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ABSTRACT

In wireless digital communications, the designer is constantly trying to minimize the probability of 
bit error rates within certain constraints, most notably signal power limits.  One method of 
compensating for bit errors is the use of error control coding that provides sufficient structure to 
the signal to provide the location of the error.  Error control coding requires circuits capable of 
performing matrix multiplication and comparing the result of various binary numbers.  Although 
the concepts are relatively simple, the implementation becomes rapidly complex as the length of 
the code word and the uncoded message increase.  As a result, most coding theory uses a (7,4) 
code in which the code word has seven bits of which four bits contain the information.2  The code 
results in a manageable number of 128 code words of which only 16 form valid codes.  The 
redundancy is used for error correction.  Now suppose a (15,7) code is used allowing 32,768 
possible code words for which only 128 are valid information codes.  This complexity can be 
reduced by using several functions in the Matlab Communications Toolbox, providing a unique 
learning opportunity for the engineering technology student.

INTRODUCTION2

Channel coding refers to the class of signal transformations designed to improve communications 
performance by enabling the transmitted signals to better withstand the effects of various channel 
impairments, such as noise, interference, and fading.  These signal processing techniques can be 
thought of as vehicles for accomplishing desirable system trade offs (e.g., error performance vs. 
bandwidth, power vs. bandwidth).

Much of the theory is based upon the Hamming distance which is defined as the number of bit 
positions in which two binary words differ.  For example, consider the following figure.
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The minimum distance between code words is 1.  If a single bit error occurs in the three bit code, 
the error word will result from moving along one of the edges to an adjacent corner.  If the 
minimum distance between code words is 2, the code words are separated by at least two edges.  
This is represented conceptually below where the radius of 1 implies all possible words within a 
distance of 1 from the center.  Since the valid codes are separated by a Hamming distance of 2, a 
code word that differs by a Hamming distance of 1 will represent an erroneous code word.

If the minimum distance is 3, the code words are separated by at least three edges, shown 
conceptually below.  Note that if a single error occurs, the erroneous code word will be closer to 
one of the correct code words.  The error is corrected by assigning the received code word to the 
nearest (in Hamming distance) valid code word.

 
The important concept associated with Hamming distance is:

When the Hamming distance is 1, it is impossible to detect an error, much 1.
less correct the error.  
When the Hamming distance is 2, the error can be detected, but not corrected.2.
When the Hamming distance is 3, a single error can be detected and corrected.3.
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Clearly, Hamming distance is an important concept in the detection and correction of bit errors.  
But how do we expand this concept to realistic problems?  

LINEAR BLOCK CODES2

A systematic (n,k) linear block code is a mapping from a k-dimensional message vector to an n-
dimensional codeword in such a way that part of the sequence generated coincides with the k 
message digits.  The difference (n − k) represents the parity bits.  A systematic linear block will 
have a [k × n] generator matrix [G] of the form
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Thus, a (7,4) code is generated by the matrix
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There are four informational bits and three parity bits.  The block code as shown in the table 
below is generated using the matrix equation

][Guv =

where

u is a [1 × k] vector representing the information
v is a [1 × n] vector representing the code word
[G] is  [k × n] generating matrix
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Note that block coding uses modulo-2 addition (exclusive-OR operation).  If the distance 
between every pair of code words (120 pairs), the Hamming distance is found to be 3.  This code 
can detect double bit errors and correct single bit errors.

Information Code
0000 0000000
0001 1010001
0010 1110010
0011 0100011
0100 0110100
0101 1100101
0110 1000110
0111 0010111
1000 1101000
1001 0111001
1010 0011010
1011 1001011 
1100 1011100
1101 0001101
1110 0101110
1111 1111111

Another important matrix associated with block codes is the [(n − k) × n] parity check matrix, 
[H].  The parity check matrix is formed by starting with the identity matrix and appending the 
transpose of the nonidentity portion of [G]:
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For the (7,4) block code,
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The parity check matrix has the property

v[H]T = 0

That is, any errorless, received code word multiplied by the transpose of the parity check matrix, 
[H], yields a zero vector, or syndrome.  If the received code word contains an error, the resulting 
vector will match the corresponding bit that caused the error. 

For example, consider one of the valid code words of the (7,4) block code, v = 1100101 and the 
transpose of the (7,4) parity check matrix above.  Then,
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The product of the (1 × 7) row vector with a (7 × 3) yields a (1 × 3) syndrome.  The matrix 
product of the row vector with the first column of the parity check matrix produces

[ ] 11100110000111

101
111
110
011
010
010
001

1010011 ×⊕×⊕×⊕×⊕×⊕×⊕×=





























where the symbol ⊕  represents binary addition (exclusive-OR operation in Boolean algebra).  
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That is, binary addition produces the following variations:
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The product of the row vector and the second column of the transpose for the parity check matrix 
is
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The product of the row vector and the third column of the transpose for the parity check matrix is
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With no errors, the syndrome, vHT, is

[ ] [ ]000

101
111
110
011
010
010
001

1010011 =





























=TvH

Suppose the least significant bit of the code, v = 1100101, becomes corrupted yielding 1100100.  
The syndrome is now
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Since the syndrome has non-zero values, an error has been detected.  Note that the value of the 
syndrome corresponds to the value in the last row of the transposed parity check matrix            
([1 0 1]) = [1 0 1]).  This is the seventh row that corresponds to seventh bit of the code word, 
indicating that bit 7 of the transmitted code word has been corrupted.  Knowing where the error 
occurred, the error can be corrected by inverting bit 7 of the code word.

To reinforce the concept, suppose the code word, v = 1100101, becomes corrupted yielding 
1101101.  

[ ] ( ) ( ) ( )[ ]

[ ]011

101000000110101001001

101
111
110
011
010
010
001

1011011

=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=





























Again the syndrome has non-zero values indicating an error.  The syndrome [1 1 0] corresponds 
to the value [1 1 0] in the fourth row in the matrix.  The fourth row corresponds to the fourth bit 
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of the code word.  By inverting the fourth bit, 1101101 will be converted to the correct value, 
1100101.

Each row in the transposed parity check matrix corresponds to a bit in the code word. By 
matching the non-zero syndrome with the contents contained in the rows of the transposed parity 
matrix, the corresponding corrupted bit can be detected and corrected.  

CYCLIC CODES2

The implementation of linear block codes requires circuits capable of performing matrix 
multiplication and of comparing the result of various binary numbers1.  Although integrated 
circuits have been developed to implement the most common codes, the circuitry can become 
quite complex for very long blocks of code.  A special case of the block code, the cyclic code can 
be implemented relatively easily.  For example, take the codeword c=(c1,c2,...,cn), then 

(c2,c3,...,cn,c1), and 
(c3,c4,...,cn,c1,c2), etc.

are also code words. This structure enables cyclic codes to correct larger blocks of errors, than 
what non-cyclic block codes are capable of correcting, and specific rules for generating these 
codes may be set up. 

The generating matrix can be derived from the generating polynomial using the following two 
theorems:

If g(X) is a polynomial of degree n – k and is a factor of Xn + 1, then g(X) generates an 1.
(n,k) cyclic code.

Any irreducible polynomial of degree i is a factor of X2i-1 + 1).2.

Given

( )( )( )3237 1111 XXXXXX +++++=+ --Remember we are using modulo-2 arithmetic

Theorem 1 implies that 1 + X can generate a (7,6) cyclic code, and either 1 + X + X3 or 1 + X2 + 
X3 can generate a (7,4) cyclic code.  Note that 1 + X + X3 is irreducible.  Thus, theorem 2 implies 
that 1 + X + X3 is a factor of X2i-1 + 1.
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The generating matrix is derived from the coefficients of the generating polynomial by listing the 
coefficients in the first row and then shifting them one position to the right.  For g(X) = 1 + X + 
X3, the generating matrix is
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Note that the generating matrix is nonsystematic, since there is no identity matrix existing as part 
of the generating matrix.  Using row operations on the matrix, the nonsystematic generating 
matrix can be converted into the systematic generating matrix
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MATLAB COMMUNICATIONS TOOLBOX DERIVATION

Although the previous discussion was not mathematically complicated, it was mathematically 
tortuous.  Moreover, the discussion for the (7,4) cyclic code is relatively benign with a 
manageable number of calculations.  For larger codes, the calculations become overwhelming, 
especially for the engineering technology student.  In order to better manage larger codes, relieve 
the mathematical stress on engineering technology students, and focus on the application of block 
codes rather than the mathematics; the MATLAB Communications Toolbox provides a set of 
cyclic code functions.

Consider the (7,4) cyclic code.  MATLAB Communications Toolbox can be used to find all the 
cyclic generating polynomials:

>> poly=cyclpoly(7,4,'all')

poly =

     1     0     1     1
     1     1     0     1

Thus, the generating polynomials are:  
321 xx ++   and  

31 xx ++ .
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Suppose the second generating polynomial above is chosen for the calculations.  The code that 
creates the nonsystematic generating matrix, genmat, and the parity matrix, parmat, is:

>> genpoly=[1 1 0 1];
>> [parmat,genmat]=cyclgen(7,genpoly,'nonsys')

parmat =

     1     0     1     1     1     0     0
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1

genmat =

     1     1     0     1     0     0     0
    0     1     1     0     1     0     0
     0     0     1     1     0     1     0
     0     0     0     1     1     0     1

As one would suspect, the computer generated generating matrix (genmat) is equal to the 
calculated generating matrix (G).

genmat =
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The systematic generating matrix is found by

[parmatsys,genmatsys]=cyclgen(7,genpoly)

parmatsys =

     1     0     0     1     0     1     1
     0     1     0     1     1     1     0
     0     0     1     0     1     1     1
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genmatsys =

     1     1     0     1     0     0     0
     0     1     1     0     1     0     0
     1     1     1     0     0     1     0
     1     0     1     0     0     0     1











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






==

1000101
0100111
0010110
0001011

  genmatsys sysG

The MATLAB Communications Toolbox derives the same generating matrices that were derived 
by mathematical manipulation.  The underlying result is that the electronic engineering technology 
student can apply more effort in understanding the theory rather than the mathematics, especially 
when considering more complex problems.

STUDENT PROBLEM

The (7,4) code is important, if only for historical insight.  Practically every digital communications 
textbook refers to the (7,4) code.  The code extends the engineering students to their matrix 
manipulation limits.  Unfortunately, the (7,4) code surpasses many engineering technology 
students’ matrix manipulation limits.  The dilemma is to present a nontrivial, doable problem that 
reinforces cyclic code theory learned using the (7,4) code, but does not mathematically intimidate 
the student.  

Such a problem is a (15,7) cyclic code with generator polynomial:

 
875431 xxxxxx ++++++ .3  
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The nonsystematic 7 × 15 generating matrix, G, can be derived as:
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and the systematic generating matrix is derived by row, column matrix manipulation of the 
nonsystematic generating matrix until the identity matrix appears in the latter part of the 
generating matrix as shown below.
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Although row,column matrix manipulation is a straightforward process for students that have 
taken a linear algebra course, many engineering technology students are not familiar with the 
process.  By using the MATLAB Communications Toolbox, not only can the student do the 
transformation from the nonsystematic to the systematic generating matrix, but the students have 
access to several other functions that simplify the analysis and enhance the understanding of cyclic 
codes.

By using the function cyclpoly, the computer analysis yields a set of all generating polynomials

>> p=cyclpoly(15,7,'all')

p =

     1     0     0     0     1     0     1     1     1
     1     1     1     0     1     0     0     0     1
     1     1     0     1     1     1     0     1     1
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which corresponds to:

87641 xxxx ++++1.
84211 xxxx ++++2.

875431 xxxxxx ++++++3.

Any one of the generating polynomials can be used to create a generating matrix. The third 
generating polynomial above (1 + x + x3 + x4 + x5 + x7 +x8) is the generating polynomial used in 
this problem.  

By using the function cyclgen, the nonsystematic generating matrix, genmat, is derived as follows:

>> genpoly=[1 1 0 1 1 1 0 1 1];
>> [parmat,genmat]=cyclgen(15,genpoly,'nonsys')

genmat =

  Columns 1 through 13 

     1     1     0     1     1     1     0     1     1     0     0     0     0
     0     1     1     0     1     1     1     0     1     1     0     0     0
     0     0     1     1     0     1     1     1     0     1     1     0     0
     0     0     0     1     1     0     1     1     1     0     1     1     0
     0     0     0     0     1     1     0     1     1     1     0     1     1
     0     0     0     0     0     1     1     0     1     1     1     0     1
     0     0     0     0     0     0     1     1     0     1     1     1     0

  

Columns 14 through 15 

     0     0
     0     0
     0     0
     0     0
     0     0
     1     0

Cyclgen also generates the parity matrix.

Putting genmat into matrix form and comparing the result to a manually derived generating 
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matrix, we get:


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
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000011011101100
000001101110110
000000110111011

genmat
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





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
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










==

110111011000000
011011101100000
001101110110000
000110111011000
000011011101100
000001101110110
000000110111011

G

As expected, they are equal.

Likewise, the systematic generating matrix, genmatsys, can be computed using cyclgen without 
the conditional parameter (nonsys):

>> [parmat,genmatsys]=cyclgen(15,genpoly)

genmatsys =

  Columns 1 through 12 

     1     1     0     1     1     1     0     1     1     0     0     0
     1     0     1     1     0     0     1     1     0     1     0     0
     1     0     0     0     0     1     0     0     0     0     1     0
     0     1     0     0     0     0     1     0     0     0     0     1
     0     0     1     0     0     0     0     1     0     0     0     0
     1     1     0     0     1     1     0     1     0     0     0     0
     1     0     1     1     1     0     1     1     0     0     0     0

  Columns 13 through 15 

     0     0     0
     0     0     0
     0     0     0
     0     0     0
     1     0     0
     0     1     0
     0     0     1
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Putting genmatsys into matrix form and comparing the result to the manipulated result yields:


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

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

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

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
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100000011011101
010000010110011
001000010000100
000100001000010
000010000100001
000001011001101
000000110111011

100000011011101
010000010110011
001000010000100
000100001000010
000010000100001
000001011001101
000000110111011

sysGgenmatsys

As expected, they are equal.

Another time-saving toolbox function for analyzing cyclic codes is gfweight that can be used to 
determine the minimum distance between code words.  Knowing the minimum distance, Dmin, 
between code words, (Dmin – 1) errors can be detected.1   Likewise, we can correct (Dmin - 2)/2 
errors for Dmin even and (Dmin - 1)/2 errors for Dmin odd.  

With 128 (27) valid code words, trying to find the minimum weight is excessively laborious.  But 
the Toolbox function, gfweight does it easily and quickly.

>> gfweight(genpoly,15)

ans =
     3

This implies that 2 errors can be detected, and 1 error can be corrected.

The (15,7) code produces 32,768 (215) possible code words of which 128 (27) are valid code 
words.  Needless to say, picking the right 128 valid codes out of 32,768 possibilities is a daunting 
task.  The toolbox provides an encode function that alleviates much of this mathematical anxiety.

>> data=(0:127);
>> c=de2bi(data,'left-msb');
>> valid_code=encode(c,15,7,'cyclic',genpoly)

valid_code =

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     1     0     1     1     1     0     1     1     0     0     0     0     0     0     1
     1     1     0     0     1     1     0     1     0     0     0     0     0     1     0
     0     1     1     1     0     1     1     0     0     0     0     0     0     1     1
     0     0     1     0     0     0     0     1     0     0     0     0     1     0     0

          information
The preceding code generates 128 decimal characters called data using a standard MATLAB 
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colon operator.  The de2bi function converts the decimal numbers to binary numbers and aligns 
the binary numbers with the most significant bit to the left.  The encode function converts the 128 
binary numbers into a (15,7) cyclic code that has a generating polynomial genpoly that was 
previously defined (110111011).  There are 128 valid code words (valid_code) of which the first 
five are shown above.  Note that the original binary-coded information appears in the last seven 
bits of the valid code word.

CONCLUSION

Although the concepts covered in this presentation are relatively straightforward, the 
implementation becomes rapidly cumbersome as the length of the code word and the uncoded 
message increase. The discussion has shown that the functions contained in the MATLAB 
Communications Toolbox can handle the block coding functions regardless of the complexity of 
the system.  Although the presentation looked at methods to convert from nonsystematic to 
systematic generating and parity matrices, there are many more applications (Reed Solomon 
codes, convolutional codes, Viterbi codes, etc.) where the Communication Toolbox reduces the 
complexity of matrix manipulations needed to perform common block coding functions such as:  
encoding or decoding a message, determining the error correcting capabilities of a code, finding 
the syndrome, and computing a decoding table. In addition, the inherent matrix manipulation 
capabilities of the standard MATLAB provide an invaluable tool to transpose and multiply 
matrices. 

Although mathematical manipulation is important in the study of any engineering or engineering 
technology subject, the MATLAB Communications Toolbox provides one tool that can relieve 
the mathematical anxiety of the students, especially engineering technology students.  By reducing 
the mathematical anxiety, students can concentrate more attentively on the actual nuances of 
block coding, and the instructor can move from the theoretical foundation of block codes to the 
circuit implementation of block codes.  
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