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ABSTRACT: It is crucial that students realize that solving equations and writing papers 
are not exercises done to please teachers, that equations represent real-world events, that 
the process of writing a paper reflects the process of reporting information, that problem-
solving is what adults do on the job.  Consequently, we teach mathematics and English, 
not as separate subjects, but as two grammars that must be used to formulate solutions to 
problems.  Whenever possible, we apply the two grammars to problems from the six 
engineering technology disciplines pursued at Ward College of Technology (at the 
University of Hartford).  In this paper, we discuss our integrated math-English curriculum 
(developed with support from a University-wide FIPSE grant), the subject matter of 
which is problem-solving.  We demonstrate the comparison and contrast of the two 
languages in problem solving and how the solutions of problems extend into the students’ 
technical courses through a perspective of multiple intelligences. 

Introduction 

Under a grant from FIPSE (Fund for the Improvement of Postsecondary 

Education), The University of Hartford offers courses called First -Year Interest Groups, 

or FIGS.  Each FIG comprises two courses, generally a writing course and a content 

course with a common theme, and students must enroll in both courses to receive credit.  

For example, the Barney School of Business at the University offers a FIG that links 

BAR 110, Introduction to Business, with RLC 110 Reading and Writing I.  Among the 

many FIGs offered by the College of Arts and Sciences is one that links ENG 140, 

Introduction to Literature with PHI 110, Introduction to Philosophy.  Although the two 
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courses share a theme, the curriculum of each course is separate; occasional assignments 

in each course relate to the curriculum of the other course. 

 When Ward College of Technology was invited to participate in the FIPSE grant, 

the original plan was to have a traditional FIG with a writing course and a content course 

in which the writing course assignments would relate to one of the technology courses.  

However, in the course of developing the FIG, the writing instructor and one of the 

mathematics instructors at Ward College (the authors of this paper) began to talk about 

the problems they encountered in teaching the support courses for technology students. 

Those problems centered on what the authors thought was the inability of the 

freshmen in our classes to solve problems in math and in writing.  Discussion led to a 

decision to solve the problem of that inability by forming the Ward College FIG, not with 

a traditional writing course and a content course, but with the freshman writing course, 

EN 111, Expository Writing, and the freshman math course, MTH 112, Algebra and 

Trigonometry.  The theme of the FIG would be problem solving. 

Further, instead of simply sharing the theme, the authors decided to structure the 

courses so that the entire curriculum in both courses would be problem solving.  Both 

English and mathematics would be presented as grammars for use in describing the world 

and solving problems in the world. 

In this paper, we report on the first semester of our FIG and what we learned 

teaching it. 
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Expected Outcomes 

 In planning the FIG, the authors completed OATAs (Outcome/Activity/ 

Technique/Assessment) in a grid format. Figure 1 shows the OATAs the authors created 

as they prepared to teach the FIG for the first time in the fall 2001 semester. 

Figure 1:  First-Year Interest Groups (FIGs) ILB-IOTA Grid 
Integrative 

Learning Block 
(ILB) 

Student Learning 
Outcome 

Learning 
Activity 

Instructional  
Technology 

Learning 
Assessment 

English and Math 
are the 
fundamental 
“languages” of the 
technology 
curriculum 

Students will solve basic 
math problems. 

Solve problem sets both 
individually and in groups. 

Students work in groups 
to discuss and solve 
problems. Instructor 
articulates and identifies 
problem-solving steps 

 

 Students identify and 
differentiate between 
descriptive and embedded 
word problems 

Discuss problem types Instructor discusses 
types of problems; 
walks through hierarchy 
to solve problems; 
presents worksheet with 
steps 

 

 Students solve descriptive 
and embedded word 
problems by translating 
English into math.  
Students differentiate 
significant and 
nonsignificant information 

Solve problem sets Groups discuss and 
solve problems.  
Instructor discusses 
drawing problems. 

 

 Students recognize 
importance of math and 
English as they relate to 
knowledge and research in 
technology 

Review tech. journals and 
other literature and present 
findings orally or in writing 

Individuals conduct 
research in library and 
other hardcopy sources 
and online sources 

Oral presentations 
and papers 

Students learn 
basic problem-
solving skills that 
translate from 
application to 
application 

Students apply problem-
solving techniques in math 
and English 

Discuss Bloom’s  
Taxonomy, other problem-
solving paradigms 

Instructor introduces 
terminology 

 

  Discuss components of 
analysis, synthesis, 
evaluation 

Groups discuss brain 
teasers; writing 
problems; math 
problems 

Groups report 
results 

  Apply analysis, synthesis, 
evaluation methods. 

Individuals solve 
problems, write papers 

Papers and 
problem sets 
reviewed 

 

Writing our OATAs, we fully expected to teach our freshmen students to solve problems 

with little difficulty. P
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The Class 

 We implemented our plans in the fall of 2001 with the writing class and the math 

class meeting one immediately after the other in the same classroom and with an 

enrollment of 19 students.  Each instructor attended the other’s class not only so that we 

could reference the other's content in our own classes but it also provided symbolic team 

teaching of the two classes thought of as two sections of the "same" course.  

Our first step was to understand our students, to which end we administered both 

a multiple intelligences (MI) inventory (using Martin Gardner’s formulation of that 

theory)1 and a Myers-Briggs Type Inventory (MBTI)2.  In the MI inventory, as 

summarized in Figure 2 below, we found that our Audio Engineering Technology 

students were strongest in musical intelligence, our Architectural Engineering 

Technology students were strongest in visual-spatial and bodily-kinesthetic intelligence 

as well as musical, and our Mechanical and Computer Engineering Technology students 

were strongest in bodily-kinesthetic intelligence.  None was strong in linguistics, and the 

logical-mathematical intelligence was stronger in the two majors strongly connected to 

the arts (architecture and audio). 

Please note that the information presented is based on only 18 students.  We’re 

reporting on trends until we have more data, at which time we may be able to perform 

quantitative analysis and draw significant conclusions.  We also have to note that every 

class may differ, meaning that the trends reported here apply only to the class taught in 

the fall 2001 semester. 
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Figure 2.  Results summary of MI and MBTI tests. 

MI AET AuET MET CET 

Musical 5.8 7.3 6 5 
Logical-Mathematical 5.7 6.1 2 2 
Linguistic 3 2.9 1.5 3 
Bodily-Kinesthetic 6.3 5.3 7.5 7 
Visual-Spatial 5.8 4.9 5 3 
Interpersonal 4.7 4.6 3.5 5 
Intrapersonal 4 5.6 4.5 2 
Naturalist 3.2 3 2 1 
 

MBTI AET AuET MET CET 
E 6 6.6 3 8 
I 4 3.4 6.5 2 

S 12.3 11.6 17 17 
N 7.5 8.4 3 3 
T 7.5 10.5 11 10 
F 12.5 9.6 9 10 
J 11.7 9.1 10.5 12 
P 8.3 10.6 9.5 8 

 
Where the majors’ abbreviations and populations are 

Abbreviation Major # of students 
AET Architectural Engineering Technology 6 
AuET Audio Engineering Technology 9 
MET Mechical Engineering Technology 2 
CET Computer Engineering Technology 1 
 
Based on the "average" student, our students have the following MBTI profiles: 

Major Ave 
AET ESFJ 
AuET ESTP 
MET ISTJ 
CET ES?J 

 
Seeing those results, we immediately realized that one of our tasks would be to 

strengthen the students’ linguistic and mathematical-logical intelligences, not simply to 

teach them writing and math.  In other words, our task would be to teach them the 
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patterns of thought represented in writing and math, in addition to the skills embodied in 

writing and mathematical problem solving. 

The MBTI revealed that our students are concrete thinkers; all are Sensers.  These 

profiles provide a particular challenge for teaching the FIG in that both professors are Ins, 

whereas the students were all ESs.  "Observers (SPs and SJs) seem more at home when 

… attending to concrete things … and to practical matters …. In turn, Introspectors (NTs 

and NFs) tend to be more content when these concrete concerns are handled by someone 

else and they are left free to consider the more abstract world of ideas."3   

 Armed with this information, we approached the classes, first, by being explicit 

about our objectives.  We explained the results of both the MI and Myers -Briggs 

inventories and the fact that one of our goals was to strengthen their linguistic and 

mathematical-logical intelligences.  We also pointed out how our profiles, as faculty, 

affected the way we teach.  We invited their suggestions for how we might modify our 

teaching styles to match their learning profiles.  We wanted to be clear that the students 

had strengths that were not traditionally valued in high school, but that would be highly 

valued in their chosen professions.  However, in order to prosper in their chosen 

professions, they would have to learn certain tools, namely, writing, presentation, and 

mathematics.   

 We also presented our MI profiles and Myers-Briggs results to the students in 

order to demonstrate, first, that individuals with different strengths can work together to 

solve problems.  We also demonstrated that our different strengths (Professor Segal is 

extremely strong in musical and linguistic intelligences, whereas Dr. Townsend is 

extremely strong in mathematical-logical and visual-spatial intelligences) lead us to P
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prefer different media for problem solving, but that both of us have mastered the skills 

supported by other intelligences in order to perform various problem-solving tasks at 

work. 

 In addition, we explicitly stated that the true content of both courses was problem 

solving, that we would be talking about mathematics in the writing class and writing in 

the mathematics class, because mathematics and writing are the tools used to describe 

problems and solutions at work.  Even when the problems involved can be visualized, 

even if the problems involve music or space, words and numbers will be involved in the 

solution.  Having been explicit about our program, we proceeded to carry out our 

OATAs. 

The Writing Class 

 The writing class began with the following statement:  “The central problem we 

are trying to solve in this class is, ‘How can I write (speak, show) information so that my 

audience will understand what I say and do what I want them to do?’”  As the class 

proceeded, we related various reading and writing assignments to that initial problem 

statement.  One frequent question about various readings was, “what problem is th is 

author trying to solve with this piece of writing?”  Another set of questions was, “How 

did this author solve the problem of audience understanding and response?  Did the 

author solve that problem?”  The intent of such questions was to help students understand 

that writing is a response to a problem and often an attempt to solve a particular problem.  

It also demonstrates potential solutions to the problem of writing for an audience, as does 

the organization and discussion of the readings and writing assignments into rhetorical 
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strategies such as description, narration, definition, comparison and contrast, 

classification and division, and the like.   

 We also discussed mathematics in the writing classroom.  One exercise involved a 

comparison of descriptions in English and in mathematical equations.  Figure 3 shows 

one such comparison, a discussion of velocity in words and in an equation. 

Figure 3:  Comparison of Two Grammars, English and Mathematical Equation4 
Comparison/Contrast—Two Grammars 

 
Plain English: 
 . . .consider the ball rolling 2 feet in one second. . . .In one second it covers 2 feet for an average velocity of 2 ft/sec.  
In two seconds, it covers 8 feet, for an average velocity . . . of 4 ft/sec. . . .we are dealing with average velocities.  What 
is the velocity of a rolling ball at a particular moment?  Consider the first second of time.  During that second the ball 
has been rolling at an average velocity of 2 ft/sec.  It began that first second of time at a slower velocity.  In fact, since 
it started at rest, the velocity at the beginning (after 0 seconds, in other words) was 0 ft/sec.  To get the average up to 2 
ft/sec, the ball must reach correspondingly higher velocities in the second half of the time interval.  If we assume that 
the velocity is rising smoothly with time, it follows that if the velocity at the beginning of the time interval was 2 ft/sec 
less than average, then at the end of the time interval (after one second), it should be 2 ft/sec m ore than average, or 4 
ft/sec. 

If we follow the same line of reasoning for the average velocities in the first two seconds, in the first three 
seconds, and so one, we come to the following conclusions:  at 9 seconds the velocity is 0 ft/sec; at two seconds, the 
velocity is 8 ft/sec; at three seconds, the velocity is 12 ft/sec; at four seconds, the velocity is 16 ft sec, and so on. 

Notice that after each second, the velocity has increased by exactly 4 ft/sec.  Such a change in velocity with 
time is called an acceleration . . . To determine the value of the acceleration, we must divide the gain in velocity during 
a particular time interval by that time interval.  For instance at one second, the velocity was 4 ft/sec, while at four 
seconds it was 16 ft/sec.  Over a three-second interval the velocity increased by 12 ft/sec.  The acceleration then is 12 
ft/sec divided by three seconds.  (Notice particularly that it is not 12 ft/sec divided by 3.  Where units are involved, they 
must be included in any mathematical manipulation.  Here you are dividing by three seconds and not by 3.) 

In dividing 12 ft/sec by three seconds, we get an answer in which the units as well as the numbers are 
subjected to the division—in other words 4 ft/sec/sec.  This can be written 4 ft/sec/sec (and read four feet per second 
per second).  Then again, in algebraic manipulations a/b divided by b is equal to a/b multiplied by 1/b, and the final 
result is a/b2.  Treating unit-fractions in the same manner, 4 ft/sec/sec can be written 4 ft/sec2 (and read four feet per 
second squared. 

You can see that in the case just given, for whatever time interval you work out the acceleration, the answer 
is always the same: 4 ft/sec2.  For inclined planes tipped to a greater or lesser extent, the acceleration would be 
different, but it would remain constant for any one given inclined plane through all time intervals. 

This makes it possible for us to express Galileo’s discovery about falling bodies in simpler and neater 
fashion.  To say that all bodies cover equal distances in equal times is true; however, it is not saying enough, for it 
doesn’t tell us whether bodies fall at uniform velocities, at steadily increasing velocities, or at velocities that change 
erratically.  Again, if we say that all bodies fall at equal velocities, we are not saying anything about how those 
velocities may change with time. 

What we can say now is that all bodies, regardless of weight (neglecting air resistance), roll down inclined 
planes, or fall freely, at equal and constant accelerations.  When this is true, it follows quite inevitably that two falling 
bodies cover the same distance in the same time, and that at any given moment they are falling with the same velocity 
(assuming both started falling at the same time). It also tells us that velocity increases with time and at a constant rate. 

 
OR 

 
Mathematical Equation 

v=at 
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The plain English formulation seems highly wordy to the N (intuitive) mathematics 

professor but provides the S (senser) student with logical development of an idea and 

concrete examples of the idea.  The plain English formulation is also significantly more 

interesting to the writing professor and the students than just the short equation.  The 

terse mathematical formulation makes sense only after digestion of the explanation that 

precedes it—except, of course, to the math professor.  For everyone else in the class, 

presented without the words, v=at is meaningless.  However, it does provide a clear 

method for investigating other cases besides those presented in the explanation.  

Another exercise involved using brainteasers of various sorts to abstract the 

problem-solving process from the students’ majors.  One interesting finding in the 

brainteaser exercises was that different intelligences led students down different paths in 

their attempted solutions.  For instance, one alphabet game had the instructor ask 

questions that required a letter of the alphabet in the answer.  “What letter of the alphabet 

is a bird?”  The expected answer is J; the Audio Engineering Technology students, whose 

musical intelligence includes a high degree of aural involvement, responded very quickly 

with that answer.  Other students, whose strengths lie in visual or kinesthetic intelligence, 

couldn’t answer the alphabet riddles as quickly.  One Architecture student said, “I was 

looking for something that looked like a bird.”  On the other hand, when we moved to 

problems that could be diagramed for solution, for example, logic puzzles involving 

names that must be matched to professions on the basis of four or five clues and that are 

commonly solved by drawing a grid, the visually and kinesthetically stronger students 

were quicker to grasp solutions or methods of finding solutions.  Hence, any problem-
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solving class must take individual intelligences into account and provide rubrics for the 

different intelligences to use. 

The Mathematics Class 

 Prominent features of the math class were (1) comparison of math and English as 

rule-based disciplines, (2) in-class practice in solving the problems and (3) emphasis on 

the real-world application of the tools students were learning, 

Since the math class followed immediately after the English class, Dr. Townsend 

had the opportunity to compare and contrast the two disciplines in real time.  In English, 

ambiguity of meaning is often encouraged; not so in math.  At this level, math is a small 

collection of rules, much like those of English grammar.   Anyone performing a symbolic 

manipulation must use one of the rules. 

The job of the students is to then practice using these rules, i.e., do homework and 

solve in-class problems, until they build an intuition on which rule to use.  It is a question 

of pattern matching: "What rule matches the task at hand?"  We found that our freshmen 

did not typically have the mental discipline to train their minds by concentrating on 

homework to the point of internalizing their new intuition.  They tended to try to use 

misremembered rules from their past. 

It is often said that the students want to see how they are going to use the 

information we teach them in their professions.  They also want to know "What formula 

do I use?" without the complication of an accompanying real-world description.  These 

statements provide an interesting contradiction that must be addressed before the next 

incarnation of this FIG.  Students consider word problems (i.e., real world applications) 

to be different from math—in other words they see math as a computational machine and 
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word problems as an entirely different order of task.  To put our problem in terms of the 

Myers-Briggs profiles, solution of word problems requires a strong N component in the 

approach to problem solving, but the students are all S's.  Word problems do not 

necessarily present the question in a nice, orderly, concrete way.   

Our Assessment of the FIG 

 When we examine our actual outcomes against the OATAs we wrote before the 

class, we appear to have achieved what we wanted to.  We carried out the activities listed 

on the grid, for example, having students solve problem sets, discussing problem types, 

and so on. 

 However, we feel that the accomplishments are superficial, that we did not, in 

fact, accomplish the overarching goal of teaching the students that mathematics and 

writing are tools they will use on the job and in their lives to solve problems.  Part of the 

problem is, of course, that we are teaching freshmen.  They appear to be novices on the 

Wankat and Oreovicz scale of novice-to-expert problem solvers.  The table below (figure 

4) is a reproduction of that scale, which shows the characteristics of novices—and, not 

coincidentally, freshmen technology students.  We assumed that our task would be to 

introduce freshmen to the vocabulary and the ways of thinking that they will use later on, 

but that we would not turn them into expert problem solvers in one semester.   

Figure 4:  Comparison of Novice and Expert Problem Solvers5 
Characteristic Novices Experts 
Memory Small pieces 

Few items 
“Chunks” or pattern 
- 50,000 items 

Attitude Try once and then give up 
Anxious 

Can-do if persist 
Confident 

Categorize Superficial detail Fundamentals 
Problem statement Difficulty redescribing 

Slow and inaccurate 
Jump to conclusion 

Many techniques to redescribe 
Fast and accurate 
Take time defining tentative 
problem 
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Characteristic Novices Experts 
May redefine several times 

Simple well-defined problems Slow 
Work backward 

~ 4 times faster 
Work forwards with known 
procedures 

Strategy Trial and error Use a strategy 
Information Don’t know what is relevant 

Cannot draw inferences from 
incomplete data 

Recognize relevant 
information 
Can draw inferences 

Parts (harder problems) Do NOT analyze into parts Analyze parts 
Proceed in steps 
Look for patterns 

First step done (harder 
problems) 

Try to calculate 
(Do It step) 

Define and draw 
Sketch 
Explore 

Sketching Often not done Considerable time 
Abstract principles 
Slow motion 

Limits Do not calculate May calculate to get quick fix 
on solution 

Equations Memorize or look up detailed 
equations for each 
circumstance 

Use fundamental relations to 
derive needed result 

Solutions procedures “Uncompiled” 
Decide how to solve after 
writing equation 

“Compiled” procedures 
Equation and solution method 
are single procedure 

Monitoring solution progress Do not do Keep track 
Check off versus strategy 

If stuck Guess 
Quit 

Use Heuristics 
Persevere 
Brainstorm 

Accuracy  Not concerned 
DO NOT check 

Very accurate 
Check and recheck 

Evaluation of result Do not do Do from broad experience 
Mistakes or failure to solve 
problems 

Ignore it Learn what should have done 
Develop new problem solving 
methods 

Actions Sit and think 
Inactive 
Quiet  

Use paper and pencil 
Very active 
Sketch, write questions, flow 
paths. Subvocalize (talk to 
selves) 

Decisions Do NOT understand process 
No clear criterion 

Clear criterion. 

 
 Our assumption that we would be teaching novices was incorrect.  One major 

issue is that we are not addressing problem solving at the first step in the process.  To 
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clarify that statement, we make reference to an earlier paper, "Word P roblems or 

Problems with Words: A Possible Solution."6  In that paper, we argue that it is not 

sufficient to tell students to analyze a mathematical word problem without first teaching 

them what “analyze” means and demonstrating various methods of analysis.  Likewise, to 

teach students to solve problems in whatever field those problems might arise, we must 

step back and define what we mean by “problem” and “solving” and how to apply those 

definitions. 

 We must also establish a connection between our classroom and the world of 

work.  We are not referring here to making material “relevant to the real world.”  We 

refer instead to the actuality that what we teach is, in fact, part of the real world, that 

writing and mathematics are tools used in developing and reporting information.  Despite 

the fact that we explicitly state that fact, that in the math class, the problems they solve 

are taken from their majors, that in the writing class, they are taught rhetorical strategies 

for technical writing, the one question we hear repeatedly is “Why do I need to know 

this?” 

 It is now apparent to us that our students are not at the novice level.  They often 

do not recognize any strategies to apply, cannot handle even well-defined problems.  We 

must actually teach our students to think like novices, and that in order to teach our 

students to think like novices, we must understand where they are starting from in their 

problem solving.  Transition from high school to college is a paradigm shift  that we must 

address explicitly in order for them to feel more comfortable about our novel approach to 

teaching the subjects they "know" so well.  So we are taking a step back and interviewing 

high-school teachers about what our students have been learning and, more importantly, 
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how they learn in the high-school setting.  What are our students expecting when they 

walk into class as new freshmen?   

In doing so, we are addressing our revised hypothesis, which is that because our 

students’ linguistic and logical-mathematical intelligences are not strong, their basic 

problem-solving skills, taught in high school as logical-mathematical and linguistic skills, 

are likewise not strong.  Hence, in addition to teaching them the writing and 

mathematical skills they need, we must find methods that draw on their strengths.  It is 

interesting to note in conjunction with our hypothesis that the literature on problem 

solving centers on the traditional intelligences (that is, linguistic and logical-

mathematical) and methods and that the literature on multiple intelligences is heavily 

concentrated on elementary education with some information on secondary schools.  So 

we find an investigation of high-school methods necessary for our teaching.  Armed with 

knowledge of our students’ starting point, we can work to build a transition for our 

students from high school to the novice column on Wancat and Oreowicz’s scale. 
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