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Abstract 

 
Keeping data acquisition and control systems (DACS) used in a graduate and under-
graduate laboratory current in a rapidly evolving technological environment is an 
expensive and time-consuming task. Computer architecture and software have evolved 
more rapidly than the curriculum repeats, and the interfaces commonly used for DACS 
now vary widely, including parallel, serial, and Ethernet based protocols. Experimental 
programming is thus under near-constant revision and adaptation. Since the aerospace 
industry is widely varied, entry-level engineers may end up working with legacy systems 
from long-established laboratories, or find themselves in a startup research lab associated 
with modern computational facilities. It is essential that students learn the basics of 
designing experimental DACS, as well as the adaptation and evolution of existing 
programs. Using the well-documented and complete programs of the past allows a 
complete illustration and understanding of the principles of DACS, and provides a 
familiarization with legacy programming limitations. The revision of DACS programs 
written in various forms of BASIC and Testpoint into a more commonly used 
environment such as LabVIEW insures that the undergraduate laboratory experience 
interests, prepares and enthuses the experimentalists of tomorrow. This paper discusses 
and documents the processes used to familiarize upper division aerospace engineering 
students with the black arts of DACS. Details concerning the programming tasks, legacy 
hardware and software issues, and the motivation for keeping laboratory studies current 
are discussed. Also detailed are measures of student success and outcomes assessment 
concerning laboratory studies. 
 

Motivation for Continuing Laboratory Education 

 
Every engineering discipline has struggled to keep classrooms and laboratories abreast of 
the waves of technology sweeping them into the future.  In aerospace engineering in 
particular, the rapidly evolving computer hardware and software have enabled great 
strides in computational field simulations.  This evolution has benefited every major 
discipline and thrust area of this field, including analysis, simulation or optimization of 
structures, aerodynamics, propulsion, and control systems.  The tools used in the 
educational laboratory have had to evolve to keep pace with this technological revolution, 
and in an economic climate of declining tax revenues, public-funded institutions in 
particular have struggled to remain abreast.  Laboratory managers and educators have 
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been in a constant revisionist mode just to keep up with the steady flow of ever faster and 
more capable computers and related data acquisition and control systems.   
A quick look at the revenues invested in such hardware from one of the prominent 
suppliers, National Instruments1, revealed a tremendous growth in the use of new 
technology, with NI net corporate incomes increasing by an order of magnitude in the 
late 80’s, and a similar increase through the 90’s, to a level four times greater than that of 
Keithley,2 one of the most prominent suppliers of traditional equipment for decades, 
while Keithley also experienced moderate growth.  Especially in the last few years, 
clones of the data acquisition boards of both these companies are also in plentiful supply.  
As computer systems evolved, hardware peripherals such as data acquisition, signal 
conditioning, and controller modules evolved likewise.  A host of different hardware buss 
architectures and port communication protocols came into being, with some of them 
vanishing entirely within a generation.  Although the cost of individual computers 
continued to decline during the last decade, the requirement for recurrent upgrades or 
replacements to software and hardware accelerated, with a great increase in the cost of 
this new technology.  Since the introduction of new technology into industry was 
proceeding at the same accelerated pace, it was essential to insure that the students 
studying to be the fuel for this ongoing overhaul remain abreast of the current 
technologies, yet also be cognizant of the capabilities of the old.  Many small companies 
cropped up to provide equipment and programming for data acquisition and control, but 
those engineers working with larger government and industrial laboratory facilities have 
generally been expected to adapt and extend their own facilities into a new age. 
 
As a result of this continued path of evolution, aerospace engineering laboratories and 
classrooms have had to insure that the general computer and programming skills that 
were being taught were also under near-constant revision and adaptation.   The use of 
computer data acquisition and control systems depended on programming in languages 
such as Pascal and various versions of BASIC, and those were evolving very rapidly.  
Suppliers of data acquisition cards for PCs offered sample programs and drivers first for 
the most common versions of Pascal, and interpreted BASIC, and pre-compiled binary 
drivers to be loaded into memory for use by more simple control programs.  Borland’s 
Turbo-Basic was adapted to common use for making the compilation process simple.  At 
the same time graphical and object-oriented programming environments were being 
developed.  These were soon emphasized as the way of the future in a windowed 
environment, and soon made an individually programmed solution a thing of the not-so-
distant past. 
 
Since the aerospace industry is widely varied, entry-level engineers may end up working 
with legacy systems from long-established laboratories, or find themselves in a startup 
research lab associated with modern computational facilities.  It is highly unusual for 
even a well-established laboratory to have a static programming environment.  
Experimental research facilities such as wind tunnels, constructed decades ago, are still 
operable today, though little similarities exist between the hardware packed racks of 
yesteryear and the compact computer measurement and control equipment that are likely 
to be installed to control those facilities today.  In some instances, however, those old 
control systems are just now being replaced, often by entry-level engineers who come to 
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the workplace with some understanding of and experience in the new programming 
environments such as Testpoint and LabVIEW.  On the other hand, there are new and 
smaller facilities for specialized research that are being put in place by individual 
engineers and smaller companies, that can ill afford to duplicate the research equipment 
used before.  These new companies often rely on the relatively new-skilled recent 
graduates who are still accustomed to learning hardware and software, and provided that 
their education was up-to-date with current technology, are likely to be familiar with 
state-of-the-art computers and data acquisition and control hardware. 
 
As examples of these trends several recent graduates in aerospace engineering at 
Mississippi State University have secured jobs working with long-established companies 
precisely because of their knowledge of DACS programming.  These included various 
groups from Boeing, Lockheed Martin, and contractors to NASA, where students were 
hired because of their exposure to ASYST, Testpoint, or LabVIEW.  Furthermore, 
continuing surveys of graduates and employers have indicated their educational 
experiences with DACS programming were both necessary, and appropriate.   Also, in 
recent class-related visits to such facilities as the propulsion labs at NASA Marshall, 
students have seen first hand how practicing engineers use the same sort of equipment 
and LabVIEW programming in their work as they use in their classes.  Reinforcing this, 
some of the engineers specifically discussed how their student interns and new hires were 
most useful in updating the programs used for these experiments.    
 
It is essential that students learn the basics of designing experimental DACS, as well as 
the adaptation and evolution of existing programs.  While not every student will 
eventually work in a laboratory setting, it is likely that the results of their computational 
or design work will end up being tested in such a facility.  Their understanding of the 
processes and limitations of experimental endeavors is essential if there is to be a 
successful feedback from the lab to the designer and manufacturer to complete the design 
process.  If every student participates in the process of experiment design, programming 
for data acquisition and control, and conduct of laboratory tests, they will at least gain the 
necessary appreciation and knowledge of how that process relates to their computational 
analyses of the topics at hand.  Since not every experiment is developed from scratch, and 
multiple and varied software solutions often exist for laboratory DACS tasks, a 
familiarization with those generations of solutions can be effective in giving the student a 
better perspective on the benefits of the latest software solutions.  At the same time, using 
earlier programs as models for the development of the next generation solutions prepares 
the students to do precisely the same thing if they do end up working in an experimental 
laboratory. 
 
Using the well-documented and complete programs of the past allows a detailed 
illustration and explanation of the principles of DACS, and provides a familiarization 
with legacy programming limitations.  A key to effectively providing this education relies 
upon presenting appropriate coded solutions, and proper advice and counsel that allows a 
student to make modifications to existing programs, or to realize when it is more cost or 
time effective to build a new and perhaps more robust programmed solution.  In some 
cases there are hardware issues that mandate a complete retrofit of data acquisition 
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equipment due to obsolescence of devices, or an upgrade in the speed or change in 
interface to devices that require a complete overhaul of the programming.   
 
Past students have had a curricular requirement for a Fortran class, and most after the late 
1980s came with rudimentary experience in BASIC programming from high school.  The 
requirement for a separate class in computer programming has been eliminated from the 
current curriculum of aerospace engineering at Mississippi State University, but 
programmed solutions are still presented in many of the courses of this discipline.   Since 
many students did not take an additional programming language course, instructors in 
those courses have commonly had to take the time to introduce syntax and structure of 
programming required for their classes.  The issue of such overhead that took 
instructional time from their primary topics has been addressed in this and many other 
institutions by the addition of introductory courses3 that include such topics as 
introductions to MathCAD4 and Matlab5, and specific familiarization with programs used 
in the laboratory for data acquisition and control.   In the past fifteen years, the languages 
and derivatives shown in Table 1 have been used for programming in aerospace 
engineering laboratory classes.   
  

Pascal Basic (PC DOS) CPM BASIC 

Turbo Basic Power Basic BASICA 

Mbasic GWBasic HPBasic 

QuickBasic VisualBasic C/Perl 

 
Table 1:  Languages used for data acquisition, control and analysis 1988-2003 

 
Hewlett Packard (HP) BASIC was used with specific HP wind tunnel DACS equipment, 
and evolved through several upgrades of software and hardware.  The general purpose 
experiments were revised as BASIC included in operating systems and their derivatives 
evolved from interpreted to compiled versions, and equipment drivers and programming 
examples were routinely provided for use in those environments.  In addition, 
programming was accomplished in the environments of ASYST, Labtech Notebook, 
Testpoint, and LabVIEW6.   The revision of DACS programs written in various 
languages into current commonly used environment such as LabVIEW insures that their 
experience in the undergraduate laboratory interests, prepares and enthuses the 
experimentalists of tomorrow.   

 

The undergraduate laboratory DACS experience 

 
The motivation for conducting the programming in a multi-faceted format has been 
established, and the focus will now be turned toward the specific implementation 
methods used in the undergraduate aerospace engineering laboratory at Mississippi State 
University.  DACS programming for the laboratory tests conducted by undergraduates is 
often just a “black box” experience, with the focus on the results of the tests.  Students 
can gain an added benefit from their experience, if the black arts used in such 
programming are illustrated and explained at every opportunity.  Thus, in lower division 
undergraduate classes the languages and environments are presented, and in upper 
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division classes, a more complete understanding can be affected through developing 
DACS algorithms and flow charts from the study of existing programs.   Required 
modifications are made to the existing programs, or those algorithms are implemented in 
a newer graphical environment, currently LabVIEW.   Hence, little of the past is simply 
discarded unless it is merely redundant.   For example, many program solutions exist in 
various BASIC versions, so TurboBasic is used here for illustration of typical legacy 
program solutions.  Since many of the DACS programs used in introductory classes are 
compiled versions, the code itself is not examined, but rather flow charts or other 
explanations of the solution algorithms are presented.     
 
If a single DACS programming environment, such as LabVIEW, is chosen, and all of the 
programming required for data acquisition and control of peripherals is presented only in 
that environment, deficiencies in student preparation may occur.  Teaching in a single 
environment from scratch, assuming no previous programming experience and 
introducing no previous solutions might arguably allow a more complete familiarization 
with that particular environment.   This would however, limit the number of topics 
introduced in the lab, and the programming itself may then become the focus of the 
laboratory experience, rather than the use of that programming as a tool.  This does not 
prepare the students for their future in adapting and expanding existing solutions, and can 
lead to confusion and inactivity when new languages are introduced.   The students focus 
on the difference in syntax instead of the problem at hand.   This deficiency has been 
addressed by emphasizing good solution development including a five step problem 
solving method.7  Students are asked to adhere to a rigorous application of these five 
steps:  stating the problem clearly, describing all input and output, working an example 
problem by hand if appropriate, developing an algorithm or flow chart, and finally coding 
into a computer solution for testing.   By using examples of acceptable solutions, and 
providing building block solutions, the students are exposed to legacy programming, and 
black box programming is de-emphasized.  The intentions are to build student confidence 
in algorithm development, and provide a broader experience in the programming 
typically used for DACS.   
 
Typical programming tasks and the methods used to accomplish these tasks are listed in 
Table 2 below.     Students are generally free to choose their desired programming 
method on a particular task, but are required to use all methods over a series of similar 
analyses.  Generally on a given task individual choices vary such that all methods are 
used on practically every problem.  The similarities, advantages and disadvantages can 
then be detailed during common lecture periods.  In the lab exercises associated with the 
introductory classes, the solutions are often provided, with little modification required 
other than variable manipulation to explore the effects of a given variable.  In the upper 
division laboratory sequence, the students in various sections have a common lecture 
period, where the contrast of several methods can be detailed.  PERL and C programming 
have only been used when a number of students indicated a familiarity with those 
languages as their primary means of programming.  Similarly, Matlab is a secondary 
choice not commonly used for most analysis tasks.  Testpoint was used as the primary 
graphical programming environment prior to 2000, when the college of engineering 
began coordinating a site license for LabVIEW.  Data acquisition hardware pre-1999 was 
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primarily purchased from Keithley-Metrabyte, but after National Instrument Hardware 
and LabVIEW became more commonly used in the US, a transition was made to 
LabVIEW.   LabVIEW programming is now required for individual student projects and 
is used in the development of new laboratory experiments.  Transitions to newer versions 
of software are coordinated for the semester following the semester in which new 
versions are released.   
 
The elimination of the programming language requirement in the aerospace engineering 
curriculum at Mississippi State University has left students with a general lack of 
programming familiarization.  This is gradually being rectified, however, by the use of 
MathCAD, Matlab, Maple and Mathematica (the “M-codes”) in three introductory 
aerospace engineering courses and in some mathematics courses.   There are many 
instances where the analysis of an experiment includes a comparison to a theoretical 
prediction, with these predictions being generated via closed-form, iterative, or higher 
order numerical solutions.   These solutions are most often compared in the form of plots 
of experimental data overlays of theoretical solutions.  The elimination of a programming 
language from the curriculum does not negate the requirements for systematic solutions.    
Though solutions to some problems can be affected using spreadsheet programming, it is 
generally found that for other than simple data regression and analysis, programmed 
solutions are still the norm.  Most students now choose to use one of the common M-
codes,  and those codes are being extended to include DACS compatibility with 
LabVIEW and direct access to National Instruments compatible hardware.  
 
The following is a description of common laboratory experiments accomplished by all 
aerospace engineering students during their first laboratory course. 
 
An Introduction to Data Analysis  A set of calibration data is read into memory from a 
sequential data file, then output to a formatted file.  In EXCEL, the data set is plotted, a 
linear regression is performed, statistical data is examined, and then a report is written.   
Programming for data reduction and analysis is performed with BASIC, Fortran, and 
MathCAD.  All students initially use their choice of one of the three programming 
methods, then all three methods are reviewed in detail. 
 
An Introduction to Data Manipulation  A more lengthy and complex data set taken 
from a wind tunnel experiment with a pressure wing is manipulated to provide data in a 
format for analysis for pressure coefficient calculations, and force coefficient 
determinations.   Programming languages are used to manipulate the data into proper 
format for use with EXCEL. 
 
An Introduction to a Laterally Vibrating Cantilevered Beam  Students examine 
analytical methods for determining vibration modes and nodal positions of a structure 
using Finite Element Analysis with Unigraphics, and a  computational solution 
implementing Mykelstad’s Method with BASIC is examined.   An experimental 
evaluation is conducted using a shaker apparatus.   
 P
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An Introduction to a Vibrating Propeller  More complex vibrations are examined as 
torsional, bending, and mixed mode vibrations are examined in detail.   Although this 
analysis is primarily experimental, the computational methods commonly used in 
classical analysis are explained and demonstrated.  Programs written in BASIC and 
Fortran are presented. 
 
An Introduction to LabVIEW  Programming for data acquisition with LabVIEW is 
demonstrated, and students conduct an analysis of data acquisition results to determine 
minimum sampling frequencies and sampling durations required for accurate 
determination of frequency and magnitude apparent in transducer signals. 
 

A Study of Mechanics of Materials with a Strain Gage Mounted on an Aluminum 

Beam  This study includes the use of a LabVIEW program to collect experimental data 
relating load, deflection, and strain at points on a beam.   This assignment begins a series 
in which DACS programming is only incidental to the primary task at hand.   
 
Calibrations and Measurements with Commonly Used Transducers  Strain gage, 
potentiometric and solid state transducers are examined, and DACS programs are written 
or revisions are made to existing programs to accomplish calibration and use of these 
transducers in typical fashion. 
 
An Introduction to Peripheral Control  The control of computer peripherals is 
illustrated, and control programs are written in BASIC and Labview for a fundamental 
project involving digital input and output. 
 
Although a total of twelve such projects are completed in one course and eight in the 
second laboratory course, several additional experiments are conducted with other core 
curriculum classes to insure an adequate experimental exposure.   The following table 
lists tasks common to some of the labs, and the tools used to accomplish those tasks now 
and in the past.  Demonstrated codes or solutions provided to the students typically 
require only minor modifications for their particular solutions, or in some cases merely 
using the appropriate compile/editing programs to enter and then run the particular code.  
Where more than one solution method is indicated, a group of students would be broken 
down into individuals or pairs to accomplish solutions with a particular method, then the 
students would exchange and explain all solutions for a given problem.  Thus peer-to-
peer learning allows a much broader grasp of the nature of open-ended, multiple-
solution-path problems.   
 

Laboratory Task Demonstrated Methods Student Solution Methods 

Plotting calibration data, 
linear regression, statistical 
analysis 

BASIC, C, Fortran 
programs, Excel 
Spreadsheet 

Excel, MathCAD, BASIC, 
C, Fortran programs, 
Matlab program 

Plotting experimental airfoil 
pressure data, determination 
of sectional airfoil 
properties 

LabVIEW DACS, BASIC,  
EXCEL, Matlab data 
reduction and analysis 

Excel, MathCAD, Matlab, 
BASIC, C programs 
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Analysis of primary wind 
tunnel data for stability 
derivatives 

BASIC, C, MathCAD BASIC, Fortran, C, Matlab, 
MathCAD 

Data acquisition of pressure 
distributions in low speed  
pipe flow and in a super-
sonic converging-diverging 
nozzle, theoretical analysis 

BASIC, LabVIEW for data 
acquisition, analysis with  
BASIC, LabVIEW, 
MathCAD 

BASIC, Excel, MathCAD 
analysis 

Data acquisition, control of 
a portable wind tunnel, 
display of airfoil pressure 
distribution 

BASIC, Testpoint, 
LabVIEW 

Testpoint, LabVIEW 
 

Data acquisition and control 
of arbitrary peripheral 

Assembly language, 
BASIC, C, LabVIEW 

Assembly language, 
BASIC, C, LabVIEW 

Data acquisition of arbitrary 
waveform, plotting, 
frequency identification 

BASIC, Testpoint, 
LabVIEW 

BASIC, Testpoint, 
LabVIEW 

 
Table 2:  Methods demonstrated and used for typical laboratory task completion 
 
DACS codes written in BASIC or other programming languages are generally patterned 
after example programs provided by the manufacturer.   These codes typically read 1-7 
channels of analog data or they have up to four digital inputs or outputs, from a data 
acquisition card through the use of a series of imbedded codes provided by the 
manufacturers of the devices.  The actual calls to the device are normally made through 
an assembled machine code that is device specific.  Teaching students how the basic 
inputs and outputs are accomplished is generally done by having them write a machine 
code using the DEBUG editor native to all PC operating systems.   Without an 
understanding of the nature of machine communications, particularly with peripheral 
devices, the students have a difficult time grasping the concept of using imbedded code in 
a program.   However, with the current growth in graphical programming environments 
where the programmer is buffered from the  actual coding process through the use of a 
graphical user interface, the concept of using pre-defined libraries of functions and tools 
is becoming easy for students to grasp.    
 
 
 
 
 
 
 
 
 
 
 
 

Outline of Elements of a Typical BASIC DACS Program 

Initialization Subroutines (loaded with $INCLUDE statements) 
 Examples provided by the manufacturer, commented source code provided 
 Typically consists of parameter statements, variable assignments  and 
 absolute calls to procedures within the array space containing the binary driver 
Binary Driver File 

Loaded into memory at run-time, contains remote procedure calls  
and interfaces hardware (loaded with BLOAD statements) 

DACS Program Logic 
Arranged to parse data returned by subroutine calls 
Includes detailed code to perform plots/regression analysis 
May simply be modifications of codes provided by manufacturer 

(Modifications are typically only variable names, card addresses, channel selections) 
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 Figure 1:  Outline of Elements of DACS Programs in BASIC and LabVIEW 

 

The fundamental differences between programming with step-by-step sequential 
instructions ala BASIC, versus symbolic constructions in a graphical environment should 
be apparent from examining the outlines of elements of each method in Figure 1.  The 
student may not be able to grasp the flow of a BASIC program that jumps into 
subroutines from a list of statements, then into binary instructions loaded somewhere in 
memory, and returning with streams of data into some other memory location.   Complex 
but fully functional programs can be constructed in little time with minimal instruction 
using the newer programming environments such as LabVIEW.   Such a program 
completed as a first assignment in LabVIEW is illustrated in Figure 2.   The front panel 
includes controls, indicators and graphs that were chosen from a palette of functions that 
have pictorial descriptions on icons, with context sensitive Help a mouse click away!   
 

 
  Figure 2:  Front panel of a LabVIEW Data Acquisition Program 
A quick look at the wiring diagram that depicts the programming logic is quite simple to 
understand, particularly if the context help function is active.  When the function is 

Outline of Elements of a Typical LabVIEW DACS Program 

Front Panel 
 The graphical user interface is constructed symbolically from defined functions 
Wiring Diagram 
 The program structures appear as boxes that are defined sequences or loops 
 The actual program logic is constructed symbolically from defined functions 

 The flow of the program is as depicted by wiring  
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active, mouse-over of an icon on the diagram displays a very complete description of all 
optional connections.  This wiring diagram shows the data flow from data acquisition 
card through functions such as averaging and frequency estimation, into a pre-defined, 
auto-scaling plot structure.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3:  Wiring Diagram of the LabVIEW Program 
 
Predefined data acquisition functions for waveform input from a single channel, 
statistical analysis function to calculate mean, and a Bunneman frequency estimator are 
just a few of the many data acquisition and signal processing functions available.   

 

Assessment 

 

The level of complexity that can be introduced and programmed by students who have no 
previous DACS knowledge now far surpasses the level that was attainable prior to the 
introduction of such tools.   Even if complex subroutines and functions were provided, 
their interface was obscured in the nature of sequentially programmed instructions.  Even 
with modular programming emphasis, the learning curve was often too steep for students 
unfamiliar with detailed programming to grasp.  Use of rudimentary codes to illustrate 
the basic concepts is still invaluable to insure that students understand those concepts, but 
the level of competency to which the students can rise with one or two semesters is great.  
Details of example programs are reviewed, then small modifications are made, then 
complete re-writes of programs are performed.  This building block approach, coupled 
with the ease of graphical programming environments has certainly caused student 
competency in this area to increase.  
 
Assessment of course effectiveness and recommendations for course modifications are 
generally accomplished in an ongoing manner.    Driven by accreditation requirements to 
insure that the course content is appropriate, current and effective, a textual summary of 
each course, a matrix of departmental objective accomplishment and recommendations to 
the curriculum committee are completed each semester.   Over the past several years, 
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there has been a concentrated effort to include laboratory exercises and demonstrations 
into structures, fluid mechanics, aerodynamics and controls classes.  Those classes 
generally accomplish “turn-key” labs, but those labs do provide additional familiarization 
with equipment and programs.   Thus the students are receiving some additional 
motivation in learning the art behind the production of massive data streams.  Typically 
students don’t seem to have a complete grasp of data manipulation and reduction until 
they control all the details of data acquisition and analysis.   Feedback from graduates 
who have been assigned to upgrade computer systems on research facilities used by 
NASA, Lockheed, and Boeing continues to indicate that the training received in 
upgrading hardware and translating programs across environments is time well spent. 
 
One former student related that of the various individuals in his group working on taking 
a NASA wind tunnel out of mothballs, he was made lead because of his familiarity with 
multiple data acquisition systems, protocols, and programming environments.  His 
experience at translating programs written in HP BASIC to TestPoint and LabVIEW was 
particularly useful.  Another alumni who  works for a aerospace research company, 
Bosch Aerospace, credited his aerospace lab experiences for his success in rapidly 
developing data acquisition and control hardware for a cycloidal propeller project.  
Learning to take an existing code and adapt it quickly for another application, or 
translating it into another programming environment was viewed as merely incidental to 
the task at hand instead of a project unto itself.   A member of the advisory committee for 
the department related during his last visit that his experiences in these laboratory courses 
motivated and enabled his success in graduate studies involving experimental research.  
Another graduate who had worked on software development for the lab during his 
undergraduate and master’s level studies also credited his laboratory experiences 
translating various programs with giving him all the necessary skills to succeed as a 
research engineer working on a project to develop a  next generation blimp.   In every 
case, these alumni rated their programming skills learned in the laboratory courses and 
experiments as being fundamental to becoming effective engineers in the workplace.  
More recent graduates have taken into the workplace not only those basic skills learned in 
these classes, but also a knowledge and experience gained working with the most 
common current-generation analytical tools, such as MathCAD and Matlab.    
   

Conclusions 

 
Teaching data acquisition and control system programming in multiple languages and 
environments is an effective way to emphasize the necessity for life-long learning.  Skills 
obtained in modifying given programs and translating programs into graphical 
environments are effectively learned in the manner indicated.   By not focusing on 
particular programming languages or styles, but rather, deliberately introducing multiple 
paths to the solutions to problems, the open-ended nature of engineering is effectively 
illustrated.  The unique and different solutions shared between groups of students 
enhances learning and gives those students a perspective that cannot be found in a course 
that focuses on more narrowly defined programming solutions. 
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