
�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

Session 3549

Using the PC Parallel Port in Digital Systems Lab Exercises

Cecil E. Beeson, P.E., Assistant Professor

University of Cincinnati Clermont

Introduction

This paper will describe a multi-phase project to utilize the functionality and accessibility of the
PC parallel port to augment traditional college electronics lab exercises. The opportunity for
students to use the ubiquitous PC to exercise and control digital circuits designed in a college lab
can be a valuable learning experience.

At Clermont students are introduced to PC fundamentals early in their college studies. As these
students pass through the Electrical Engineering Technology (EET) program, they construct their
circuits and typically view the PC only as an analytical tool to solve engineering problems. Of
course, in the real world, PCs are capable of controlling all types of devices.

After reading about parallel port programming (PPP) in a magazine a few months ago, the author
of this article did some research and decided to introduce students in a Digital Systems course to
this fascinating concept. The response from the students was impressive.

Value to EET Students

The value of using PCs in this manner is significant. EET students can grow in, minimally, five
dimensions of technology:

• Continue to develop skills through traditional studies in the EET area
• Become more mature users of PCs by becoming more informed of PC capabilities and

structure through the integration of PCs into the lab environment
• Expand their knowledge of software development because of the need to write programs

to control the PC and external electronic devices
• Become more aware of user interface issues through careful design of input fields and

screens displays
• Acquire additional technical test skills because of interactions between PC and external

electronic circuitry

P
age 8.1264.1

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

Although not exclusively tied to PPP, two additional benefits can be realized. Students will be
required to perform research and since most information is available over the Internet, their
knowledge of web technology should increase. Also they will be required to prepare a written
report; communication skills will be improved too.

A Humble Beginning

To illustrate the power of PPP, two relatively simple circuits (one with output only and one with
inputs) were constructed on breadboards. These circuits were chosen to illustrate the basic
principles of parallel port input/output capabilities and associated software. Both projects were
designed and demonstrated by the instructor.

For an output circuit configuration 8 LEDs were connected to the parallel port and software was
written to exercise the LEDs in various sequences and combinations. Figure 1A shows the
circuit diagram1. Figures 1B, IC and 1D show three of several programs that were used to
exercise the LEDs. Program #1, written in MSW Logo2, counts from 0 through 255 and outputs
the binary equivalent numbers on the LEDs. Program #2, written in QBasic, is similar to
program #1 except that each count is delayed by approximate 0.25 seconds. Program #3, written
in C++, accepts a decimal number from the keyboard and displays the corresponding binary
number on the LEDs.

To illustrate input to the parallel port, eight DIP switches were used to control whether or not the
corresponding LEDs should be illuminated or extinguished. Figure 2A shows the circuit
diagram for one technique to input 8-bit quantities from an external device. Another technique
will be mentioned later in this paper. Figure 2B shows a Logo program that polled the switches
and decided which LEDs should illuminated or extinguished. Please note the various comments
that have been inserted into the program.

Inputting a byte through a standard parallel port is somewhat challenging. Because some of the
pins are open collector (OC), they must be brought high before being used as inputs. In the
program shown in Figure 2B, the Logo statement � outportb 890 4 � performs this function
(where 890 is the decimal equivalent of the hex address for the status register, 037A, and decimal
4 is equivalent to 0100 in binary). Bits D3, D1 and D0 are hardware inverted and are pulled high
by outputting a zero (0) and bit D2 is pulled high by a logic one (1); hence the 0100 output.
Gathering the byte of data from the switches is interesting. The lower 4 bits of the switch input
are accessed through the control port and the upper 4 bits are available through the status port.
After inputting both 4-bit quantities and masking unwanted bits, the two nibbles are ORed
together to form the final byte of information.

Computer programs, MSW Logo, QBasic and C++, were written for most of the configurations.
Logo and QBasic were selected because of their relative simplicity, ease of use and the
availability of instructions to permit direct access to hardware ports. A very short tutorial on
MSW Logo is contained in Appendix A. In addition QBasic is the language that most EET
students use in their first required computer information systems class. Although inherently
more complex and flexible than Logo and QBasic, C++ was used because it is so popular in �real
world� applications and technology students should be exposed to it.

P
age 8.1264.2

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

Outputs

74LS04 InvertersResistors

Parallel Port

LEDs

D7 (9)

D6 (8)

D5 (7)

D4 (6)

D3 (5)

D2 (4)

D1 (3)

D0 (2)

(330 Ohms)

+5V

Figure 1A � Circuit to Display Parallel Port Outputs

; Display 0 � 255 on LEDs

to flasher

 make "x 0
 repeat 256 [
 show :x
 outportb 888 :x
 wait 15
 make "x :x + 1
]
 outportb 888 0
end

Figure 1B - Program #1 (Logo)

P
age 8.1264.3

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

FOR i = 0 TO 256
 ts = TIMER
 OUT &H378, i
 here:
 te = TIMER
 td = te - ts
 IF td < .25 GOTO here
NEXT i
OUT &H378, 0

Figure 1C - Program #2 (QBasic)

/ Illuminate selected LEDs (8) with an input #

#include <conio.h>
#include <iostream.h>

int _outp(unsigned short port, int databyte);

#define DATA 0x378
#define STATUS 0x379
#define CONTROL 0x37a

int inval = 0;

void main(void)
{
 while(inval < 256)
 {
 cout << "Enter a decimal #\n";
 cin >> inval;
 _outp(DATA, inval);
 }
}

 Figure 1D - Program #3 (C++)

P
age 8.1264.4

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

74LS04 Inverters

Resistors
(330 Ohms)

Strb (1)
ALin (14)
Init (16)
SP (17)
Sel (13)
PO (12)
ACK (10)
Busy (11)

SW0
SW1
SW2
SW3
SW4
SW5
SW6
SW7

SPST Inputs

LEDs

+5V
D7 (9)
D6 (8)
D5 (7)
D4 (6)
D3 (5)
D2 (4)
D1 (3)
D0 (2)

Parallel Port
Inputs

Ouputs

74LS04 Inverters

 Figure 2A � Displaying Switch Inputs on LEDs

to read8m1
 cs
 forever [
 outportb 890 4 ; Bring OC pins high
 wait 60 ; Delay program operation for 1 sec
 make "low inportb 890 ; Input D3 � D0 via control port
 make "high inportb 889 ; Input D7 � D4 via status port
 make "low bitand :low 15 ; Mask upper nibble of low order byte
 make "high bitand :high 240 ; Mask lower nibble of high order byte
 make "byte bitor :high :low ; Combine lower and upper nibbles to form byte
 outportb 888 :byte
]
end

 Figure 2B � Logo Program for Switch Input and LED Output

P
age 8.1264.5

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

The demo circuits and a software tutorial were discussed in class. Most of the students were
unaware of the PC parallel port interface capability. Some of the students formed into small
groups and proceeded to experiment with the circuitry and software.

One group automated a process to test AND, NAND, OR and Exclusive OR chips. All possible
combinations of logical inputs were generated and routed through the chips and the final
operational status of the chip was indicated by a green LED (chip functioning normally) or a red
LED (chip defective). The group used both Logo and QBasic for the testing process.

A Few Technicalities of the Parallel Port

A full report on parallel port technology would be immense and beyond the scope of this paper.
Many sources are available for learning and reference3-7. Although several forms of parallel
ports are available, for reasons of simplicity for this project, each PC was assumed to have a
standard port and the data bits were not bi-directional. Other possibilities include extended
capability ports (ECP) and extended parallel ports (EPP).

The parallel port is located at the rear of a PC (Figure 3A)8 and has a 25-pin female socket
(Figure 3B)8. In addition there are three 8-bit registers: data, status and control. For most PCs
the data register is located at address 0378H. The status register has an address of 0379H and the
control register�s address is 037AH. To determine the assignments for a specific machine, one
could use the DOS debug utility to examine the contents of memory address 0040:0008H, which
contains the address of LPT1, or the parallel port. For example:

 C:\>debug
 -d 0040:0008 L2
 0040:0000 78 03 x.
 -q
 C:\>

In Intel nomenclature the address would read 0378H.

Table 1 lists important attributes of a parallel port.

Another technique to input an 8-bit quantity (from switches in this experiment) is shown in
Figure 4A. A multiplexer is used to select the most significant nibble first and then the least
significant nibble. The two nibbles are then inverted appropriately and reformed into a single 8-
bit item. This technique avoids problems with OC technology but it is slower because two reads
and one write are required to input a complete byte of data. To illustrate additional Logo
commands, the status of each switch was shown visually on a monitor screen by selectively
painting circles with red to designate an open switch and green to designate a closed switch. A
picture of the screen is shown in Figure 4B. In this picture switches 0, 4, 6 and 7 (data bits D0,
D4, D6 and D7 are green) are closed; the other switches are open. A Logo program is shown in
Figure 4C. This procedure was not initially implemented because of the introduction of
mutiplexer hardware and more complex commands to create the screen display.

P
age 8.1264.6

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

 Figure 3A � View of Parallel Port Socket

 Figure 3B � Pin Arrangement for DB25 Port

Pin # Description
Abbreviated
Description In/Out

Inverted
Logic

Open
Collector

Register
Assignment

1 Strobe Strb In/Out Yes Yes Control
2 Data 0 D0 Out Data
3 Data 1 D1 Out Data
4 Data 2 D2 Out Data
5 Data 3 D3 Out Data
6 Data 4 D4 Out Data
7 Data 5 D5 Out Data
8 Data 6 D6 Out Data
9 Data 7 D7 Out Data
10 Acknowledge ACK In Status
11 Busy In Yes Status
12 Paper Out PO In Status
13 Select Sel In Status
14 Auto Feed ALin In/Out Yes Yes Control
15 Error In Status
16 Initialize Init In/Out Yes Control
17 Select Printer SP In/Out Yes Yes Control

18 - 25 Ground NA NA NA NA

Table 1 � Selected Data on Parallel Port Connections
 P

age 8.1264.7

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

Parallel Port

SW4
SW0SW5SW1SW6SW2SW7SW3

Switch Input

Strb
Busy (11)

ACK (10)
PO (12)

Sel (13)

Multiplexer
74LS157

S
I1a
I0a
I1b
I0b
I1c
I0c
I1d
I0d

E

Ya
Yb
Yc
Yd

 Figure 4A � Switch Input Using a Multiplexer

 Figure 4B � Screen Display of Switch Inputs

P
age 8.1264.8

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

to off
 setfc [255 0 0]
 fill
end

to on
 setfc [0 255 0]
 fill
end

to read8screen2
 cs
 ht
 make "led 7
 pu
 make "x -175
 make "y 50
 repeat 8 [
 setxy :x :y
 pd
 label :led
 pu
 make "y :y � 50
 setxy :x :y
 pd
 circle 10
 pu
 make "x :x + 50
 make "y :y + 50
 make "led :led - 1]
 forever [
 outportb 888 0
 wait 6
 make "low inportb 889 ; Input lower nibble
 wait 6
 make "low bitand :low 240
 make "low ashift :low -4
 make "low bitxor :low 8
 outportb 888 1
 wait 6
 make "high inportb 889 ; Input high nibble
 wait 6
 make "high bitand :high 240
 make "high bitxor :high 128
 make "byte :low
 make "byte bitor :high :byte ; Form data byte
 make "x 175
 make "y 0
 setxy :x :y
 make "mask 1
 repeat 8 [
 make "testit bitand :byte :mask
 ifelse :testit > 0 [on] [off]
 make "x :x - 50
 setxy :x :y
 make "mask ashift :mask 1]]
end

Figure 4C � Logo Program to Input Switch Data by Multiplexer and Display on Screen

P
age 8.1264.9

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

What�s Next?

Starting with the Winter quarter, January 2003, the PPP project will be introduced to an
intermediate level digital systems course. Projects currently in the planning stages include:

• Integrating a PC with counter circuits
• Generating various types of waveforms
• Interfacing with PLDs (programmable logic devices)
• Operating digital subsystems consisting of decoders, encoders, multiplexers, logic

function generators, tristate registers and memory devices
• Assignment of challenging team projects involving many types of digital devices will be

assigned and appropriate written and oral reports required

During the Spring 2003 quarter the most advanced digital systems course will be offered. This
course contains more rigorous coverage of microprocessors and microcontrollers in the design
process. Possible projects could include:

• Circuitry involving more advanced sensing devices
• Implementation of wireless communications between a base, or control, station and

stationary external devices
• Wireless communications with mobile devices
• Incorporation of GPS technology
• Integration of interrupt capability of the parallel port into circuit design and operation
• Interfacing external microcontroller circuits
• Extensive use of PC and microcontroller assembler language programs
• Explore use other computer languages such as Java and Visual Basic
• Use of optoelectronic devices
• Control of DC motors through use of H-bridges and the PWM (pulse width modulation)

technique
• Controlling circuits via the Internet
• Increased emphasis on screen design and user interface principles

A Few Final Thoughts

The parallel port concept was introduced in a digital systems course during the Spring 2002
quarter. Students were generally surprised to learn that a PC parallel port could be used to
provide an interface with external circuits designed in a college digital systems course.
Apparently several were under the impression that this interface could only be implemented with
sophisticated equipment and highly trained technical personnel. They were also delighted for an
opportunity to exercise their computer programming skills in a very new environment rather
beyond a traditional computer information systems class. After analyzing early results, this
project will probably become a permanent part of the digital systems program.

P
age 8.1264.10

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

References

1. Circuit diagrams drawn with CircuitMaker®, Protel Technology, Provo, UT

2. MSW Logo software and tutorial/reference manual have been made freely available by George Mills at
website, www.softronix.com

3. Parallel Port Complete, Jan Axelson, Lakeview Research, ISBN 0-9650819-1-5

4. Interfacing the Standard Parallel Port, Craig Peacock, www.senet.com.au/~cpeacock

5. Use of a PC Printer Port for Control and Data Acquisition, Peter H. Anderson, Department of Electrical

Engineering, Morgan State University

6. IBM Parallel Port FAQ/Tutorial, Zhahai Stewart, home.rmi.net/~hisys/parport.html

7. Controlling the World with Your PC, Paul Bergsman, HighText Publications, ISBN 1-878707-15-9

8. Pictures copied from materials at website: www.howstuffworks.com

9. Logo Foundation: el.media.mit.edu/logo-foundation/index.html

P
age 8.1264.11

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

Appendix A

And Now a Few Words about MSW Logo Language

Since Logo programs are featured so prominently in this article and some readers may not be
familiar with the language, perhaps a few words would be appropriate. We�ll use Program #1
(Figure 1A) as a simple example:

Line 1: ; Display 0 � 255 on LEDs
 Line 2:

Line 3: to flasher
 Line 4: make "x 0

 Line 5: repeat 256 [
 Line 6: show :x
 Line 7: outportb 888 :x
 Line 8: wait 15
 Line 9: make "x :x + 1
 Line 10:]
 Line 11: outportb 888 0

Line 12: end

First, line numbers have been added to provide references to specific commands; they are not
part of the language.

Before launching into the syntax and format of Logo, you should know the overall function of
this little program. It generates all numbers from zero through 255 and outputs the binary
equivalent on 8 LEDs, returns to zero and halts. These 256 binary combinations are possible
since 28 = 256, or one byte can accommodate 256 different numbers (0 through 255).

Line 1 is a comment line. The semicolon causes Logo to disregard all characters from that point
until a new line character is detected. Careful insertion of comments can make a program much
easier to read and understand. Line 2 is merely a blank line and can be used to logically separate
parts of a program. Blank lines are ignored by Logo.

Logo programs are comprised of one or more procedures. In this program the procedure name is
flasher (line 3) and it is a user-defined name. There are many library procedures provided by
Logo.

Execution of line 4 causes a variable, x, to be assigned a value of zero (0). This command is
functionally equivalent to a more readable form found in other languages: x = 0.

Line 5 causes a series of commands to be executed 256 times. The statements that are executed
are located between the opening and closing brackets, [].

Line 6 displays the current value of x in the lower, or commander, portion of the MSW Logo
screen. The colon is necessary so that the value of x will be displayed. Without the colon, the
character x, not its value, would be visible.

P
age 8.1264.12

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

The command, outportb, in line 7 outputs the current binary value of x to port number 888,
which is the decimal number for the parallel port address. Most languages permit the use of
hexadecimal numbers but Logo does not. Decimal 888 is more recognizable as 0378H to
practitioners in the PC field.

The wait 15 statement on line 8 temporarily suspends program operation for approximately 0.25

seconds. The value of 15 is a measure of the number of
60
1 ths of a second; 15 times this

number is approximately 0.25 seconds. Because of the many other concurrent tasks required of
the PC, this wait time is not exact. This statement was inserted to allow the external circuitry to
stabilize before continuing.

The value of x is incremented by one in line 9. In other languages, e.g., C++, a value can be
incremented by using: x = x + 1.

The bracket in line 10 is the closing symbol for the repeat statement in line 5.

When the 256-loop iteration cycle has been completed, line 11 is executed. This command
merely assures that the 8 external LEDs are extinguished.

The end statement on line 12 is a required statement to indicate to Logo that program coding is
complete.

This is a very brief and high-level look at MSW Logo. There are also constructs for Windows
type programs � radio buttons, command buttons, list boxes, message boxes, to name just a few.
A Logo program and a screen layout to illustrate the use of command buttons are shown in
Figures 5A and 5B, respectively. This program is much more complex than earlier Logo
programs listed in this article. The circuit used to test this program was shown previously in this
paper in Figure 1A.

To create a Logo program file, one can either use the Logo edit function or use some other
ASCII editor and then load the resulting file into Logo. If the latter technique is used, the file
must be saved with an extension of .lgo.

Two excellent sources of information about Logo are listed in the References section2,9 of this
paper.

P
age 8.1264.13

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

to ledbuttons
 cs
 ht
 outportb 888 0

 windowcreate "main "mw "ledbuttons 0 0 100 250 []

 staticcreate "mw "ms7 [LED 7] 10 22 20 20
 staticcreate "mw "ms6 [LED 6] 10 47 20 20
 staticcreate "mw "ms5 [LED 5] 10 72 20 20
 staticcreate "mw "ms4 [LED 4] 10 97 20 20
 staticcreate "mw "ms3 [LED 3] 10 122 20 20
 staticcreate "mw "ms2 [LED 2] 10 147 20 20
 staticcreate "mw "ms1 [LED 1] 10 172 20 20
 staticcreate "mw "ms0 [LED 0] 10 197 20 20

 buttoncreate "mw "SevenOn "ON 40 20 15 15 [make "LED bitor :LED 128
outportb 888 :LED]
 buttoncreate "mw "SixOn "ON 40 45 15 15 [make "LED bitor :LED 64
outportb 888 :LED]
 buttoncreate "mw "FiveOn "ON 40 70 15 15 [make "LED bitor :LED 32
outportb 888 :LED]
 buttoncreate "mw "FourOn "ON 40 95 15 15 [make "LED bitor :LED 16
outportb 888 :LED]
 buttoncreate "mw "ThreeOn "ON 40 120 15 15 [make "LED bitor :LED 8
outportb 888 :LED]
 buttoncreate "mw "TwoOn "ON 40 145 15 15 [make "LED bitor :LED 4
outportb 888 :LED]
 buttoncreate "mw "OneOn "ON 40 170 15 15 [make "LED bitor :LED 2
outportb 888 :LED]
 buttoncreate "mw "ZeroOn "ON 40 195 15 15 [make "LED bitor :LED 1
outportb 888 :LED]

 buttoncreate "mw "SevenOff "OFF 65 20 15 15 [make "LED bitand :LED 127
outportb 888 :LED]
 buttoncreate "mw "SixOff "OFF 65 45 15 15 [make "LED bitand :LED 191
outportb 888 :LED]
 buttoncreate "mw "FiveOff "OFF 65 70 15 15 [make "LED bitand :LED 223
outportb 888 :LED]
 buttoncreate "mw "FourOff "OFF 65 95 15 15 [make "LED bitand :LED 239
outportb 888 :LED]
 buttoncreate "mw "ThreeOff "OFF 65 120 15 15 [make "LED bitand :LED 247
outportb 888 :LED]
 buttoncreate "mw "TwoOff "OFF 65 145 15 15 [make "LED bitand :LED 251
outportb 888 :LED]
 buttoncreate "mw "OneOff "OFF 65 170 15 15 [make "LED bitand :LED 253
outportb 888 :LED]
 buttoncreate "mw "ZeroOff "OFF 65 195 15 15 [make "LED bitand :LED 254
outportb 888 :LED]

 buttoncreate "mw "Quit "Quit 40 220 40 15 [outportb 888 0 windowdelete
"mw]
end

Make "led 160

Figure 5A � Logo Program to Illustrate Use of Command Buttons

P
age 8.1264.14

�Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright 2003, American Society for Engineering Education�

Figure 5B � Command Button Layout

P
age 8.1264.15

