 40.17 
8 99 15.23 1068 1064 16.44 38.58 

 

Table 26. Sector Size vs. Performance Measures (SSTF-
First Fit) 
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Figure 25. Round Robin Time Slot vs. 
Performance Measures (FIFO-First Fit) 

RRTimeSlot vs. Performance Measures
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Figure 26. Round Robin Time Slot vs. 
Performance Measures (SSTF-First Fit) 

Sector Size vs. Performance Measures 
using SSTF-First Fit algorithm combination
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To summarize, the SSTF-First Fit algorithm emerges to be the optimal algorithm combination. With the optimal 
value of round robin time quantum and minimal possible values of average seek time and average latency time, the 
system performance tends to be maximized. The sector size however, tends to show little if any effect. 
 
3.5. Integration Of The Modules Into An Optimal Operating System 
 
After an in-depth study of the four critical operating systems functions of CPU scheduling, synchronization and 
deadlock handling, memory management and disc scheduling from a parametric optimization point of view, the next 
logical step is to integrate the modules to obtain an optimal non-platform based operating system. The results of 
some such attempts are discussed first.  
Identification of the most important parameters is useful for a complete evaluation and for a fair design of a real 
system. Zhao [6] and Su [4] have done research along these lines i.e. attempting to find the right permutation of 
design parameters to achieve excellent system performance for various process mixes. 
 
Zhao [6] attempted a simulation of an operating system using multiple level feedback queue for CPU scheduling, 
paging for memory management and use of FIFO disc scheduling algorithm under disc management. The study 
identified round robin slot time, aging parameters, page replacement algorithms and page size to be some of the 
more critical parameters deriving system performance.  
 
Su [4] in her work on parametric optimization of an operating system studied the parameters of CPU scheduling 
algorithms, prediction of burst time and round robin quantum in context of system performance. The study used 
Fourier Amplitude Sensitivity Test (FAST) analysis to identify the most important parameters that contribute to 
system performance [see Appendix A for further details on FAST]. Execution time and number of processes were 
identified to be the most important factors contributing to the performance of the model system. Round robin time 
quantum, process size and process priority followed close suit. In terms of parametric optimization, FIFO, priority-
base and SJF scheduling fared better as compared to multilevel feedback queue and round robin queue; the impact 
of round robin quantum was found significant only when the value was small; and performance of SJF and 
multilevel feedback queues was found to be largely dependent on the prediction of burst time. 
 
Integrated Perspective of our work 
 
The study started with an in-depth discussion of four critical operating system functions namely CPU scheduling, 
synchronization and deadlock handling, memory management and disc scheduling. We started with CPU scheduling 
as it is the most elementary and closest to the concept of process and process-mix. Next, we discussed the topic of 
process synchronization and deadlock handling. As we moved to the memory management module, our simulation 
integrated CPU scheduling with memory management. The CPU scheduling algorithm chosen, however, was round 
robin algorithm instead of the multi-level feedback queue. Next, as we moved to disc scheduling, we built on our 
implementation from memory management module by integrating disc scheduling into the same. In other words, our 
implementation as discussed under the disc scheduling module can also be viewed as an operating system that uses 
round robin algorithm for CPU scheduling, continuous memory allocation scheme for memory management and has 
a disc scheduling mechanism. 
 
The parameters of this integrated system are, hereby, enumerated: 

· Time slot for the round robin queue  
· Aging time for transitions from Queue 4 to Queue 3, Queue 3 to Queue 2 and Queue 2 to Queue 1 i.e. the 

aging thresholds for FIFO, priority-based and SJF queues  
· a-values and initial execution time estimates for the FIFO, SJF and priority-based queues. 
· Choice of preemption for the SJF and Priority based queues.  
· Context switching time 
· Memory size 
· RAM access time 
· Compaction algorithm 
· Compaction thresholds – Memory hole-size threshold and total hole percentage 
· Memory placement algorithms – first-fit, best-fit, worst-fit 
· Disc access time (seek time, latency time and transfer time) 
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· Disc configuration 
· Disc scheduling algorithm – FIFO, SSTF, LOOK, C-LOOK, SCAN, C-SCAN 
· Disc writing mechanism 

 
Next comes the issue of optimizing the system and coming up with the right permutation of design parameters to 
achieve excellent performance measures. As was discussed earlier in the paper, even if six of the above mentioned 
parameters have ten possible values, then we have a million possible permutations. Furthermore, the results 
obtained from these permutations are applicable to our particular process mix only.  
 
Thus, only the optimal values for the parameters that have been studied as variable independent parameters in the 
course of this study are enumerated: round robin time – 4ms, a-updating scheme – no effect, memory placement 
algorithm – best fit, disc scheduling algorithm – SSTF, average seek time – 4ms, average latency time – 2ms, sector 
size – no effect. The following are the values of the fixed independent variables: RAM size – 32MB, Compaction 
thresholds – 6% and hole size = 50KB, RAM access time – 14ns, Disc configuration – 8 surfaces, 300 
tracks/surface, disc access time – (seek + latency + job size (in bytes)/50000) ms. The above stated optimal values 
are pertinent to our particular process mix only. 
 
At this point, we would like to reiterate that the purpose of this study has been to present an alternative approach in 
studying operating systems design. By using parametric optimization, we propose a method of study such that 
students get a clear concept of operating systems functions and design rather than implementing a real system.  
 

4. Summary and Conclusion 
 
An alternative approach to the study of operating systems design and concepts by way of parametrically optimizing 
four of the critical operating system functions, namely, CPU scheduling, synchronization and deadlock handling, 
memory management and disc scheduling has been the focus of this study. Last but not least, an integration of the 
modules into an optimal operating system with the right permutation of design parameters to achieve excellent 
performance measures for various process mixes is discussed. A detailed discussion in context of the various 
modules attempts to make clear the relation of each parameter in the four modules with system performance. While 
parameters like memory size, transfer rate and number of available resources have a straightforward and well 
anticipated effect, it is round robin quantum time, memory placement algorithms, disc scheduling algorithms, etc. 
that tend to be more challenging to optimize.  
 
The goal of presenting parametric optimization of four critical operating system functions in terms of the above 
stated more challenging parameters has been attempted by means of simulations of the same. The four tasks 
simulated are CPU scheduling, synchronization and deadlock handling, memory management, and disc scheduling 
respectively.  
 
It is the optimal value of the round robin quantum along with smallest possible context switching time that tends to 
maximize performance in context of CPU scheduling. a-updating did not have any effect in our simulations using 
the specified process-mix. 
 
In the deadlock handling module, the performance measure of rejection rate is controlled by the dynamic mix of 
number of processes, number of available requests and maximum resource requirement per process and also, by the 
order in which the requests are made. More available resources and fewer resource requests improve performance in 
a linear manner. A study of rejection rate over time gave a normal curve. 
 
In context of memory management, using first fit algorithm with a round robin time slot value of two time units 
constitutes the parametric optimization in terms of the performance parameters including fragmentation time; none 
of the memory placement algorithms namely first-fit, best-fit and worst-fit emerged as more efficient than the 
others. The study of fragmentation percentage over time provided probable time windows where compaction could 
have been undertaken in the course of a simulation. 
 
In the disc-scheduling module, the SSTF-First Fit algorithm combination emerges to be the optimal algorithm 
combination. With the optimal value of round robin time quantum and minimal possible values of average seek time 
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and average latency time, the system performance tends to be maximized. The sector size however, tends to show 
little if any effect. 
 

Presenting the work from an integrated perspective, round robin quantum, aging parameters, page replacement 
algorithms, page size, execution time, number of processes and process size have emerged to be some of the more 
important parameters. Last but not least, it needs to be reiterated that the purpose of this study has been to present an 
alternative approach in studying operating systems design. By using parametric optimization, we propose a method 
of study such that students get a clear concept of operating systems functions and design rather than implementing a 
real system. 
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7. Appendices 
 
APPENDIX A 
 
Fourier Amplitude Sensitivity Test (FAST) 
 
Function 
It is a mathematical technique to identify relative contribution of various parameters in a system to its performance. 
 
Central Concept 
For a mathematical model, 
 Y = F ( X ) 
where, 
 Y = {yj; j = 1, …, n}: model output parameter vector 
 X = {xi; i = 1, …, m}: model input parameter vector  
 F: function 
 
The ensemble mean of its output yk is obtained by 
 <yk> = ?…? yk (x1, …, xm) p (x1, …, xm) dx1 … dxm 
where, ‘p’ is probability density function for X. 
 
The central concept to the FAST method is that the above integral over the multiple input parameter space can be transformed 
into a one-dimensional integral over a search variable s: 
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 <yk> =    lim      1   ? yk [x1 (s), …, xm (s) ] ds 

             T ® µ  2T 
with each input parameter xi being assigned a frequency wwusing a transformation function. 
 
Advantage 
This technique dramatically reduces number of experiments needed to estimate a variation in Y in response to various 
combination of X, which may change their values in different probability distributions. 
 
For example, FAST requires only 411 runs for a model with 10 input parameters, each of which has 10 values within a range, 
while a total of ten billion model runs would be needed with regular approach of sampling technique. 
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