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Introduction. Regression analysis is widely used in experimental mechanical engineering to model 
physical properties and processes and to calibrate instruments. Standard textbooks address linear 
models and the uncertainties of linear models quite well. Usually, the texts adequately address 
multiple regression models based on several truly independent variables. The situation is more 
problematical with respect to multiple regression models that are polynomials in one variable such 
as the general quadratic model,
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Surprisingly, the uncertainly of such a polynomial model is not addressed directly in the standard 
texts on regression analysis. In this model, the independent variables are linearly independent; so 
linear regression will determine the coefficients correctly. After evaluating the model the next 
obvious and needed step is finding the uncertainty of the model.

An indirect measurement is a value calculated from more direct measurements. A regression 
model is obviously an indirect measurement. Within the minimal restrictions that are usually 
satisfied in experimental engineering, the uncertainty of any indirect measurement, y, may be 
determined from the uncertainties of the more direct measurements, the xi. This calculation is 
done with the familiar formula from Error Propagation Analysis (EPA),
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Where,
=yu

the Standard Uncertainty of the indirect measurement, y
=

ixu
the Standard Uncertainty of the i-th more direct measurement 

In general, the preceding formula can be used to find the uncertainty of the systematic dependence P
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of y on x. A complication in the polynomial case is that the two variables and therefore the two 
coefficients are strongly correlated. Because of this correlation, the coefficients cannot be 
considered to be independent sources of error in uncertainty analysis. Consequently, it will be 
shown that the familiar EPA formula must be modified. For example, the uncertainty of the 
quadratic model should be written using conditional uncertainties as

( ) ( ) ( ) ( )2
12

22
ave

22
21

2
ave

2
2

model-poly
SEE bbuxxbbuxx

n
u −+−+








=

(3)

Here SEE is the conventional Standard Error of Estimate, ( )21 bbu  is the conditional uncertainty of 

b1 given a value for b2 , and similarly ( )12 bbu  is the conditional uncertainty of b2 given b1. This 
formula seems easy enough to apply. However, when a numerical spreadsheet program such as 
Excel is used, extra regression steps are necessary to compute the conditional uncertainties. In the 
following, the required auxiliary calculations will be explained and illustrated and a convenient 
spreadsheet block to implement the needed analysis and plot the results will be presented. 

In the following, linear regression will first be briefly reviewed. Then the formula for the 
uncertainty of a simple linear model will be developed. The complications encountered with a 
polynomial model will be addressed before the modified formula for a polynomial model is 
presented. An exhaustive numerical experiment has been conducted to verify this uncertainty and 
the results of this investigation are presented below. Finally the technique is demonstrated for two 
commonplace and representative applications. One example is application to a quadratic form of 
the Clausius-Clapeyron model commonly used to represent vapor pressure data. Another example 
is the evaluation of the quartic calibration function typically used for a thermal anemometer. When 
the needed auxiliary calculations have been made, the spreadsheet block presented in this paper 
makes it easy to compute and plot the uncertainty for any familiar regression model, whether 
linear, multiple, or polynomial.

Synopsis of Linear Regression. A few results from linear regression analysis are needed to support 
the development of the uncertainty calculations that are presented below. For a linear regression 
model with one independent variable, the regression model is

xbcy +=est (4)

This model has two parameters, the constant and the coefficient. In general the Residual 
Variation, RSS, is the squared deviation between the model values and the experimental data, or

( ) ( )∑∑
==

−−=−=
n

i
ii

n

i
i xbcyyy

1

2

1

2
estRSS

(5) P
age 8.542.2



Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition 
Copyright 2003, American Society for Engineering Education

Regression procedures or software determine the parameters of the model that minimize the RSS. 
In particular, it is relatively straightforward to show that the for the linear model above the 
explicit formula for the coefficient, b, that minimizes the RSS is 
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With b known, it is easy enough to solve for the constant, c, that minimizes the RSS, so

aveave xbyc −= (8)
Where, of course 
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The equations in this section give the parameters for a least RSS linear model, and the uncertainty 
of the model can be addressed next after reviewing error propagation, which is the basis for 
finding the uncertainty. 

Recap of Error Propagation Analysis. The basic idea in error propagation analysis (EPA) is the 
recognition of direct and indirect measurements. An indirect measurement is calculated from a 
direct measurement. Assume that m independent direct measurements, the set of wi s below, 
contribute to an indirect measurement, z. The measurement formula is then merely the function 
used to calculate the z,

( )mwwwzz ⋅⋅⋅= ,, 21 (10)

The operational concepts of EPA are incorporated in two equations. The first addresses how the 
uncertainty in the indirect measurement z (i. e., the dependent variable) is caused by the 
uncertainty in some more directly measured variable, w (i. e., an independent variable). Call this 
uncertainty uz,w. A truncated Taylor Series representation relates the resulting uncertainty uz,w to 
the uncertainty in w as follows,  
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The other basic operational formula shows how independent uncertainties are combined when 
several direct measurements contribute to an indirect measurement. Analysis shows that, given 
some nonrestrictive assumptions, the squares of the contributing uncertainties sum to give the 
squared combined uncertainty, or
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Each partial derivative is recognized to be the influence factor showing how each wi influences the 
z. This equation can be called the combining rule for uncertainties. The two formulas are used 
together to formulate the uncertainty of a regression model.

Uncertainty of the Coefficient. For the coefficient b, the relationship that yields the influence 
factor is contained in Equation (6) above, so the influence coefficient is 
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The data set contains n pairs of data, xi and yi. By convention, every xi is assumed to be known 
without any uncertainty, but every yi is assumed to have some uncertainty. Since the variation in 
every yi value effects b, the uncertainty of the coefficient is written as follows using the influence 
coefficients from the previous equation. The pertinent result is 
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Expanding the summed term in the numerator and regrouping gives
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Then simplifying the numerator gives
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Simplifying the ratio gives the essential result
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In practice, the uncertainty in y is not and cannot known a priori, so it is estimated by the 
Standard Error of y Estimate. The resulting computational formula becomes
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The uncertainty of the coefficient is an important statistic used routinely in significance testing, 
and it is a critical feature in the uncertainty of the regression model itself.

Uncertainty of a Simple Linear Model. EPA is also readily applied to the model itself. A quick 
look at Equation 4 might lead one to think that the uncertainty in a simple one variable linear 
model can be determined by direct application of the combining rule since the uncertainties in the 
constant and the coefficient are known. If this were true, the squared uncertainty in the model 
would be sum of the squared uncertainty in the constant and the squared uncertainty in the model 
due to the uncertainty in the coefficient, or

 erroneous!2222
model bc uxuu += (19)

This result is intuitively unsatisfactory because it increases monotonically with x while one would 
expect the uncertainty to increase toward the end points of the range of x. The conjecture in the 
preceding equation is wrong because c and b are not independent. The proper approach is to first 
eliminate c using Equation 8. After eliminating c, the model equation becomes

( ) xbxbyxbcy +−=+= aveaveest (20)
so

( )aveaveest xxbyy −+= (21)
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Both of the terms in the preceding equation can be assumed to be independent. Now, the 
uncertainty in the model is easy to represent by applying the combining rule to the preceding 
relationship as
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The SEE is used as the estimate of the uncertainty in any individual y datum. Then the uncertainty 
in the average of y, which is the average of n individual y data, is 
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Since the uncertainty in the coefficient has been determined in Equation 6, then an expanded 
formula for the uncertainty in the model is
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Simplifying slightly gives the more concise result handy for calculations,
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This result is intuitively satisfactory for at least two reasons. First, u is a minimum where x is at its 
average value. This is obviously the point where the estimate of the actual trend in y should be the 
best. Second, u increases monotonically and approximately quadratically toward the ends of the 
range in x. This is just the expected and observed behavior for uncertainty of a model. As usual, 
the uncertainty calculated in the preceding equation is the Standard Uncertainty of the model. A 
Standard Uncertainty is analogous to a Standard Deviation. Note that the uncertainty under here 
is due to random error. This is the Uncertainty A for the model, which is the uncertainty that can 
be evaluated by statistical analysis of repeated measurements. To plot the 95 % error band, the 
appropriate coverage factor, kc, must be used to compute the Expanded Uncertainty A, which is

modelcmodel ukU = (26) P
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Where umodel is given by the slightly complicated formula in Equation 25. For a large number of 
data, the coverage factor will be 2. For smaller samples, the rigorous coverage factor should be 
computed from the t-distribution using the appropriate Degrees of Freedom (DF). Recall that DF 
is the number of data less the number of parameters in the model. 

An example application of the uncertainty of a simple linear model is plotted in Figure 1. The 
figure displays the relationship in a log-log model between the logarithm of the Nusselt number as 
the dependent or y variable against the logarithm of the Reynolds number as the independent or x 
variable. The regression parameters and the SEE for the data in Figure 1 were computed by the 
Excel regression package. The error envelopes, which are the curves showing the 95 % error 
bounds, were computed as described below in a compact block of the Excel workbook that is 
illustrated below as Attachment 1. 

An appropriate regression model should represent the systematic variation in the dependent 
variable. Assuming this systematic representation is adequate, the SEE should represent the 
residual random scatter in the data with respect to the model. Using the SEE as the Standard 
Uncertainty in the individual data, the expanded uncertainty of the data with respect to the model 
is 

SEEcdata kU = (27)

This uncertainty is the Uncertainty A due to random variation in the data. The corresponding 
error envelope is also plotted in the following figure. Note that the error band for the data is much 
wider than the error bound on the model, reflecting the averaging effect of the regression model.
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Figure 1 Forced Convection Data, Literature Model, and Error Bounds.
This model is an example of simple linear regression.

Uncertainty of a Multiple Regression Model. EPA is also readily applied to the uncertainty of a 
more complex model with multiple independent variables so long as the model is linear in its 
parameters. Standard texts show that centering the data by subtracting their averages from the 
dependent variable and the independent variables always eliminates the constant, so the model can 
always be written as

( ) ( ) ( )ave,ave2,22ave1,11aveest mmm xxbxxbxxbyy −+⋅⋅⋅+−+−+= (28)

As before, the uncertainty in the model is easy to formulate by applying the combining rule to the 
preceding relationship, so
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The uncertainty in the average of y, is again computed using the SEE as the standard deviation in 
the formula for an average of n data, so
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The uncertainty in a more complicated multiple regression model is then
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The previous model applies to a case like modeling the heat capacity of a dense vapor that is a 
function of two independent variables, temperature and pressure.

Polynomial Models. The situation is more subtle with respect to a more complex model that is a 
polynomial in one variable such as this quadratic model,
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Surprisingly, the polynomial case is not addressed in the standard texts on regression analysis. 
Since polynomial models are very common in experimental engineering, the associated uncertainty 
should be investigated. The model itself presents no special problems. In particular, the 
independent variables, although related, are linearly independent; therefore, linear regression can 
find the correct coefficients easily. 

The coefficients are, however, likely to be strongly correlated. For example, a typical quadratic 
model has been investigated numerically. Simulated experimental data was generated according to 
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the following model,

( ) ( ) error2
ave

2
2ave1aveexp +−+−+= xxbxxbyy

(33)

Where the artificial error has a normal distribution with a mean of zero and a variance of 0.01 
unit. The results of a numerical experiment based on the simulated data are illustrated in Figure 2 
below for the case when b1 = 0.9 and b2 = 0.1. Coefficients from 500 cases with 11 data pairs per 
case are plotted. The plot shows that the parameters are indeed highly correlated. Specifically b2 
decreases as b1 increases to follow the systematic trend in the data. 
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Figure 2 Variation of b2 with Respect to b1 in a Typical Quadratic Model.
Note that the uncertainty in b2 given b1 is relatively small. 

If plotted inversely, the uncertainty in b1 given b2 would also be seen to be relatively small.

Since the coefficients are correlated, then the uncertainties of the coefficients cannot be 
considered to be independent sources of error, and the EPA formula must be modified. Obviously, 
b2 depends on b1 , and inversely b1 depends on b2. Consequently, the uncertainty of the quadratic 
model should be written using conditional uncertainties as P
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Here ( )21 bbu  is the conditional uncertainty of b1 given a value for b2 , and similarly ( )12 bbu  is the 
conditional uncertainty of b2 given b1. 

The modified formula is easy enough to apply, but extra regression steps are necessary to 

compute the conditional uncertainties. For example, compute ( )21 bbu  as follows: First subtract 
the product term, b2 x2, from the dependent variable. This step creates a new dependent variable 
corrected for the variation with respect to x2 that depends on b2. 

2
2CORR xbyy −= (35)

Then execute the regression analysis with x as the only variable. The resulting uncertainty of the 
coefficient is obviously the uncertainty of b1 given a specific value of b2. Similarly correct for the 
variation related to b1 by subtracting the term b1 x. Then run the regression with x2 as the only 
independent variable. This result will give the uncertainty in b2 given a value for b1. 

Verification. The development for the uncertainty of the model presented here appears to be 
entirely reasonable; however, it cannot be asserted to be a rigorous development because no 
attempt was made to develop the formula from first principles. In addition no attempt was made 
to ensure that the conditional uncertainties exist and are unique. Indeed an entirely rigorous 
mathematical proof does not even appear to be feasible. Instead a numerical verification was 
conducted.

In the numerical verification, simulated experimental data was generated for a quadratic 
dependence contaminated by normally distributed errors. Since the constant only represents a 
fixed shift in origin of the y-axis, it was set to zero, and the formula used to generate the 
simulated is

errorerror 2
21

2
21exp ++=+++= xbxbxbxbcy

(36)

The errors are normally distributed with a standard deviation of 0.1 unit. The data were taken to 
be normalized with both x and the error-free value of y restricted to range from 0 to 1. For this 
range and domain the coefficients must sum to unity. Three cases appear to represent the range of 
relative values of the coefficients. The case when both coefficients are similar in magnitude is 
represented by b1 and b2 equal 0.5. The case when b1 is dominant is represented by b1 = 0.9 and b2 
= 0.1. The case when b2 is dominant is represented by b1 = 0.1 and b2 = 0.9. For all three models, 
500 data sets of 11 data pairs each were generated. A Matlab program was used to generate the 
resulting regression models and the associated uncertainties. The pertinent features of the 
numerical experiment are presented in the next figures.

Figure 3 is probably the more interesting presentation. It shows the simulated data points, dotted 
lines for all of the 500 regression models, the exact value of y, and the average error envelopes of 
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the model generated using the mean values of the conditional uncertainties of the coefficients. 
This average error envelope should represent the typical predictive power of the uncertainty of 
the model. Inspection of the figure shows immediately that the average error envelope does 
indeed bound the main body of the simulated variation in the regression models. Indeed, when a 
point by point comparison is made 95.6 % of the points in the models fall within the error 
envelope in almost exact agreement with the expected 95 % range for an expanded uncertainty. 
Similar results are obtained with the other two representative cases as summarized in Table 1.

Of course any particular regression model can deviate significantly from the exact y relation due 
only to unfortunately extreme variation in the data. Consequently, the variation in the range of the 
error envelopes is at least as much as the variation in the range of the models. The range on the 
error envelopes is illustrated in Figure 4. Note the considerable range about the average values.

Figure 3. Plot of the Simulated Data, Regression Models, Exact y Relation, 
and the Average Error Envelopes for the Case where b1 and b2 Equal 0.5.

Data are the individual markers in vertical strips. Regression models are plotted
 as faint dotted lines, and the average error envelopes are the solid hourglass shaped lines.
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Figure 4. Plot of the Simulated Data and the Error Envelopes for the Case
 where b1 and b2 Equal 0.5.Data are the individual markers in vertical strips. 

The error envelopes are plotted as faint solid lines.
The extra steps to define the corrected dependent variables and calculate the conditional 
uncertainties will require only a little extra time in the very frequent cases when polynomial 
models are required. The extra time is well rewarded by an unambiguous result for the uncertainty 
of the model. 

Note that the error envelopes described above only represent the expected random uncertainty in 
the model. In addition the Uncertainty B due to possible bias in the data should be computed by 
Error Propagation Analysis considering all significant sources of error in the measurement system. 
The regression model will surely share the Uncertainty B in the underlying data, and the 
Combined Uncertainty can be computed by the usual formula,

2
B

2
modelA,

2
modelC, UUU += (37)

This Combined Uncertainty is the error envelope that should be plotted in experimental 
engineering. 

Quadratic Example. A first example application of polynomial uncertainty analysis is the quadratic 
Clausius-Clapeyron model developed in a vapor pressure experiment that is part of an 
undergraduate lab course. In this lab, linear and a quadratic models for the logarithm of the vapor 
pressure with the inverse absolute temperature as the independent variable are developed. Often 
the quadratic model is not statistically significant; however, in the case illustrated in Figure 5, it is 
barely significant with an alpha risk of 4.1 %. The minimal contribution and significance of the 
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quadratic term is evident since the model has almost no curvature. However when the random 
scatter in the data is small as in this case, a quadratic term with a rather small coefficient can still 
be statistically significant. When such a term is significant, there is no principled reason for 
rejecting it. If the quadratic model is retained as it should be in this particular case, the uncertainty 
should be calculated and the error envelopes should be plotted along with the model as has been 
done in Figure 5. In this figure, the coverage factor has been multiplied by 10 to make the error 
envelopes visible. The spreadsheet block illustrated in Attachment 1 was used to compute and 
plot the error envelope. The spreadsheet is available online for interested teachers and researchers 
(Jeter, 2003). Calculating the model does require some minimal individual spreadsheet 
manipulation to compute the two needed conditional uncertainties as described above, but this 
task is straightforward Since the spreadsheet is designed for applications with as many as four 
completely independent variables, it can easily accommodate this minimally complicated 
application. In this particular case, the only significant source of Uncertainty B was the 
imperfection in the calibration of the Bourdon tube gage used to measure the pressure. In this 
application the Uncertainty B was not added to the uncertainty of the data with respect to the 
model because this uncertainty is typically used for screening the data for possible outliers. Since 
the data and the model share the same bias, it is not reasonable to include the Uncertainty B for 
that application. A block is available in the spreadsheet for entering the user-defined Uncertainty 
B data and calculating the Combined Uncertainty of the model. It is the Combined Uncertainty of 
the model that should be plotted and is plotted in Figure 5. 

Quartic Model. The second example that is posted is calibration data for a typical constant 
temperature thermal anemometer. A multiple point regression was done using the recommended 

Quadratic Model with Rigourous Error Envelope 
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Figure 6. Plot of Calibration Curve for Constant Temperature Thermal Anemometer 
along with Error Envelopes for the Calibration Curve and Data.
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homogeneous model that is fourth degree in the normalized voltage. All four coefficients were 
found to be statistically significant in this case. The conditional uncertainties were then computed 
for each of the four coefficients by correcting for the influence of the three other coefficients in 
turn. In this case the Uncertainty B of the calibration wind tunnel was combined with the 
Uncertainty A of the model to yield the Combined Uncertainty that is plotted in Figure 5. Even 
though four auxiliary calculations were necessary, the uncertainty could be computed and plotted 
in only a few minutes using the spreadsheet block designed for this purpose. Instructions for using 
the spreadsheet are included in the document, and a video example is available to interested 
teachers and researchers who contact the author. Indeed this spreadsheet should make it easy to 
compute and plot the uncertainties for any regression model.

Table 1. Averaged Regression Results for Three Values of the Exact Coefficients
Each case is represented by 500 simulated sets of 11 data each.

quantity
exact b1 0.5 0.1 0.9

average ( )21 bbu .0879 .0891 .0873

average ( )12 bbu .0847 .0858 .0841

average value of 

n
uy

SEE
ave =−

.0295 .0299 .0293

Percent of Model Points 
within Error Envelope

95.6 96.2 95.2

Reference

Jeter, S. M., 2003, “Spreadsheet ELM for Computing the Error Limits of a Model”, ME 
4053 Engineering Systems Laboratory, the George W. Woodruff School of Mechanical 
Engineering, Georgia Institute of Technology, Atlanta, GA, 10 January 2003, available on line at 
<me.gatech.edu/~sjeter>.
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Attachment 1. Block of Excel Workbook used to Compute and Plot
the Uncertainties of a Regression Model

Sheet to Compute and Plot the Uncertainty of a Model, SMJ Nov 2001, updated 14 Jan 2003

User must insert and/or update data coded with yellow. User should format these and other cells for neatness or legibility as needed.
Instructions: (1) Copy this sheet to your experimental *.xls workbook. (2) Insert the experimental data into block 4. 

(3) Insert the regression results into block 2. (4) Select the desired coverage factor in Block 3.
(5) Update the cell ranges to compute the averages in Block 3. (6) Identify by cell formula the max and min X1 values in Block 5.
(7) Insert data or formulas for other XN data in Block 5. (8) Insert optional data for U_b  in Blocks 4 and 5.
(9) Plot experimental data points with green block in Block 4. (10) Plot model and limits with green block in Block5.

1. Summary Data:
The averaged U_a  of model = 0.043 The averaged U_c  of model = 0.044

The constant U_a  of the data = 0.076

2. Block of Data from Regression
User must insert the following data from from t he regression block.

Constant = 17.5
Coefficient B1 = -4064.6 6.4 = Std error of B1
Coefficient B2 = 243635.5 1028.7 = Std error of B2
Coefficient B3 = 0.00000 0.00000 = Std error of B3
Coefficient B4 = 0.00000 0.00000 = Std error of B4

Std Error of y Est = 0.00273
n, number of data = 7

p, number of parameters = 3
coverage factor, kc, by t-dist = 2.78

3. Block of Calculations
User must specify the desired coverage factor to be used. Rigorous value is in cell D23.

coverage factor, kc, used = 27.76 <-----User must select. 10 = multiplier

User must update the cell ranges in the following four formulas to calculate the correct averages.
Average value of X1 = 0.00308
Average value of X2 = 0.00001
Average value of X3 = 0.00000
Average value of X4 = 0.00000

4. Block of Experimental Data and Results, plot the data with the block in green
User must insert the complete set of y and x data from the experim ental data set into following block. Add rows as required.
User may insert column of data for Expanded Uncertainty B, uncertainty due to possible bias, if desired.

Experimental Data, i nsert at least one zero in every otherwise unused XN column
Y data X1 data X2 data X3 data X4 data Lower Upper Lower Upper

X1 X2 X3 X4 U b of U a of U c of X1 data Y data regress E-limit E-limit E-limit E-limit
model model model model on model on model on data on data

6.696 0.00330 0.000011 0.000 0.000 0.006 0.062 0.062 0.003 6.696 6.694 6.632 6.756 6.618 6.770
6.815 0.00325 0.000011 0.005 0.051 0.051 0.003 6.815 6.816 6.765 6.867 6.740 6.892
7.079 0.00314 0.000010 0.004 0.032 0.033 0.003 7.079 7.082 7.050 7.115 7.007 7.158
7.332 0.00305 0.000009 0.003 0.030 0.030 0.003 7.332 7.330 7.299 7.360 7.254 7.405
7.448 0.00300 0.000009 0.003 0.035 0.035 0.003 7.448 7.446 7.411 7.481 7.370 7.522
7.566 0.00296 0.000009 0.003 0.043 0.043 0.003 7.566 7.566 7.524 7.609 7.491 7.642
7.785 0.00287 0.000008 0.002 0.059 0.059 0.003 7.785 7.787 7.727 7.846 7.711 7.862

5. Block of Uniformly Spaced Data for Plotting wrt X1, plot model and limits with the block in green
User must insert cell references to identify the maximum and mi numum X1 values in the cells on the next row.
max X1 = 0.00330 min X1 = 0.00287 4.27E-05 = computed delta X1

Spreadsheet will compute uniform ly spaced X1 values. User must code columns for corresponding values of X2, X3, and X4.
User may insert column of data for Expanded Uncertainty B, uncertainty due to possible bias, if desired.

Lower Upper Lower Upper
X1 X2 X3 X4 U b of U a of U c of X1 data regress E-limit E-limit E-limit E-limit

model model model model on model on model on data on data
2.87E-03 0.00 0.002 0.059 0.059 2.9E-03 7.787 7.727 7.846 7.711 7.862
2.92E-03 0.00 0.010 0.050 0.051 2.9E-03 7.673 7.622 7.725 7.598 7.749
2.96E-03 0.00 0.010 0.042 0.043 3.0E-03 7.561 7.518 7.604 7.485 7.637
3.00E-03 0.00 0.010 0.035 0.037 3.0E-03 7.449 7.413 7.486 7.374 7.525
3.04E-03 0.00 0.010 0.030 0.032 3.0E-03 7.339 7.307 7.371 7.263 7.415
3.09E-03 0.00 0.010 0.029 0.030 3.1E-03 7.229 7.199 7.260 7.154 7.305
3.13E-03 0.00 0.010 0.031 0.032 3.1E-03 7.120 7.088 7.153 7.045 7.196
3.17E-03 0.00 0.010 0.036 0.038 3.2E-03 7.013 6.975 7.050 6.937 7.088
3.21E-03 0.00 0.010 0.044 0.045 3.2E-03 6.905 6.861 6.950 6.830 6.981
3.26E-03 0.00 0.010 0.052 0.053 3.3E-03 6.799 6.746 6.853 6.724 6.875
3.30E-03 0.00 0.010 0.062 0.063 3.3E-03 6.694 6.631 6.757 6.618 6.770
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