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1 Introduction.

Physics is the basis of innumerable technological applications, which shape the face of contem-
porary society and represents the paradigm of all exact sciences. One would reasonable expect
physics to permeate the culture of every even moderately educated man or women. Unfortu-
nately this is not the case and in contrast there is a tendency to allow irrational or simply
empirical attitudes to dominate in many areas of life, including the development of new tech-
nologies. The delicate task of preventing a general dismissal of physics as the common basis of
any technical education belongs naturally to school systems and, in particular, to universities,
where the physics subjects are taught, not only in general physics courses, but also as part of
various technical courses. However, in of all this a weak point is that often the teaching of
general physics follows schemes which follows the ways and methods of many decades ago, even
when the contents are up to date. Sometimes modern teaching technologies are adopted but
most often only referring to the ways in which doing laboratory, presentations, etc. One may
also consider the fact that in recent years several authors pointed out the importance of using

numerical calculations in introductory physics courses, owing to the increased availability of
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personal computers.

Making physics more accessible to students is one of extreme importance, being the most
significant achievement of any physics educator. A rigorous understanding of physics gen-
erally presumes a rigorous understanding of standard calculus. This raises the question of
whether physics can be understood rigorously without using standard calculus. In answering
this question, we note that an alternative to calculus is the finite difference approach. The
finite difference is a powerful tool, widely used in solving physics and technical problems. One
also need to note another advantage of numerical methods is that they permit the treatment
of problems for which analytical solutions do not exist, which dramatically enlarges the base of
the examples, used to support the course. These motivate our interest in the reformulation of
classical mechanics, electromagnetics, acoustics, etc. by using finite difference methods instead
of calculus. This reformulation of classical physics, based on the finite difference calculus will
be presented in this paper. The finite difference technique is an intuitive modeling technique
easy to understand and applied by the vast majority of students. In addition to insight that
can be gained on classical mechanics, electrodynamics, or in other branches of physics, there is
also the possibility of studying problems of physics that cannot be resolved analytically and to
explore many areas of physics. Last but not least, we have to mention, that in order to take full
advantage of these potentialities, the numerical methods employed should be understandable to
the student, easily programmed, and efficient so that accurate results can be obtained without

excessive computational times.

1.1 Finite Difference Methods.

The finite difference method was first developed by A. Thom in the 1920s under the title “the
method of squares” to solve non-linear hydrodynamic equations (see Sadiku, 1989 for details).

Since then, the method has found applications in solving different physics and engineering prob-
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lems. The finite difference techniques are based upon approximations which permit replacing
differential equations by finite form. These finite difference approximations are algebraic in
form; they relate the value of the dependent variable at a point in the solution region to the
values at some neighboring points. The finite difference method has been applied successfully
to solve many problems of mechanics, acoustics, electromagnetics, fluid dynamics, etc. Any
approximation of a derivative in terms of values of a discrete set of points is called finite differ-
ence approximation. The approach used in obtaining finite difference approximations is based

(6,12)

on the using of Taylor’s series to approximate the derivatives of a function . Following these

patterns the definition of time derivative of a particles position z(t) is given by:

dz _ I z(t+T)— z(t)
dt T—0 T

Virtually all classical equations of physics are defined in terms of z(t), 2 (t), and z”(t), so a
rigorous understanding of classical mechanics requires knowledge of calculus. If it is out of
question that the calculus and advanced mathematics are necessary to understand and presen-
tation of physics, it will also be beneficial to have alternative approaches of making physics
more accessible to the students. As we already discussed in first part of this paper our attempt
is based on the use of finite-difference calculus instead of the standard infinitesimal calculus.
This involves replacing derivative of physical quantities by the finite-difference counter-part, as

for example the time derivative is replaced by:

Da(t) = x(t + sz — xz(t) (1)

where T is the smallest interval of time. Note that the finite-difference operator converge to
the time derivative as T goes to zero. This replacement will lead, in the case of classical
mechanics, to a minor reformulation of momentum, energy and acceleration. This provides the
basis for a rigorous mathematical treatment of classical mechanics which is more accessible to
the students. According with Lakshminkanthan and Trigante, 1988 the time difference operator

has the following properties:
Dia- f(zx)+B8-g(x)]=a-Df(x)+ - Dg(t) «,B = constant (2)
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D[f(x) - g(x)] = f(x) - Dg(z) + g(z) - Df(x) + TDf(x) - Dg(x) (3)
p lf(w)] _ 9(x) - Df(x) — f(z) - Dg(=) (4)
9(x) 9()(g(x) + TDg(x))

The second-order time-difference operator is define as:

D2a(t) = z(t—-T)— 2;(215) +z(t-T) 5)

Similar finite difference operators can be formulate for any other quantities used in classical

physics.

2 Mechanics.

With the approach developed in previous section of this paper, we will reformulate some of the

equations of classical mechanics. We follow the approaches developed by(1:3:45).

2.1 Newton’s Laws.

The standard Lagrangian formulation of classical mechanics leads, in the discrete-time case, to

the following version of Newton’s laws:
F(t) = m-a(t) = Dp(t) (6)

with the acceleration, using (5) defined by:

z(t+T)—-2z(t)+z(t-T)
12

a(t)y=m

and with momentum defined by
p(t)=m-Dzx(t—T)

For classical Lagrangian, L = m(Dz)?—V (where V accounts for potential energy), the energy

function is defined by

E= %Dw(t) Da(t—T) + V()
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and will be conserved when L is not an explicit function of time. Thus all the standard quantities

of classical mechanics have their counterparts in the pre-calculus version.

Several formulations of discrete mechanics have been studied both mathematically and
physically®"=®). This formulation were explicit and, for At > 0 and ¢}, = k-At,k=0,1,2,--- N

utilized, in one dimension, the formulas:

m'akZF(l‘k,’Uk,tk), kZO,l,"',N (7)
CL]CZ[Uk_H—U]c]/At, k=0,1,"',N (8)

[Uk+1+vk] /2: [xk-i—l _xk]/At’ k= 071)"'

where (7) is the discrete Newton’s equation, (8) relates velocity and acceleration, and (9)

relates distance and velocity. The feasibility of the formulation from the proof of the classical

conservation laws®.

2.2 Newton’s Equation and Initial-value Problem.

In a more general case, following'® if we consider a particle P of mass m be in motion on x-axis,

and if at time ¢;, P is at z; and has velocity v, then and equation of the form

F(ack, Vg, tk) =m- ag (10)

which at time 7 relates the force acting on P to its acceleration, represent the discrete form of
Newton’s equation. The actual determination of the motion of P from dynamic equation (15)

when zy and vy are given is called an initial value problem.
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2.2.1 Conservation of energy and momentum.

For discussion in previous sections of this paper, the general iteration procedure to be used for

initial-value problem for (10) is given by
At
v = Vg <—> F (20, vo, to)
m
At\ 13 1
Vkp1 = (—> [_F(xkavkatk) — o F (@1, vp—1,tp-1) k=1,2,---
m/ L2 2
1
Tg+1 = Tk + EAt[UIH_l + ’Uk] k=1,2,---

For this 1-D motion®, we show how the classical conservation laws, in discrete approach can

be established. The work W done by force F' in moving particle P from x4 to x, is defined by

n—1 3 1
W = (.’171 — ZL'())F(.’E(), Uo,to) + Z(xk-H — .’L'k) (EFIC — §Fk_1) (11)
k=1
or
n—1 3 1
W = (.Il — .’EQ)CLO + Z(xk-f—l - .Tk) <§ak - iak_1>
k=1
n—1
m m
=5 (0f —vg) + 5 D (Vs — Vi)
2 2 4
so that
1
W = ém(vi — ) (12)
If we define the kinetic energy K; at t; by
L
K; = 5" (13)

then, finally from (12) and (13), the discrete form of conservation law is given by
W =K, — K, (14)

The availability of the usual kinetic energy formula (13) and the well-known result (14) leads,
in the usual way® to the conservation of energy and momentum. These concepts can be
generalized to higher dimensions by similar approaches. Two simple cases of this problem are
given in the following paragraphs:
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2.2.2 1-D Motion under a constant force.

Consider the case of constant force F' = —k/m. This implies that the Newton’s equation

formulated above, can be written as:

The solution is
k
z(t) = — <%> 2 + vot + (0)

and

Da(t) = — (%) t+ v

which is a similar solution with that given by the calculus-based mechanics.

2.2.3 The harmonic oscillator.

(15)

Considering a linear force F' = k(y + a), where a is a constant, law of dynamics in the case of

the harmonic oscillator becomes:

mD¥y(t) = —k(y(t) + a)
We can define z(t) = y(t) + a and simplify the problem to

2t +T) - l%k_Q] s(t) +2(t—T)=0

The general solution of this problem is given by:

t . . t t ) A’
z(t) = Kj cos (f0> + K sin (?0> + K cos (—9) — 1Ky sin (T0>

T

where 6 = cos™'(1 — 1/2v?), and v = T'(k/m)'/2.

(18)
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By choosing the complex coefficients K; and K, to make x(t) real, we finally get:

z(t) = ¢ cos (%0) + ¢y sin (%0) (20)
z(t) = ccos (%0 + (I))

which is very similar with the continuous version of the solution([2]).

3 Electromagnetics.

The computation of electromagnetic fields, needed for an abundance of everyday applications
such as antennas, radars, microwaves, and radio has been a subject of intense research since the
1940s. Since most problems that can be solved analytically have already been solved, numerical
solutions of electromagnetic problems are gaining popularity among engineers and instructors.

The need of introducing computational methods has been expressed again and again(!%'1.
3.0.4 Laplace Equation.

One of the most used application of finite difference approach in electromagnetics®'? is to

apply it to Laplace’s equation in two dimensions:
0?® 90
= — + _— =
ox? = 0y?
We can use the central difference approximation (see [?]) to obtain
2O B(i+1,5) — 28(i, j) + B(i — 1,5)

VAL 0 (21)

= O(Az)? 22
52 (Az)? + O(Ax) (22)
?®  B(i+1,5) —29(4,5) + (i — 1,7)
— ) ) ) O A 2 23
- A +0(ay) (23)
where x = 1Az, y = jAy,and 7,57 =0,1,2,---,. If we assume that Az = Ay = h, to simplify
the calculations, substituting (22) and (23) in (21) gives
[®(i + 1,5) + ®(i — 1,5) + (i, j + 1) + B(i,j — 1)] — 48(i, ) = 0 (24)
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or

®(i, j) = % (@G +1,5) + (0 —1,5) + (5 +1) + @65 — 1)] (25)

at every point (,7) in the mesh. The spatial increment A is called the mesh size. It is worth
noting that equation (25) states that the value of ® at each point is the average of those at
the four surrounding points. The five-point computation molecule for the difference scheme in
equation (25) is illustrated in Figure 1 where values of the coefficients are shown. This is a

convenient way of displaying finite difference algorithms for Laplace’s equation.
3.0.5 Transmission Lines.

The finite difference techniques are well suited for computing the characteristic impedance,
phase velocity, and attenuation of several transmission lines, such as: bifilar transmission lines,
coaxial cables, micro-strip lines, striplines, rectangular lines, etc. (Note: a stripline represents
a flat conductor sandwiched between two ground plane, while a micro-strip is a flat conductor
separated by an insulating dielectric from a large conducting ground plane). The knowledge
of the basic parameters of these lines is of paramount importance in the design of electronic

circuits(10, 11).

For concreteness, following the development of Sadiku, 19912

, consider the microstrip line.
The geometry is deliberately selected to be able to illustrate how one accounts for discrete inho-
mogeneities and lines of symmetry using finite difference technique. The techniques presented
are equally applicable to other transmission lines. Due to the fact that the mode is TEM
(neither E or H have components in the direction of propagation), the fields obey Laplace’s
equation over the line cross-section. The TEM mode assumption provides good approxima-

tions if the line dimensions are much smaller than half a wavelength which means that the

operating frequency is far below the cutoff frequency for all higher order modes("®. The finite
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Vi

Va Vi

Figure 1: Computational molecule for Laplace’s equation.
difference approximation of Laplace’s equation has been derived in equation (25), namely:
1
For the sake of conciseness, let us denote
Vo=V(i,5) Vi=V(,j+1) Ve=V(i-1,7)
Va=V(,j—1) Va=V(+1,7)
so that the equation (26) becomes
1
V():Z[Vl-i‘vz-i-‘/},-i-vzi] (27)

with the computation molecule shown in Figure 2. Equation (26) is the general formula to be
applied to all nodes in the free space and dielectric region of a micro-strip transmission line.

At the dielectric boundary, see the diagram of Figure 2, the boundary condition is given by
Dln == D2n (28)
must be imposed. This condition is based on Gauss’s law for electric field, which finally (see

the contour in Figure 2) yields to

€1 €9
Vo = Vi+
0 2(61 + 62) ! 2(61 + 62)

1 1
Vs + Z‘/Q + ZV4 (29)
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Vo
Va Vi

€9
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Figure 2: Interface between two media of dielectric permitivities €; and ey

This is the finite difference equivalent of the boundary condition in equation (29). Notice that
the discrete inhomogeneity does not affect points 2 and 4 on the boundary but affect points 1

and 3 in proportion to their corresponding electric permitivities.

On the line of symmetry, we impose the condition

av

%—0

which implies that V5 =V} so the equation (36) becomes

1
Vo=Z[V1+Vé+2V2]

%[2‘/(@', 1) + V(i —1,0) + V(i + 1,0)] (30)

V(i,0) =
By setting the potential at fixed nodes equal to their prescribed values and applying the pro-
cedure described above, one can determine the potential at free nodes by iterative methods(!V).

One this is accomplished, the quantities of interest can be calculated.
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4 Discussions and Conclusions.

This paper has presented in simple terms the basic concepts of the finite difference method for
solving mechanical and EM problems. Algebras and calculus are the two basic tools of math-
ematical physics. Classical physics (mechanics, electromagnetics, etc.) can be reformulated
using finite difference calculus, instead of the standard calculus. This reformulation is fully
rigorous, and in the case of classical mechanics it avoids assuming that space-time is differen-
tiable and thus is conceptually more consistent with intrinsic discrete nature of time and space.
Another advantage of the finite difference formulation is the opportunity of involving students
in solving non-trivial, real life problems, such as transmission lines, etc., which could be very
appealing and challenging to students. Hence, at least in the case of classical mechanics and
electromagnetics, replacing the infintesimal calculus with the finite difference calculus seems

feasible and desirable.

Acknowledgments: T would like to thank Maria Belu for carefully reading and correcting the
manuscript of this paper.
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