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Abstract 
 
A software system to facilitate rapid comparison among theoretical models, simulations, 
and implementations of signals and systems can help engineering students develop 
physical intuition and an understanding of the capabilities and limitations of each.  Using 
programmable instruments in laboratory experiments can improve the efficiency and 
accuracy of such comparisons.  MATLAB and SIMULINK already provide students with 
easy methods to model and simulate systems and to specify arbitrary input functions.  
This paper describes a toolbox of MATLAB functions, called the “Signals and Systems 
Toolbox” that can automatically apply a specified input to a physical system using an 
arbitrary waveform generator and then use a programmable oscilloscope to measure the 
resulting output. A comparison of the simulated versus actual response of the system can 
then be performed.  Other more specialized functions allow comparison between the 
frequency response of a model and that of an actual system by stepping through a desired 
range of frequencies and measuring the response. Basic functions allow easy generation 
and manipulation of complex signals. The toolbox is well suited to introductory 
laboratory courses since all students need to know is how to connect the input and output 
correctly.  More advanced students can use a variety of software options to improve the 
accuracy or usefulness of the input/output comparison. 
 
The software system is designed to work with commonly available HP (Agilent) 
laboratory equipment, but it can be easily modified to use programmable instruments 
from other manufacturers. It is available for downloaded via the Web. 
 
1. Introduction 
 
In introductory courses in Electrical Engineering instructors must decide on the 
appropriate balance between theory, simulation, and experimentation.  In recent years, 
the availability of sophisticated and easy to use software such as MATLAB and 
Electronics Workbench has led to an increased reliance on simulation at many schools.  
At Union College, we have sought ways to emphasize meaningful physical experiments 
in our introductory courses in Electrical and Computer Engineering because we believe 
that they are essential for the development of physical intuition.  The availability of 
inexpensive programmable instruments from manufactures such as Agilent and Tektronix 
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together with support for instrument communication by software packages such as 
MATLAB provides an opportunity to bridge the gaps between theory, simulation, and 
experiment.[2] 
 
Exploiting the capabilities modern test equipment and software in an introductory or 
lower level engineering class requires a software interface with the following special 
properties. 
 
 Simple: The interface should be very simple to use and should provide common 

defaults wherever possible so that students who have yet to master signal 
or system concepts are not discouraged or confused. 

 
 Flexible: The interface should be flexible and configurable enough to be of 

continued use after students have mastered basic concepts. 
 
 Familiar: The interface should use notation that is as similar as possible to what 

students will see in standard introductory textbooks.   
 
Because MATLAB in commonly used in introductory courses for simulation and 
analysis, it is the natural choice for adding an interface to programmable instruments.  
Other software packages, such as LabView, have more sophisticated methods of 
communicating with instruments, but this level of sophistication is not needed in 
introductory classes.  Minimizing the number of different software packages to which 
students are exposed in introductory classes and laboratories avoids “software overload” 
and allows them to develop some level of confidence with and mastery of a small number 
of software packages. 
 
2. Creating and Downloading Input Functions 
 
In many introductory linear systems textbooks [1, page 69], students are frequently 
exposed to simple piecewise functions such as the one shown in Figure 1.  These are 
often used as inputs to systems models since the output they produce can often be 
calculated manually. 

x(t)

1 

t
1/4 1/2

Figure 1: A simple piecewise function. 
 

By using the unit step function, u(t), x(t) can be expressed algebraically as: 
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The Signals and Systems toolbox provides a simple MATLAB version of the unit step 
function, called u(), to allow a similar notation to be used.  Since we wish to have actual 
data for this function in MATLAB, a time axis, t, must first be defined with the desired 
range and a sufficiently large number of points to faithfully represent the signal.  The 
following commands may be used to define a MATLAB version of x(t) ranging from 0 to 
1 second and evaluated at 1000 points. 
 
t = linspace(0,1,1000); 
x = 4*t .* [u(t) – u(t – 1/4)] + [u(t – 1/4) – u(t – 1/2)]; 
 
The similarity between the algebraic and MATLAB forms helps student to rapidly define 
and manipulate functions.  
 
Although the above signal is simple, it is not one of the standard waveforms typically 
available in the laboratory.  The Signals and Systems toolbox function darb() can be 
used to download signal x(t) to the hp33120A function generator: 
 
darb(t, x); 
 
For convenience, a periodic version of x(t) is produced, but a single shot may be selected 
as well.  This gives students the immediate ability to easily produce in the laboratory 
nearly any type of signal that they see represented in textbook or classroom examples.  
Limitations of the hp33120A require that the signal have between 8 and 16,384 points, 
amplitude between -10 V to +10V, and frequency less than 15 MHz.  While signals such 
as x(t) have no important practical application beyond instruction, it is helpful for 
students to be able to verify experimentally examples that they see worked out in class 
and in their text.  The output of the function generator when producing x(t) is described 
in Section 3. 
 
2.2 Generating “Real Signals” 
 
In addition to allowing easy generation of “textbook” signals, the Signals and Systems 
toolbox can also be used to produce laboratory versions of complex waveforms such as 
audio.  While this can also be achieved using soundboards, programmable instruments 
allow easier data gathering and analysis. 
 
The following MATLAB commands take one second of audio from the MATLAB 
sample audio file “gong” and download it to the function generator.  Triggering on this 
waveform is accomplished by using the “sync” output of the generator which produces a 
pulse each time the waveform repeats (once per second in this example).  This sound file 
uses a sample rate, Fs, of 8192 samples per second, so up to two seconds could be held in 
the arbitrary waveform generator’s memory.  The Signals and Systems Toolbox provides 
a function timeaxis() that takes a time duration and a sample rate and returns an 
appropriate time axis. 
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% load the sample “gong” sound, 
% this defines sample rate Fs and sound samples y 
% “gong” is part of the standard MATLAB distribution 
load gong 
 
% define a time axis for 1 s of audio at a sample rate Fs 
t = timeaxis(1, Fs); 
 
% select only the first one second of audio samples  
y = y(1:length(t)); 
 
% download the waveform to the function generator. 
darb(t, y); 
 
Once the sound file has been downloaded to the generator it can be listened to directly by 
the students (using headphones) and can also be used as the input to systems under study 
in the laboratory.  Students may also record their own audio using the PC sound board or 
take a short clip from their favorite CD. The output produced when passing such a signal 
through a system can be gathered and analyzed using the functions described in the next 
section.   
 
Using standard MATLAB operations such as random number generation and 
trigonometric functions, it is easy to generate audio signals that are corrupted by a 
specified amount of noise or to modulate, mix, or combine signals in arbitrary ways.  
This provides enormous flexibility for laboratory demonstrations and experiments. 
 
3. Gathering Output Waveforms 
 
Once a signal, has been displayed on an oscilloscope, the Signals and Systems toolbox 
provides a simple interface to transfer waveform data into MATLAB.  The function 
swave() takes a specified oscilloscope channel and returns the displayed waveform. 
The function is designed to work with the Agilent (formally HP) 54xxx family of 
oscilloscopes, but can be easily modified to work with the scopes of other manufacturers 
such as Tektronix. 
 
 Assume that the function x(t) that was downloaded to the arbitrary waveform generator 
in Section 2 is displayed on channel 1 of a supported oscilloscope.  The waveform, called 
sx with a time axis st, can be transferred to MATLAB using the swave() function of 
the Signals and Systems toolbox.  The argument to swave specifies the selected channel. 
 
[st, sx] = swave(1); 
 
Figure 2 shows a comparison of this signal to x(t) generated in section 2.  In a similar 
manner, a portion of the signal audio signal y(t) generated in section 2 may be transferred 
to MATLAB.  A comparison of this signal with the corresponding portion of the “gong” 
audio file is shown in Figure 3.  It can be seen that the arbitrary function generator does a 
reasonably good job of reproducing both simple and complex waveforms. 
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Figure 2: Top: MATLAB representation of x(t). 
      Bottom: trace of x(t) read from the oscilloscope. 
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Figure 3: Top: MATLAB representation of y(t). 
      Bottom: trace of y(t) read from the oscilloscope. 
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3.1 Quantization Issues and Averaging 
 
Examination of Figures 2 and 3 shows a fair amount of quantization noise in the signals 
transferred from the oscilloscope.  This is due to the crude 8 bit vertical resolution of the 
scope, and can be somewhat reduced by gathering several copies of a given waveform 
and averaging them within MATLAB.  The Signals and Systems Toolbox provides a 
function savgwave() which gathers a specified number of copies of a waveform and 
averages them.  By default, 10 copies are averaged.  The use of this function, as an 
alternative to swave, greatly improves the comparison between simulated and 
experimental waveforms. 
 
4. Frequency Domain Analysis 
 
MATLAB provides a wealth of functions to perform frequency domain analysis of 
signals, but analyzing a physical system can be somewhat more involved.  To aid in 
understanding systems in the frequency domain, the Signals and Systems Toolbox 
provides a function sfreq() that generates the magnitude and phase frequency 
response of a system under test by programming the arbitrary waveform generator to 
send a sequence of sinusoids at various frequencies into a system, and then uses the 
oscilloscope to measure the amplitude and phase of the resulting outputs.  The data 
gathered is then presented as magnitude and phase response graphs.  The frequency range 
and increment are user controlled.  While this function is no replacement for a high 
quality spectrum analyzer, it allows a simple and rapid exploration of the frequency 
response of a system in an introductory laboratory.  The results obtained may be 
compared to system bode plot models to determine how well a systems conforms to its 
model or design specifications.  This function has been used extensively in the laboratory 
experiments described in [3]. 
 
5. Time Domain Analysis 
 
The Signals and Systems toolbox provides a number of other functions to aid in the time 
domain analysis of systems.  All operate of pairs of vectors such as (t, x) which define an 
approximation of a continuous signal x over a time vector t. While the details are beyond 
the scope of this paper, listed below are the names and purposes of some of these 
functions. 
 
ct_conv(): Provides “continuous time” convolution of two waveforms defined on the 

same time axis. 
 
ct_diff(): “Continuous time” derivative. 
 
ct_int(): “Continuous time” integral 
 
smooth(): Zero-phase distortion low pass filtering used to remove high frequency 

noise 
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6. Conclusions 
 
Versions of the Signals and Systems toolbox have been used for several years in both the 
classroom and laboratory portions of an introductory systems course at Union College.  
Student assessment has been quite favorable, and a number of students have used parts of 
the toolbox independently in later laboratory and project classes.  The toolbox may be 
freely downloaded at http://grinch.union.edu/spinelli/SST.  Using it requires a MATLAB 
license that includes the Signal Processing and Instrument Control toolboxes. 
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