
Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

Document 2003-5

A PRIMER ON UML CLASS DIAGRAMS

Jeffrey S. Franzone, Assistant Professor
Engineering Technology Department

University of Memphis

Abstract

The Unified Modeling Language (UML) is currently the de-facto visual modeling standard for
object-oriented design. The UML provides many modeling diagrams and constructs used to aid
the design and development of objected-oriented systems. Each UML diagram presents a unique
view of the object-oriented system under design.
 The most common UML modeling diagram is the Class Diagram. Classes represent the
modeling framework from which all object-oriented systems are designed. They are the
�blueprints� of object-oriented systems, defining the attributes and behaviors of objects, which in
turn, provide the functionality of object-oriented systems. A typical class diagram groups
logically-related classes together to show the relationships of the classes to one another.
 Since it is highly likely that programming students will encounter the UML in industry, it is
imperative that computer science and computer engineering technology instructors begin to
introduce students to the UML in their object-oriented programming courses. This tutorial is
designed for just that purpose.
 The tutorial introduces the UML Class Diagram-its syntax and constructs. Specifically, seven
methods expressing the relationships between classes are examined through detailed examples
and pictorials. Students will learn how to model class diagrams using associations, association
classes, aggregations, compositions, generalizations, realizations, and dependencies. Using this
tutorial, programming instructors can quickly teach the fundamentals of UML class diagrams to
their students. Students can use the tutorial as reference material as they develop class diagrams
for their own objected-oriented programs.

 P

age 8.97.1

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

I. Introduction

There are seven basic ways to show the relationships between classes using the UML.
They are:

• Associations - �knows about� or �aware of� relationships without
 instances of or references to other classes as data
 members. Does not indicate �whole/part� relationships.

• Association

Classes - Defines classes that convert many-to-many relationships
between two other classes into one-to-many relationships.
Occasionally, an additional class association is required to
show ownership of the association class.

• Aggregations - �comprised of� relationships with references to other
classes, not instantiated in the aggregate class, as data
members. Indicates �whole/part� relationships where the
destruction of the �whole� does not destroy the �parts�.

• Compositions - �has a� or �contains a� relationships with instances of
 other classes, or references to other classes instantiated
 within the composite class, as data members. Indicates
 �whole/part� relationships where the destruction of the
 �whole� destroys the �part�.

• Generalizations - �is a� relationships where more specific classes (called

derived classes) inherit behaviors and attributes from
general classes (called base classes) while adding new
behaviors and attributes. Allows classes to extend the
functionality of already existing classes.

• Realizations - �is a� relationships where base classes specify a set of
methods (an interface) that must be implemented by
derived classes. Classes that describe interfaces contain
no attributes.

• Dependencies - �uses a� or �depends on� relationships where classes use

or depend on the services of other classes in such a manner
that a change in the provider class (the class offering the
services) may affect the operation of the user class (the
class using the services).

The following sections discuss each of the above UML class relationships. Examples are used to
illustrate how each of these relationships are modeled as class diagrams in the UML. Class
diagrams typically depict the structural connections (and implicit object interactions) of classes

P
age 8.97.2

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

used in a particular application. However, class diagrams can also depict class relationships that
are independent of any application.

The example screenshots were taken from Rational Rose 2000 Enterprise Edition, a visual
modeling tool for object-oriented design and analysis. Courtesy is given to Rational Software
Company for their use of the software.

II. Classes

Classes represent the modeling framework from which all object-oriented systems are designed.
As shown in Figure 1, the UML visually represents classes as a rectangular box with three
compartments: Name, Attributes, and Operations.

Name

Attributes

Operations()

Figure 1. UML Class symbol.

The Name compartment includes the name of the class and an optional stereotype that
distinguishes the nature of the class from other classes (see the section Associations for more
information on stereotypes). All classes will have at least a Name compartment.

The Attributes compartment is an optional compartment that lists the attributes or states of a
class. The complete format of an attribute is stated as:

<visibility> <<<stereotype>><name of attribute> : <type = initial value>

The visibility of an attribute refers to its access-specifier (public, private, protected, or package);
the attribute�s scope inside and outside of its class. A + represents public, - represents private, #
represents protected, and ~ represents package. Some UML tools such as Rational Rose use
icons instead of character symbols to denote visibility. Attributes that are const, static, or extern
are typically expressed as stereotypes.

The Operations compartment is an optional compartment that lists the operations, services, or
behaviors of a class. The complete format of an operation is stated as:

<visibility> <<<stereotype>>> <name of operation(args list (name : type)> : <return type>

Methods that are const, static, virtual, or friends are typically expressed as stereotypes.

P
age 8.97.3

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

Figure 2 shows a typical example of a Class modeled with the UML.

SomeClass
var1 : boolean
var2 : int
var3 : char [] = "Store"
var4 : double []
sumVar4 : double
<<static>> numVar1 : int

<<const>> getVar1() : boolean
setVars(var1 : boolean, var2 : int, var3 : char *) : void
<<friend>> printVar3() : void
<<virtual>> sortVar4() : void
SomeClass()
<<const>> getSumVar4 : double()
sumVar4() : void

<<abstract>>

Figure 2. Modeling a Class with the UML.

III. Associations

Associations define structural links between different, but related, classes. More specifically,
associations define �knows about� relationships between classes without needing instances of or
references to other classes as data members. Class relationships of this type usually
communicate by sending messages via class or object references. A bi-directional association
means that the classes involved in the association know about each other (each class is passed a
reference to or an instance of the other class). A unidirectional association means that only one
class in the association knows about the other class.

Figure 3 illustrates a bidirectional association between two generic classes, Customer and Order.
A bidirectional association is depicted with a solid darkened line connected between two classes.
You can select a descriptive name for the association that describes the purpose of the
association (placed near the middle of the association line) or provide �roles� at each end of the
association. Roles specify the function each class presents to the other class in the association.
Roles are often preferred over association names because good role names generally convey
more information about the association (see Figure 4).

OrderCustomer

1..*1..* 1..*1..*

places

Figure 3. A bidirectional association with multiplicity values.

Association names may be attached to a small arrow indicating the direction the association
should be read (although the grammatical tense and context of the association name usually P

age 8.97.4

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

implies the direction). This is only necessary for bidirectional associations since unidirectional
associations are marked with feathered arrows. This notation is sometimes useful when you
want to emphasize the direction of an association even though structurally both classes know
about each other.

Most associations use multiplicity values to indicate how many objects of one class participate
with objects of the other class. Table 1 lists the multiplicity notation used in Class diagrams.
Absence of multiplicity values could either indicate one-to-one relationships or many-to-many
relationships between classes. If multiplicity values are absent from an association, the context
of the classes participating in the association usually determines the implied multiplicity.

Table 1. Multiplicity notation and meanings.

As shown in Figure 4, a Course object can be aware of 1 up to 25 Student objects. The Course
object knows about the number and names of students enrolled because it is passed a reference to
a Student object when the enrollStudent() method is invoked. The Course object stores a Student
object�s name in a private String array. Since the association is bidirectional, you can also say
that a Student object can be aware of 0 up to 6 Course objects. The Student object knows about
the number of courses it is enrolled in and the names of the courses when the enrollCourse()
method is invoked because it is passed a reference to a Course object. The Student object stores
a Course object�s name in a private String array.

Note that both the Course and Student classes know about each other through object references
passed into member methods. Nowhere in the Course class is an instance or reference to a
Student object stored as a data member and vice versa. And yet, we can still say that a Course
object �knows about� Students (at least one).

Another important property of associations is they do not indicate �whole/part� relationships. In
other words, Course and Student objects can survive independently of each other. Although
logically it might be correct to think that Students are a part of Courses or Courses contain
Students, the particular structural connection between the classes in Figure 4 does not support
these notions. If a Course dies, Students still survive (quite happily I might add). If Students of
a Course die (an unfortunate predicament, to say the least), the Course still goes on (even without
any students). However, using aggregation or composition relationships (discussed in later
sections), we can express the notion that Courses die if no students are enrolled (�whole/part�
relationships).

P
age 8.97.5

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

Student
s tudentGPA : f loa t
studentID : int
s tudentName : S t r ing
coursesEnro l led : St r ing[]
numCoursesEnro l led : in t

Student()
< < c on s t> > ge tS tuden tG P A() : fl oat
<<const>> getStudent ID() : in t
<<cons t>> ge tS tudentName() : S t r ing
<<cons t>> ge tNumCoursesEnro l led () : i n t
< < c on s t> > ge tN ameC our s es E nro lled() : cons t S t ring&
setStudentGPA(f loat) : void
setStudentID(int) : void
s e tS tude ntN ame (S tr ing) : vo id
enrol lCourse(Course&) : void

Course
course ID : in t
cou rseName : S t r i ng
numStudentsEnro l led : in t
s tudentNamesEnro l led : S t r ing []

Course()
<<cons t>> ge tCourse ID() : i n t
<<cons t>> ge tCou rseName() : S t r i ng
< < c on s t> > ge tN umS tudents Enr olled() : int
< < c on s t> > ge tS tude nts E nro lled() : cons t S t ring&
s etC ours e ID (int) : vo id
setCourseName(Str ing) : void
enrol lStudent(Student&) : void

1. .25

0 . . 6

+enrol lee1. .25

+enrol ler0 . . 6

 Figure 4. Bidirectional association between the Course and Student classes.

Figure 4 also illustrates the use of �stereotypes� to signify special properties of some class
member functions. Stereotypes represent user-defined modeling elements that extend the basic
modeling vocabulary of the UML. Stereotypes are enclosed within guillemets << >>.
Stereotypes help you to distinguish and differentiate unique purposes or uses of classes, member
functions, data members, associations, aggregations, compositions, dependencies, realizations,
and generalizations based on the context in which these modeling elements are used. The UML
has many predefined stereotypes that convey special meaning to a modeling element. For
example, member functions that do not modify class data are typically declared as �const�
functions. The stereotype <<const>> before a function signature clearly signifies that the
function is a �const� function. You will see more examples of stereotypes throughout this
tutorial.

P
age 8.97.6

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

Figure 5 shows a variation of the Course/Student relationship as a unidirectional association.
Unidirectional associations are shown with feathered arrows pointing to the class that the other
class knows about.

S t u d e n t
s t u d e n t G P A : f l o a t
s t u d e n t I D : i n t
s t u d e n t N a m e : S t r i n g
c o u r s e s E n r o l l e d : S t r i n g []
n u m C o u r s e s E n r o l l e d : i n t

S t u d e n t ()
< < c o ns t> > g e tS tud e n tG P A () : fl o at
< < c o n s t > > g e t S t u d e n t I D () : i n t
< < c o n s t > > g e t S t u d e n t N a m e () : S t r i n g
< < c o n s t > > g e t N u m C o u r s e s E n r o l l e d () : i n t
< < c o ns t > > g e t N a m e C o u r s e s E n ro l led () : co n s t S t rin g &
se tS tuden tGPA(f l oa t) : vo i d
se tStudent ID(in t) : vo id
se tS tuden tName(S t r i ng) : vo id
e n r o llC our s e (C ou r s e &) : vo id

C o u r s e
cou rse ID : i n t
c o u r s e N a m e : S t r i n g
n u m S t u d e n t s E n r o l l e d : i n t

Cou rse ()
< < c o n s t > > g e t C o u r s e I D () : i n t
< < c o n s t > > g e t C o u r s e N a m e () : S t r i n g
< < c o ns t > > g e tN u m S tud e n ts E n ro l l e d() : i nt
se tCourseID(in t) : vo id
se tCourseName(S t r i ng) : vo id
se tNumStuden tsEn ro l l ed (i n t) : vo id

1 . . *

0 . .6

1 . . *

0 . .6

enrol ls

Figure 5. Unidirectional association between the Course and Student classes.

As seen in Figure 5, Students know about the Courses they are enrolled in but Courses do not
know implicitly how many students are enrolled (enrollment information is entered manually).
Also notice that the roles are replaced by the �enrolls� association indicating that a Student
object enrolls in a Course object.

Some associations require rules or conditions to be applied. These rules or conditions are
referred to as constraints. Figure 6 is an example of a Sort class that contains a method that
performs the bubble sort algorithm on a list of integers stored in a Container object. The
constraint, shown enclosed within curly braces, signifies that the Sort class performs sorting in
ascending order only.
 P

age 8.97.7

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

Figure 7 shows an �xor� constraint between three classes. Here, an instantiated object of the
Container class can either be a linked list �or� an array, but not both.

Sort

bubbleSort(Container&) : void

Container
listOfInts : int[]

{ascending}

Figure 6. A unidirectional association containing a constraint.

Linked List

Container

Array

{xor}

Figure 7. An �xor� constraint.

IV. Association Classes

Association classes are used to express one-to-many relationships between two classes that
inherently have many-to-many relationships. Take for example, the Course and Student classes
previously discussed. Typically, there are many-to-many relationships between a Course and
Student because a Student may be enrolled in more than one Course and a Course may have
more than one Student. Using a Classroom association class, as shown in Figure 8, we can
associate a particular Student with a particular Course by the Classroom in which the Course is
taught. In other words, one Classroom will be assigned to a particular Course in which a
particular Student has enrolled. The Classroom association class presents a unifying association
between one Course and one Student.

Typically, an association class implicitly knows about both classes so additional associations
between the two classes and the association class are usually not needed. However,
occasionally, an association class may only know about one of the classes. Consequently, an
additional class relationship must be provided to indicate ownership of the association class. As P

age 8.97.8

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

seen in Figure 8, a Course is assigned a Classroom and thus has ownership of the Classroom (we
don�t want Students to decide where to teach the Course, do we?).

Student

studentGPA : float
studentID : int
studentName : String
coursesEnrolled : String[]
numCoursesEnrolled : int

Student()
<<const>> getStudentGPA() : float
<<const>> getStudentID() : int
<<const>> getStudentName() : String
<<const>> getNumCoursesEnrolled() : int
<<const>> getNameCoursesE nrolled() : const String&
setStudentGPA(float) : void
setStudentID(int) : void
setStudentName(String) : void
enrollCourse(Course&) : void

Classroom

courseName : String
courseTime : String
roomNumber : int

<<const>> getCourseName(Course&) : String
<<const>> getStudentNames(Course &) : const String&

Course

courseID : int
courseName : String
numStudentsEnrolled : int
studentNamesEnrolled : String[]
roomNumber : int

Course()
<<const>> getCourseID() : int
<<const>> getCourseName() : String
<<const>> getNumStudentsEnrolled() : int
<<const>> getStudentsEnrolled() : const String&
<<const>> getRoomNumber(Classroom&) : int
setCourseID(int) : void
setCourseName(String) : void
enrollStudent(Student&) : void

1..250..6

+enrollee

1..25

+enroller

0..6

assign

Figure 8. Association class relationship with ownership.

V. Aggregations

Aggregations are class associations that indicate �whole/part� relationships where the �parts�
comprise the �whole� (implying the �parts� are logically independent of the �whole�). It differs
from a generic association in that one class (the whole) contains object references or pointers to
one or more classes (the parts) as data members. References to other class types stored as data
members in the aggregate (or whole) class implies that the parts exist outside of the aggregate
class. However, any instances of the aggregate class must be initialized with (or passed) valid
references to the parts if the aggregate class is to function properly. Aggregation defines a
�loosely-coupled� dependency on the parts to the whole. If the aggregate instance is destroyed,
its parts still remain alive since their instances are declared outside of the aggregate class.
However, the whole cannot exist without its parts.

To represent an aggregate relationship between classes, you use a solid darkened line between
the classes with a hollow diamond attached to the aggregate class. Figure 9 shows another
variation of the Course and Student classes. The Course class defines an array of Student
pointers as data members. Under this scenario, Course objects cannot perform certain operations P

age 8.97.9

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

(such as calculating the mean GPA of all enrolled students) without valid references to enrolled
Student objects. The aggregate property of the Course class to the Student class implies a closer
structural connection than what a regular association provides. If a Course object is destroyed
(the whole), its Students (the parts) are not. And yet, a Course object cannot meaningfully
perform its full capabilities without its Students.

Student
studentGPA : float
studentID : int
studentName : String
numCoursesEnrolled : int

Student()
getStudentGPA() : float
<<c ons t>> getS t udentID () : int
<<c ons t>> getS tudentN am e() : S tr in g
<<const>> getNumCoursesEnrolled() : int
setStudentGPA(float) : void
setStudentID(int) : void
setStudentName(String) : void
enrollCourse(Course&) : void

Course
courseID : int
courseName : String
numStudentsEnrolled : int
studentsEnrolled : Student *[]
meanStudentGPA : float
meanNumCoursesEnrolled : int

Course()
<<const>> getCourseID() : int
<<cons t>> getCourseN ame() : S tr ing
<<const>> getNum Student s () : i nt
<<const>> getMeanStudentGPA() : float
<<cons t>> getM eanN um Cou rsesEnrolled : int ()
setCourseID(int) : void
setCourseName(String) : void
calculateMeanGPA() : void
calculateMeanEnrolledCourses() : void
enrollStudent(Student&) : void

1..25

1..6

+enrollee1..25

+enroller1..6

enrolls in

Figure 9. Aggregate association.

P
age 8.97.10

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

VI. Compositions

Compositions are special types of aggregate associations that also indicate �whole/part�
relationships between classes. It differs from aggregation in that one class (the whole) contains
direct instances (or references of instances instantiated by the whole) of one or more class
objects (the parts) as data members. This implies that the �parts� can only exist as part of the
�whole� (the composite). If the �whole� is destroyed, so too are its parts. The �parts� cannot
exist without the �whole�. Composition, unlike aggregation, defines a �tightly-coupled�
dependency on the parts to the whole, a so-called �has a� or �contains a� relationship. More
precisely, since composite classes have ownership over their parts, the lifetime of the �parts� are
dependant on the lifetime of the �whole�.

To represent a composite relationship between classes, you use a solid darkened line between the
classes with a filled diamond attached to the composite class. As shown in Figure 10, the
composite class contains one instance of the Date class as a data member. The Date object
�hireDate� only exists when an instance of the Employee class is created. When the Employee
class is destroyed, so too is the �hireDate� object. Figure 10 also illustrates the use of an optional
�stereotype� to name the composite relationship between the Employee and Date classes. For
example, composite associations typically instantiate objects of other classes as data members so
that those objects can be considered as part of the composite class. The predefined stereotype
<<instantiate>> conveys the underlying nature of composite relationships. Along with
stereotypes, you can also provide specific association names (or roles) that define logical
descriptions between classes (see Figure 11).

Up to this point, all of the previous class diagram examples have neglected to show the
composite relationship between the class String and its parts (other classes that use String). Now
that you understand the concept of composition, Figures 12 and 13 show a more complete class
diagram of the Employee/Date relationship and the Course/Student relationship, respectively.
Class String is assumed to be a vendor-supplied class library.

P
age 8.97.11

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

Date

month : int
day : int
year : int

Date()
<<const>> getDate() : const Date&
setDate(m : int, d : int, y : int) : void

Employee

employID : int
employPayRate : float
employName : String
hireDate : Date

Employee()
<<const>> getEmployID() : int
< <cons t >> getEmp loyPay Rat e() : fl oat
<<const>> getEmployName() : String
<<const>> getEmployHireDate() : String
setEmployID(int) : void
setEmployPayRate(float) : void
setEmployName(String) : void
set EmployH ireDate(m : int , d : i nt, y : i nt) : void
setEmployHireDate(Date&) : void

1

1

1

1

<<instantiate>>

Date

month : int
day : int
year : int

Date()
<<const>> getDate() : const Date&
setDate(m : int, d : int, y : int) : void

Employee

employID : int
employPayRate : float
employName : String
hireDate : Date

Employee()
<<const>> getEmployID() : int
< <cons t >> ge tEmploy Pay Ra te() : fl oat
<<const>> getEmployName() : String
<<const>> getEmployHireDate() : String
setEmployID(int) : void
setEmployPayRate(float) : void
setEmployName(String) : void
set EmployH ireDate(m : int , d : i nt, y : i nt) : void
setEmployHireDate(Date&) : void

1

1

1

1

stores hire date
<<instantiate>>

 Figure 10. Composite association Figure 11. Composite association
 with stereotype. with stereotype and association name.

P
age 8.97.12

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

Date

month : int
day : int
year : int

Date()
<<cons t>> ge tDate() : const D at e&
setDate(m : in t, d : int , y : int) : void

String

Employee

employID : int
employPayRate : float
employName : String
hireDate : Date

Employee()
<<const>> getEmployID() : int
< <cons t>> getE mployPayRate() : fl oat
<<const>> getEmployName() : String
<<const>> getEmployHireDate() : String
setEmployID(int) : void
setEmployPayRate(float) : void
setEmployName(String) : void
set E mployHi reDat e(m : int , d : int , y : int) : void
setEmployHireDate(Date&) : void

1

1

1

1

stores hire date
<<instantiate>>

11 11

<<instantiate>>

Figure 12. Employee/Date composite association with String class.

P
age 8.97.13

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

Course
courseID : int
courseName : String
numStudentsEnrolled : int
studentsEnrolled : Student *[]
meanStudentGPA : float
meanNumCoursesEnrolled : int

Course()
<<const>> getCourseID() : int
<<const>> getCourseName() : String
<<const>> getNumStudents() : int
<<const>> getMeanStudentGPA() : float
<<const>> getMeanNumCoursesEnrolled : int()
setCourseID(int) : void
setCourseName(String) : void
calculateMeanGPA() : void
calculateMeanEnrolledCourses() : void
enrollStudent(Student&) : void

Student
studentGPA : float
studentID : int
studentName : String
numCoursesEnrolled : int

Student()
<<const>> getStudentGPA() : float
<<const>> getStudentID() : int
<<const>> getStudentName() : String
<<const>> getNumCoursesEnrolled() : int
setStudentGPA(float) : void
setStudentID(int) : void
setStudentName(String) : void
enrollCourse(Course&) : void

1..25

1..6

+enrollee1..25

+enroller1..6

enrolls in
String

1

1

1

1

<<instantiate>>

1

1

1

1<<instantiate>>

Figure 13. Course/Student composite associations with String class.

P
age 8.97.14

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

VII. Generalizations

Generalizations specify inherited relationships between more general classes (called base classes
or superclasses) and more specific classes (called derived classes or subclasses). A derived class
�inherits� common attributes and behaviors from its base class while defining additional
attributes and behaviors unique to the class. For example, we might categorize common
attributes and behaviors of animals in an Animal class. Some common attributes that all animals
possess include size, weight, life-expectancy, and diet. Some common behaviors might include
eating, sleeping, and mating. Although the Animal class contains common animal
characteristics, different animals may possess additional, more specific characteristics and
behaviors. For instance, we can derive a Dog class from the Animal class that includes all of the
attributes and behaviors of the Animal class but adds additional attributes and behaviors common
to dogs such as a tail, four legs, barking, and running. We can further derive the Dog class into
specific types of dogs which include attributes such as intelligence, exercise habits, and
disposition (see Figure 14).

Figure 14 illustrates how the UML expresses generalizations as applied to the Animal and Dog
classes. Generalized relationships are shown with a solid darkened-line with a hollow triangle
attached to one end that points to the more general class from the more specific class. Although
the nature of a generalization can also be named or stereotyped to emphasize a logical idea or
underlying connection between the classes involved, generalizations are often not labeled. Also,
multiplicity values are seldom labeled because generalizations show inherited relationships
among derived and base classes independent of any particular application. This implies
multiplicity values of 0..* to 0..* between derived and base classes except for abstract base
classes which have a multiplicity of 0..0 (objects cannot be instantiated for abstract classes).

From a logical perspective, generalizations depict one-way �is a� relationships between classes.
For example, a Dog �is a� type of Animal but an Animal may not be a Dog (it could be a
Tweetie Bird, for example). Similarly, a Dalmation �is a� Dog which is a type of Animal but a
Dog is not necessarily a Dalmation (it could be other breeds as well). Contrast the �is a�
relationship with the �has a� relationship. You wouldn�t say that a Dog �has a� Dalmation
(rather, a Dalmation �is a� Dog) or an Employee �is a� Date object (rather, an Employee �has a�
Date object).

From a structural perspective, generalizations imply the creation of new �standalone-but-related�
classes from parts of previously defined classes through the object-oriented property of
inheritance. Contrast this with aggregate or composite class relationships where the aggregate or
composite class depends on the creation of objects from other, possibly unrelated classes.

P
age 8.97.15

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

Animal

size : float
weight : float
lifeExpectancy : float
diet : String

eat(food : String) : void
sleep(time : float) : void
mate() : int

Dog

tailLength : float
legs : int
tongue : boolean

bark(num : int) : void
run(dist : float, sp : float) : void

Cat

tailLength : float
legs : int
tongue : boolean
numLives : int

meow(num : int) : void
jump(height : float) : void

Bird

wings : int
legs : int
beak : boolean

chirp(num : int) : void
fly(height : float, direc : int) : void

Dalmation
intelligence : String
exerciseType : String
disposition : String

Poodle
intelligence : String
exerciseType : String
disposition : String

Figure 14. Generalizations convey the OO principle of inheritance.

VIII. Realizations

Realizations are special forms of generalizations which connect the services (or operations)
described in interface classes to the implementation classes that actually provide the services.
Interfaces merely describe services or operations that are not implemented and they contain no
attributes. Instead, its derived classes must provide the actual implementations for these
services. In other words, interface classes provide a predefined contract that state what services
must be implemented by its derived classes. Realization associations simply connect
implementation classes to their interface classes.

Java directly supports the notion of interfaces; in C++, an abstract class that only contains pure
virtual functions (no attributes) is called an interface. As shown in Figure 15, realizations are
shown as a dashed arrow with a hollow triangle attached to the end that points to the interface
class from the implementation class. It is common to use the <<interface>> stereotype in the
name compartment of the interface class to help distinguish this type of class. Multiplicity

P
age 8.97.16

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

values between interface and implementation classes are assumed to be 0..0 (for the interface
class) to 0..* (for the implementation class).

Figure 15 also shows another UML modeling element called a Note. Notes are useful when you
want to clarify or provide additional information about your classes.

Figure 16 depicts a typical scenario where a user is operating an email application and selects the
�Send Message� button. The button the user selects is a special type of button called a
SendButton. The SendButton class is derived from an interface called Button which represents a
generic button type. The Button interface describes a method called �actionPerformed()� that all
its derived classes must implement. The SendButton class inherits the �actionPerformed()�
method interface and must implement the specific actions taken when the user selects the
instance of the SendButton (called sendMessageButton, in this example). When the user selects
the �sendMessageButton�, its �actionPerformed()� method calls the email applications�
�sendMessage()� method which actually handles the details of sending the message to another
user. Here, the SendButton class implements a specific version of the Button class tailored to the
application it is used in. Other button types can be derived from the same Button class while
implementing unique behaviors and attributes suitable for the application.

Interface Name

operation()

<<interface>>
Implementation

Name

attribute : type

operation()

operations not
defined, no attributes

operations defined, may
include attributes

Figure 15. Realization notation.

P
age 8.97.17

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

Button
actionPerformed() : void

<<Interface>>

EmailDelight
sendMessageButton : SendButton

sendMessage() : boolean

calls 'sendMessage()'
method of EmailDelight
when User selects button

SendButton
buttonColor : int
buttonString : String = "Send Message"

actionPerformed() : void

User

<<use>>

 Figure 16. The SendButton class �realizes� the Button interface class.

The UML also provides an interface icon symbol called a Pin that is often used to simplify class
diagrams containing interfaces. Figure 17 redraws the class diagram of Figure 16 using the
interface icon symbol.

User

SendButton
buttonColor : int
buttonString : String = "Send Message"

actionPerformed() : voidButton

EmailDelight
sendMessageButton : SendButton

sendMessage() : boolean

<<use>>

<<use>>

Figure 17. Figure 16 redrawn using the UML interface icon (�Pin� notation).

P
age 8.97.18

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

IX. Dependencies

You may have noticed from Figure 16 the dashed-line, feathered arrow pointing from the User
class (the dependent class) to the EmailDelight class (the independent class). This symbol
denotes a dependency relationship between the two classes in which a User class �uses� another
class. The User depends on the email application to send email. If the email application should
fail, so too are the attempts by the User to send email to another user. In a dependency
relationship, the arrow always points to the independent class from the dependent class.

Dependencies emphasize �uses a� or �depends on� relationships between classes. Since
stereotypes are often used to distinguish class differences, it is common to name dependency
relationships with stereotypes. Dependencies typically involve classes that use the services of
other classes without any structural connection between the classes. If the classes providing
services happen to change their implementation, this could affect the operation of the classes
using those services. Hence, the dependency of dependent classes using the services of
independent classes.

Some commonly named dependencies include <<friend>>, <<instantiate>>, and <<include>>
(although, these stereotypes could name other types of associations as well). A class might
contain several friend functions that are granted access to the dependent classes� private data.
For example, to help determine the amount of merit pay given to an Employee, a Human
Resource class might contain a friend function that is granted access to private disciplinary
actions taken against an Employee without being related to the Employee class. This
information, along with the number of projects completed by the Employee, is then used to
determine the amount of merit pay given to the Employee. This is shown in Figure 18 as a
<<friend>> dependency. Friend classes are also possible which allow any of the member
functions of a friend class access to the granting classes� private data.

Employee

disciplinaryActionsTaken : String *[]
numProjectsCompleted : float

<<const>> getNumProjectsCompleted() : float

HR

<<friend>> <<const>> getDisciplinaryActions(emply : Employee&) : String *[]
meritRaiseEmployee(emply : Employee&, discipType : String *[], numProjs : float) : float

<<friend>>

Figure 18. A <<friend>> dependency.

An example of an <<instantiate>> dependency is shown in Figure 19. Here, a Client class
wishes to use a service provided by a Server class. The Client object connects to the Server class
by instantiating a Server object within a Client method. After the Client method is finished using
the services, the Client object disconnects from the Server object. If the Server object either
changes the name of its service, the format of its String argument, or the type of its argument, the
Client object would not be able to update the customer address successfully.

P
age 8.97.19

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

Client
updateCustomerAddress(String) : void

void updateCustomerAddress(String address)
{
 Server *serv = new Server();
 serv->connect();
 serv->updateAddress(address);
 serv->disconnect();
}

Server
updateAddress(String) : void

<<instantiate>>

Figure 19. An <<instantiate>> dependency.

An <<include>> (or <<access>>) dependency is one in which classes in one package depend on
classes of another package. In Java, packages are directory structures which store related classes
(a logical library of classes, so to speak). C++ doesn�t directly support packages but it does
support namespaces. C++ namespaces are similar to the package concept where related classes
are grouped together into logical units. Packages are grouped into logical units using directory
structures while namespaces are grouped into logical units using programmatic language
features. (Note: The terms �package� and �library� are often used synonymously. However,
unlike packages, pure class libraries imply that related classes are grouped together and
converted into a special format by a Librarian program and represented by a single filename
(usually suffixed with a .lib extension). Typically, C++ namespaces actually include �library�
files.) Figure 20 shows the UML symbol for a Package.

NewPackage

Figure 20. UML Package symbol.

Figure 21 shows an <<include>> dependency between the Time class and the C++ namespace
�std�. The Time class contains a method called �printTime()� which uses the cout object to
display the current time. The cout object is part of the iostream class and is contained within the
�std� namespace. By including the iostream header file and the �std� namespace in the Time
class definition file, Time objects can utilize the services of cout.

P
age 8.97.20

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

std

Time
hour : int
minutes : int
seconds : int

Time()
<<const>> getTime() : const Time&
setTime(h : int, m : int, s : int) : void
<<const>> printTime() : void

<<include>>

printTime() uses cout of
the iostream class; part
of the 'std' namespace or
package.

Figure 21. An <<include>> dependency.

X. Parameterized Classes

Typically, class development involves the definition of attributes and operations of classes.
Specific data types are assigned to attributes, function arguments, and return types. Class
methods often must modify or access class data members as well as define local variable types.
Class implementations that are tied to specific data-types are said to be fixed in their
implementation and instantiation of class objects. So, for example, if a Stack of integers class is
defined, the implementation of the class is directly tied to the int type and any Stack objects
instantiated from the class will always be integer Stacks. But you would also agree that a Stack
of doubles, characters, or String types is also useful in some applications. Without
parameterized classes, we would need to either provide many overloaded methods to handle the
different data types or use inheritance to derive new Stack-type objects. These techniques aren�t
always practical or easy to implement.

Parameterized classes, sometimes referred to as Template classes or class Templates, are generic
class definitions that are not tied to specific data-types until compile time. Instead, specific data-
types for class implementation-dependent code is passed to the class template when objects of
the class are instantiated. The compiler binds the passed type parameters to the class
implementation-dependent code in the class template and generates a type-specific class from
which class objects can be instantiated. Therefore, a generic Stack class, for example, can be
written that is not tied directly to any particular data-type. Then at compile time, a type-specific
Stack class can be specified that will bind the selected data type to a Stack implementation of

P
age 8.97.21

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

that type. In this manner, the same generic Stack code can be used to generate a Stack class of
integers, characters, doubles, Strings, and other types. As you might guess, class templates are
extremely useful in the development of generic class data structures whose operations are
identical for a range of different data-types.

Figure 22 illustrates the basic notation for parameterized or template classes. The template class
looks like a regular class type with attributes and operations listed in their respective
compartments except for the added dashed-line rectangle located at the upper right corner of the
class. Listed inside this rectangle are the formal type parameters used to indicate
implementation-dependent code (or more specifically, implementation-dependent data types)
within the class template definition. The bounding class is the same name as the template class
but represents a type-specific version of the template class based on the passed type parameters.
It is this generated type-specific version of the template class that type-specific class objects can
be instantiated. The template class and the bounding class are connected with a dependency
relationship with the arrow pointing from the bounded class to the template class. The
dependency relationship is labeled with a <<bind>> stereotype and the actual parameter types
that are bound to the template class are listed next to the stereotype.

Template Class

Attributes

Operations()

types list

Bound Class

<<bind>> (actual parameter types list)

formal parameter

Figure 22. Template class notation.

Figure 23 shows an example of a simple Stack of integers class created from a Stack class
template.

P
age 8.97.22

Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition
Copyright  2003, American Society for Engineering Education

Stack
stackPtr : T *
top : int
size : int

Stack()
Push(T) : void
Pop() : T

(int)

class T

Stack

<<bind>>

template<class T>
Stack<T>::Stack(int s)
{
 size = (s > 0 ? s : 10);
 top = -1;
 stackPtr = new T[size];
 assert(stackPtr != 0);
}

Figure 23. A Stack of integers class created from a Stack class template.

XI. Conclusion

Although there are many visual and notational elements in the UML, the previous sections have
emphasized the more common elements you are most likely to work with when drawing and
analyzing class diagrams. In particular, seven common class relationships and their associated
notations were discussed that describe, distinguish, or differentiate the structural and/or logical
connections among different classes. The class relationships described by associations,
association classes, aggregations, compositions, generalizations, realizations, and dependencies
and expressed in Class diagrams impart significant insight into the OO development and analysis
of classes and the applications they are associated with.

Bibliography

1. Rational Rose Enterprise Edition 2000, Rational Software Corporation, 1991-2000.
2. UML Explained, Kendall Scott, Addison-Wesley, 2001.
3. OMG Unified Modeling Language Specification Version 1.4, September 2001.

JEFFREY FRANZONE
Jeffrey Franzone currently teaches in the Engineering Technology Department at the University of Memphis as
an Assistant Professor. He teaches C, C++, Java, and microprocessor courses. He has 7 years industrial
experience working as an engineering technologist both in hardware and software design and testing and 9 years
teaching in Engineering Technology. Jeff received a Bachelor�s degree in Electronics Engineering Technology
at California State University at Long Beach in 1991 and received a Master�s degree in Computer Technology
at Arizona State University in 1996.

P
age 8.97.23

