
“Proceedings of the 2004 American Society for Engineering Education Annual Conference &

Exposition Copyright 2004, American Society for Engineering Education”

Session Number 3159

Revision and Translation of Existing Programs as a Tool

for Teaching Computer Data Acquisition and

Control Systems Design and Implementation

Thomas Hannigan, Keith Koenig, Bryan Gassaway, Viva Austin

Department of Aerospace Engineering, Mississippi State University

Abstract

Keeping data acquisition and control systems (DACS) used in a graduate and under-
graduate laboratory current in a rapidly evolving technological environment is an
expensive and time-consuming task. Computer architecture and software have evolved
more rapidly than the curriculum repeats, and the interfaces commonly used for DACS
now vary widely, including parallel, serial, and Ethernet based protocols. Experimental
programming is thus under near-constant revision and adaptation. Since the aerospace
industry is widely varied, entry-level engineers may end up working with legacy systems
from long-established laboratories, or find themselves in a startup research lab associated
with modern computational facilities. It is essential that students learn the basics of
designing experimental DACS, as well as the adaptation and evolution of existing
programs. Using the well-documented and complete programs of the past allows a
complete illustration and understanding of the principles of DACS, and provides a
familiarization with legacy programming limitations. The revision of DACS programs
written in various forms of BASIC and Testpoint into a more commonly used
environment such as LabVIEW insures that the undergraduate laboratory experience
interests, prepares and enthuses the experimentalists of tomorrow. This paper discusses
and documents the processes used to familiarize upper division aerospace engineering
students with the black arts of DACS. Details concerning the programming tasks, legacy
hardware and software issues, and the motivation for keeping laboratory studies current
are discussed. Also detailed are measures of student success and outcomes assessment
concerning laboratory studies.

Motivation for Continuing Laboratory Education

Every engineering discipline has struggled to keep classrooms and laboratories abreast of
the waves of technology sweeping them into the future. In aerospace engineering in
particular, the rapidly evolving computer hardware and software have enabled great
strides in computational field simulations. This evolution has benefited every major
discipline and thrust area of this field, including analysis, simulation or optimization of
structures, aerodynamics, propulsion, and control systems. The tools used in the
educational laboratory have had to evolve to keep pace with this technological revolution,
and in an economic climate of declining tax revenues, public-funded institutions in
particular have struggled to remain abreast. Laboratory managers and educators have

P
age 9.1070.1

“Proceedings of the 2004 American Society for Engineering Education Annual Conference &

Exposition Copyright 2004, American Society for Engineering Education”

been in a constant revisionist mode just to keep up with the steady flow of ever faster and
more capable computers and related data acquisition and control systems.
A quick look at the revenues invested in such hardware from one of the prominent
suppliers, National Instruments1, revealed a tremendous growth in the use of new
technology, with NI net corporate incomes increasing by an order of magnitude in the
late 80’s, and a similar increase through the 90’s, to a level four times greater than that of
Keithley,2 one of the most prominent suppliers of traditional equipment for decades,
while Keithley also experienced moderate growth. Especially in the last few years,
clones of the data acquisition boards of both these companies are also in plentiful supply.
As computer systems evolved, hardware peripherals such as data acquisition, signal
conditioning, and controller modules evolved likewise. A host of different hardware buss
architectures and port communication protocols came into being, with some of them
vanishing entirely within a generation. Although the cost of individual computers
continued to decline during the last decade, the requirement for recurrent upgrades or
replacements to software and hardware accelerated, with a great increase in the cost of
this new technology. Since the introduction of new technology into industry was
proceeding at the same accelerated pace, it was essential to insure that the students
studying to be the fuel for this ongoing overhaul remain abreast of the current
technologies, yet also be cognizant of the capabilities of the old. Many small companies
cropped up to provide equipment and programming for data acquisition and control, but
those engineers working with larger government and industrial laboratory facilities have
generally been expected to adapt and extend their own facilities into a new age.

As a result of this continued path of evolution, aerospace engineering laboratories and
classrooms have had to insure that the general computer and programming skills that
were being taught were also under near-constant revision and adaptation. The use of
computer data acquisition and control systems depended on programming in languages
such as Pascal and various versions of BASIC, and those were evolving very rapidly.
Suppliers of data acquisition cards for PCs offered sample programs and drivers first for
the most common versions of Pascal, and interpreted BASIC, and pre-compiled binary
drivers to be loaded into memory for use by more simple control programs. Borland’s
Turbo-Basic was adapted to common use for making the compilation process simple. At
the same time graphical and object-oriented programming environments were being
developed. These were soon emphasized as the way of the future in a windowed
environment, and soon made an individually programmed solution a thing of the not-so-
distant past.

Since the aerospace industry is widely varied, entry-level engineers may end up working
with legacy systems from long-established laboratories, or find themselves in a startup
research lab associated with modern computational facilities. It is highly unusual for
even a well-established laboratory to have a static programming environment.
Experimental research facilities such as wind tunnels, constructed decades ago, are still
operable today, though little similarities exist between the hardware packed racks of
yesteryear and the compact computer measurement and control equipment that are likely
to be installed to control those facilities today. In some instances, however, those old
control systems are just now being replaced, often by entry-level engineers who come to

P
age 9.1070.2

“Proceedings of the 2004 American Society for Engineering Education Annual Conference &

Exposition Copyright 2004, American Society for Engineering Education”

the workplace with some understanding of and experience in the new programming
environments such as Testpoint and LabVIEW. On the other hand, there are new and
smaller facilities for specialized research that are being put in place by individual
engineers and smaller companies, that can ill afford to duplicate the research equipment
used before. These new companies often rely on the relatively new-skilled recent
graduates who are still accustomed to learning hardware and software, and provided that
their education was up-to-date with current technology, are likely to be familiar with
state-of-the-art computers and data acquisition and control hardware.

As examples of these trends several recent graduates in aerospace engineering at
Mississippi State University have secured jobs working with long-established companies
precisely because of their knowledge of DACS programming. These included various
groups from Boeing, Lockheed Martin, and contractors to NASA, where students were
hired because of their exposure to ASYST, Testpoint, or LabVIEW. Furthermore,
continuing surveys of graduates and employers have indicated their educational
experiences with DACS programming were both necessary, and appropriate. Also, in
recent class-related visits to such facilities as the propulsion labs at NASA Marshall,
students have seen first hand how practicing engineers use the same sort of equipment
and LabVIEW programming in their work as they use in their classes. Reinforcing this,
some of the engineers specifically discussed how their student interns and new hires were
most useful in updating the programs used for these experiments.

It is essential that students learn the basics of designing experimental DACS, as well as
the adaptation and evolution of existing programs. While not every student will
eventually work in a laboratory setting, it is likely that the results of their computational
or design work will end up being tested in such a facility. Their understanding of the
processes and limitations of experimental endeavors is essential if there is to be a
successful feedback from the lab to the designer and manufacturer to complete the design
process. If every student participates in the process of experiment design, programming
for data acquisition and control, and conduct of laboratory tests, they will at least gain the
necessary appreciation and knowledge of how that process relates to their computational
analyses of the topics at hand. Since not every experiment is developed from scratch, and
multiple and varied software solutions often exist for laboratory DACS tasks, a
familiarization with those generations of solutions can be effective in giving the student a
better perspective on the benefits of the latest software solutions. At the same time, using
earlier programs as models for the development of the next generation solutions prepares
the students to do precisely the same thing if they do end up working in an experimental
laboratory.

Using the well-documented and complete programs of the past allows a detailed
illustration and explanation of the principles of DACS, and provides a familiarization
with legacy programming limitations. A key to effectively providing this education relies
upon presenting appropriate coded solutions, and proper advice and counsel that allows a
student to make modifications to existing programs, or to realize when it is more cost or
time effective to build a new and perhaps more robust programmed solution. In some
cases there are hardware issues that mandate a complete retrofit of data acquisition

P
age 9.1070.3

“Proceedings of the 2004 American Society for Engineering Education Annual Conference &

Exposition Copyright 2004, American Society for Engineering Education”

equipment due to obsolescence of devices, or an upgrade in the speed or change in
interface to devices that require a complete overhaul of the programming.

Past students have had a curricular requirement for a Fortran class, and most after the late
1980s came with rudimentary experience in BASIC programming from high school. The
requirement for a separate class in computer programming has been eliminated from the
current curriculum of aerospace engineering at Mississippi State University, but
programmed solutions are still presented in many of the courses of this discipline. Since
many students did not take an additional programming language course, instructors in
those courses have commonly had to take the time to introduce syntax and structure of
programming required for their classes. The issue of such overhead that took
instructional time from their primary topics has been addressed in this and many other
institutions by the addition of introductory courses3 that include such topics as
introductions to MathCAD4 and Matlab5, and specific familiarization with programs used
in the laboratory for data acquisition and control. In the past fifteen years, the languages
and derivatives shown in Table 1 have been used for programming in aerospace
engineering laboratory classes.

Pascal Basic (PC DOS) CPM BASIC

Turbo Basic Power Basic BASICA

Mbasic GWBasic HPBasic

QuickBasic VisualBasic C/Perl

Table 1: Languages used for data acquisition, control and analysis 1988-2003

Hewlett Packard (HP) BASIC was used with specific HP wind tunnel DACS equipment,
and evolved through several upgrades of software and hardware. The general purpose
experiments were revised as BASIC included in operating systems and their derivatives
evolved from interpreted to compiled versions, and equipment drivers and programming
examples were routinely provided for use in those environments. In addition,
programming was accomplished in the environments of ASYST, Labtech Notebook,
Testpoint, and LabVIEW6. The revision of DACS programs written in various
languages into current commonly used environment such as LabVIEW insures that their
experience in the undergraduate laboratory interests, prepares and enthuses the
experimentalists of tomorrow.

The undergraduate laboratory DACS experience

The motivation for conducting the programming in a multi-faceted format has been
established, and the focus will now be turned toward the specific implementation
methods used in the undergraduate aerospace engineering laboratory at Mississippi State
University. DACS programming for the laboratory tests conducted by undergraduates is
often just a “black box” experience, with the focus on the results of the tests. Students
can gain an added benefit from their experience, if the black arts used in such
programming are illustrated and explained at every opportunity. Thus, in lower division
undergraduate classes the languages and environments are presented, and in upper

P
age 9.1070.4

“Proceedings of the 2004 American Society for Engineering Education Annual Conference &

Exposition Copyright 2004, American Society for Engineering Education”

division classes, a more complete understanding can be affected through developing
DACS algorithms and flow charts from the study of existing programs. Required
modifications are made to the existing programs, or those algorithms are implemented in
a newer graphical environment, currently LabVIEW. Hence, little of the past is simply
discarded unless it is merely redundant. For example, many program solutions exist in
various BASIC versions, so TurboBasic is used here for illustration of typical legacy
program solutions. Since many of the DACS programs used in introductory classes are
compiled versions, the code itself is not examined, but rather flow charts or other
explanations of the solution algorithms are presented.

If a single DACS programming environment, such as LabVIEW, is chosen, and all of the
programming required for data acquisition and control of peripherals is presented only in
that environment, deficiencies in student preparation may occur. Teaching in a single
environment from scratch, assuming no previous programming experience and
introducing no previous solutions might arguably allow a more complete familiarization
with that particular environment. This would however, limit the number of topics
introduced in the lab, and the programming itself may then become the focus of the
laboratory experience, rather than the use of that programming as a tool. This does not
prepare the students for their future in adapting and expanding existing solutions, and can
lead to confusion and inactivity when new languages are introduced. The students focus
on the difference in syntax instead of the problem at hand. This deficiency has been
addressed by emphasizing good solution development including a five step problem
solving method.7 Students are asked to adhere to a rigorous application of these five
steps: stating the problem clearly, describing all input and output, working an example
problem by hand if appropriate, developing an algorithm or flow chart, and finally coding
into a computer solution for testing. By using examples of acceptable solutions, and
providing building block solutions, the students are exposed to legacy programming, and
black box programming is de-emphasized. The intentions are to build student confidence
in algorithm development, and provide a broader experience in the programming
typically used for DACS.

Typical programming tasks and the methods used to accomplish these tasks are listed in
Table 2 below. Students are generally free to choose their desired programming
method on a particular task, but are required to use all methods over a series of similar
analyses. Generally on a given task individual choices vary such that all methods are
used on practically every problem. The similarities, advantages and disadvantages can
then be detailed during common lecture periods. In the lab exercises associated with the
introductory classes, the solutions are often provided, with little modification required
other than variable manipulation to explore the effects of a given variable. In the upper
division laboratory sequence, the students in various sections have a common lecture
period, where the contrast of several methods can be detailed. PERL and C programming
have only been used when a number of students indicated a familiarity with those
languages as their primary means of programming. Similarly, Matlab is a secondary
choice not commonly used for most analysis tasks. Testpoint was used as the primary
graphical programming environment prior to 2000, when the college of engineering
began coordinating a site license for LabVIEW. Data acquisition hardware pre-1999 was

P
age 9.1070.5

“Proceedings of the 2004 American Society for Engineering Education Annual Conference &

Exposition Copyright 2004, American Society for Engineering Education”

primarily purchased from Keithley-Metrabyte, but after National Instrument Hardware
and LabVIEW became more commonly used in the US, a transition was made to
LabVIEW. LabVIEW programming is now required for individual student projects and
is used in the development of new laboratory experiments. Transitions to newer versions
of software are coordinated for the semester following the semester in which new
versions are released.

The elimination of the programming language requirement in the aerospace engineering
curriculum at Mississippi State University has left students with a general lack of
programming familiarization. This is gradually being rectified, however, by the use of
MathCAD, Matlab, Maple and Mathematica (the “M-codes”) in three introductory
aerospace engineering courses and in some mathematics courses. There are many
instances where the analysis of an experiment includes a comparison to a theoretical
prediction, with these predictions being generated via closed-form, iterative, or higher
order numerical solutions. These solutions are most often compared in the form of plots
of experimental data overlays of theoretical solutions. The elimination of a programming
language from the curriculum does not negate the requirements for systematic solutions.
Though solutions to some problems can be affected using spreadsheet programming, it is
generally found that for other than simple data regression and analysis, programmed
solutions are still the norm. Most students now choose to use one of the common M-
codes, and those codes are being extended to include DACS compatibility with
LabVIEW and direct access to National Instruments compatible hardware.

The following is a description of common laboratory experiments accomplished by all
aerospace engineering students during their first laboratory course.

An Introduction to Data Analysis A set of calibration data is read into memory from a
sequential data file, then output to a formatted file. In EXCEL, the data set is plotted, a
linear regression is performed, statistical data is examined, and then a report is written.
Programming for data reduction and analysis is performed with BASIC, Fortran, and
MathCAD. All students initially use their choice of one of the three programming
methods, then all three methods are reviewed in detail.

An Introduction to Data Manipulation A more lengthy and complex data set taken
from a wind tunnel experiment with a pressure wing is manipulated to provide data in a
format for analysis for pressure coefficient calculations, and force coefficient
determinations. Programming languages are used to manipulate the data into proper
format for use with EXCEL.

An Introduction to a Laterally Vibrating Cantilevered Beam Students examine
analytical methods for determining vibration modes and nodal positions of a structure
using Finite Element Analysis with Unigraphics, and a computational solution
implementing Mykelstad’s Method with BASIC is examined. An experimental
evaluation is conducted using a shaker apparatus.
 P

age 9.1070.6

“Proceedings of the 2004 American Society for Engineering Education Annual Conference &

Exposition Copyright 2004, American Society for Engineering Education”

An Introduction to a Vibrating Propeller More complex vibrations are examined as
torsional, bending, and mixed mode vibrations are examined in detail. Although this
analysis is primarily experimental, the computational methods commonly used in
classical analysis are explained and demonstrated. Programs written in BASIC and
Fortran are presented.

An Introduction to LabVIEW Programming for data acquisition with LabVIEW is
demonstrated, and students conduct an analysis of data acquisition results to determine
minimum sampling frequencies and sampling durations required for accurate
determination of frequency and magnitude apparent in transducer signals.

A Study of Mechanics of Materials with a Strain Gage Mounted on an Aluminum

Beam This study includes the use of a LabVIEW program to collect experimental data
relating load, deflection, and strain at points on a beam. This assignment begins a series
in which DACS programming is only incidental to the primary task at hand.

Calibrations and Measurements with Commonly Used Transducers Strain gage,
potentiometric and solid state transducers are examined, and DACS programs are written
or revisions are made to existing programs to accomplish calibration and use of these
transducers in typical fashion.

An Introduction to Peripheral Control The control of computer peripherals is
illustrated, and control programs are written in BASIC and Labview for a fundamental
project involving digital input and output.

Although a total of twelve such projects are completed in one course and eight in the
second laboratory course, several additional experiments are conducted with other core
curriculum classes to insure an adequate experimental exposure. The following table
lists tasks common to some of the labs, and the tools used to accomplish those tasks now
and in the past. Demonstrated codes or solutions provided to the students typically
require only minor modifications for their particular solutions, or in some cases merely
using the appropriate compile/editing programs to enter and then run the particular code.
Where more than one solution method is indicated, a group of students would be broken
down into individuals or pairs to accomplish solutions with a particular method, then the
students would exchange and explain all solutions for a given problem. Thus peer-to-
peer learning allows a much broader grasp of the nature of open-ended, multiple-
solution-path problems.

Laboratory Task Demonstrated Methods Student Solution Methods

Plotting calibration data,
linear regression, statistical
analysis

BASIC, C, Fortran
programs, Excel
Spreadsheet

Excel, MathCAD, BASIC,
C, Fortran programs,
Matlab program

Plotting experimental airfoil
pressure data, determination
of sectional airfoil
properties

LabVIEW DACS, BASIC,
EXCEL, Matlab data
reduction and analysis

Excel, MathCAD, Matlab,
BASIC, C programs

P
age 9.1070.7

“Proceedings of the 2004 American Society for Engineering Education Annual Conference &

Exposition Copyright 2004, American Society for Engineering Education”

Analysis of primary wind
tunnel data for stability
derivatives

BASIC, C, MathCAD BASIC, Fortran, C, Matlab,
MathCAD

Data acquisition of pressure
distributions in low speed
pipe flow and in a super-
sonic converging-diverging
nozzle, theoretical analysis

BASIC, LabVIEW for data
acquisition, analysis with
BASIC, LabVIEW,
MathCAD

BASIC, Excel, MathCAD
analysis

Data acquisition, control of
a portable wind tunnel,
display of airfoil pressure
distribution

BASIC, Testpoint,
LabVIEW

Testpoint, LabVIEW

Data acquisition and control
of arbitrary peripheral

Assembly language,
BASIC, C, LabVIEW

Assembly language,
BASIC, C, LabVIEW

Data acquisition of arbitrary
waveform, plotting,
frequency identification

BASIC, Testpoint,
LabVIEW

BASIC, Testpoint,
LabVIEW

Table 2: Methods demonstrated and used for typical laboratory task completion

DACS codes written in BASIC or other programming languages are generally patterned
after example programs provided by the manufacturer. These codes typically read 1-7
channels of analog data or they have up to four digital inputs or outputs, from a data
acquisition card through the use of a series of imbedded codes provided by the
manufacturers of the devices. The actual calls to the device are normally made through
an assembled machine code that is device specific. Teaching students how the basic
inputs and outputs are accomplished is generally done by having them write a machine
code using the DEBUG editor native to all PC operating systems. Without an
understanding of the nature of machine communications, particularly with peripheral
devices, the students have a difficult time grasping the concept of using imbedded code in
a program. However, with the current growth in graphical programming environments
where the programmer is buffered from the actual coding process through the use of a
graphical user interface, the concept of using pre-defined libraries of functions and tools
is becoming easy for students to grasp.

Outline of Elements of a Typical BASIC DACS Program

Initialization Subroutines (loaded with $INCLUDE statements)
 Examples provided by the manufacturer, commented source code provided
 Typically consists of parameter statements, variable assignments and
 absolute calls to procedures within the array space containing the binary driver
Binary Driver File

Loaded into memory at run-time, contains remote procedure calls
and interfaces hardware (loaded with BLOAD statements)

DACS Program Logic
Arranged to parse data returned by subroutine calls
Includes detailed code to perform plots/regression analysis
May simply be modifications of codes provided by manufacturer

(Modifications are typically only variable names, card addresses, channel selections)

P
age 9.1070.8

“Proceedings of the 2004 American Society for Engineering Education Annual Conference &

Exposition Copyright 2004, American Society for Engineering Education”

 Figure 1: Outline of Elements of DACS Programs in BASIC and LabVIEW

The fundamental differences between programming with step-by-step sequential
instructions ala BASIC, versus symbolic constructions in a graphical environment should
be apparent from examining the outlines of elements of each method in Figure 1. The
student may not be able to grasp the flow of a BASIC program that jumps into
subroutines from a list of statements, then into binary instructions loaded somewhere in
memory, and returning with streams of data into some other memory location. Complex
but fully functional programs can be constructed in little time with minimal instruction
using the newer programming environments such as LabVIEW. Such a program
completed as a first assignment in LabVIEW is illustrated in Figure 2. The front panel
includes controls, indicators and graphs that were chosen from a palette of functions that
have pictorial descriptions on icons, with context sensitive Help a mouse click away!

 Figure 2: Front panel of a LabVIEW Data Acquisition Program
A quick look at the wiring diagram that depicts the programming logic is quite simple to
understand, particularly if the context help function is active. When the function is

Outline of Elements of a Typical LabVIEW DACS Program

Front Panel
 The graphical user interface is constructed symbolically from defined functions
Wiring Diagram
 The program structures appear as boxes that are defined sequences or loops
 The actual program logic is constructed symbolically from defined functions

 The flow of the program is as depicted by wiring

P
age 9.1070.9

“Proceedings of the 2004 American Society for Engineering Education Annual Conference &

Exposition Copyright 2004, American Society for Engineering Education”

active, mouse-over of an icon on the diagram displays a very complete description of all
optional connections. This wiring diagram shows the data flow from data acquisition
card through functions such as averaging and frequency estimation, into a pre-defined,
auto-scaling plot structure.

 Figure 3: Wiring Diagram of the LabVIEW Program

Predefined data acquisition functions for waveform input from a single channel,
statistical analysis function to calculate mean, and a Bunneman frequency estimator are
just a few of the many data acquisition and signal processing functions available.

Assessment

The level of complexity that can be introduced and programmed by students who have no
previous DACS knowledge now far surpasses the level that was attainable prior to the
introduction of such tools. Even if complex subroutines and functions were provided,
their interface was obscured in the nature of sequentially programmed instructions. Even
with modular programming emphasis, the learning curve was often too steep for students
unfamiliar with detailed programming to grasp. Use of rudimentary codes to illustrate
the basic concepts is still invaluable to insure that students understand those concepts, but
the level of competency to which the students can rise with one or two semesters is great.
Details of example programs are reviewed, then small modifications are made, then
complete re-writes of programs are performed. This building block approach, coupled
with the ease of graphical programming environments has certainly caused student
competency in this area to increase.

Assessment of course effectiveness and recommendations for course modifications are
generally accomplished in an ongoing manner. Driven by accreditation requirements to
insure that the course content is appropriate, current and effective, a textual summary of
each course, a matrix of departmental objective accomplishment and recommendations to
the curriculum committee are completed each semester. Over the past several years,

P
age 9.1070.10

“Proceedings of the 2004 American Society for Engineering Education Annual Conference &

Exposition Copyright 2004, American Society for Engineering Education”

there has been a concentrated effort to include laboratory exercises and demonstrations
into structures, fluid mechanics, aerodynamics and controls classes. Those classes
generally accomplish “turn-key” labs, but those labs do provide additional familiarization
with equipment and programs. Thus the students are receiving some additional
motivation in learning the art behind the production of massive data streams. Typically
students don’t seem to have a complete grasp of data manipulation and reduction until
they control all the details of data acquisition and analysis. Feedback from graduates
who have been assigned to upgrade computer systems on research facilities used by
NASA, Lockheed, and Boeing continues to indicate that the training received in
upgrading hardware and translating programs across environments is time well spent.

One former student related that of the various individuals in his group working on taking
a NASA wind tunnel out of mothballs, he was made lead because of his familiarity with
multiple data acquisition systems, protocols, and programming environments. His
experience at translating programs written in HP BASIC to TestPoint and LabVIEW was
particularly useful. Another alumni who works for a aerospace research company,
Bosch Aerospace, credited his aerospace lab experiences for his success in rapidly
developing data acquisition and control hardware for a cycloidal propeller project.
Learning to take an existing code and adapt it quickly for another application, or
translating it into another programming environment was viewed as merely incidental to
the task at hand instead of a project unto itself. A member of the advisory committee for
the department related during his last visit that his experiences in these laboratory courses
motivated and enabled his success in graduate studies involving experimental research.
Another graduate who had worked on software development for the lab during his
undergraduate and master’s level studies also credited his laboratory experiences
translating various programs with giving him all the necessary skills to succeed as a
research engineer working on a project to develop a next generation blimp. In every
case, these alumni rated their programming skills learned in the laboratory courses and
experiments as being fundamental to becoming effective engineers in the workplace.
More recent graduates have taken into the workplace not only those basic skills learned in
these classes, but also a knowledge and experience gained working with the most
common current-generation analytical tools, such as MathCAD and Matlab.

Conclusions

Teaching data acquisition and control system programming in multiple languages and
environments is an effective way to emphasize the necessity for life-long learning. Skills
obtained in modifying given programs and translating programs into graphical
environments are effectively learned in the manner indicated. By not focusing on
particular programming languages or styles, but rather, deliberately introducing multiple
paths to the solutions to problems, the open-ended nature of engineering is effectively
illustrated. The unique and different solutions shared between groups of students
enhances learning and gives those students a perspective that cannot be found in a course
that focuses on more narrowly defined programming solutions.

P
age 9.1070.11

“Proceedings of the 2004 American Society for Engineering Education Annual Conference &

Exposition Copyright 2004, American Society for Engineering Education”

Bibliographic Information

1. National Instruments Web Site, 2002 Annual Reports Financial Highlights, http://www.ni.com/company
2. Keithley Instruments Web Site, 2002 Company Fact Sheet, http://www.keithley.com
3. Rais-Rohani, M., Koenig, K., Hannigan, T., “Keeping Students Engaged: An Overview of Three
Introductory Courses in Aerospace Engineering”, Proceedings of the 2003 ASEE Annual Conference &
Exposition, Nashville, TN, June 22-25, 2003
4. Mathsoft Engineering & Education, Inc. Mathcad. 11. 2002
5. The Mathworks, Inc. MATLAB with SIMULINK. R13. 2002
6. National Instruments Corporation. LabVIEW. 6.0i. 2000

Biographical Information

THOMAS HANNIGAN
Thomas Hannigan is an Instructor of Aerospace Engineering and Engineering Mechanics. He received his
BS and MS degrees from Mississippi State University. His interests include introductory engineering
mechanics, airplane flight mechanics, and he coordinates laboratory activities for the department. He holds
FAA Gold Seal Flight Instructor Certification for single, multi engine and instrument airplanes.

KEITH KOENIG
Keith Koenig is a Professor of Aerospace Engineering. He received his BS degree from Mississippi State
University and his MS and PhD degrees from the California Institute of Technology. Prof. Koenig teaches
courses in aerodynamics and propulsion. His research areas include rocket and scramjet propulsion and
sports equipment engineering.

BRYAN GASSAWAY
Bryan Gassaway is a lecturer and PhD student in the Aerospace Engineering Department. He received his
BS and MS degrees from Mississippi State University. He teaches astrodynamics and has taught courses
introducing aerospace engineering, flight mechanics, stability and control, structures, propulsion and
astrodynamics, as well as assisting with the laboratory classes.

VIVA AUSTIN
Viva Austin is a graduate teaching assistant in the senior aerospace engineering laboratories. She obtained
her BS degree in aerospace engineering from Mississippi State University, and is currently enrolled as a
candidate for a master of science degree. She assists in teaching upper division laboratory classes as well
as assisting in the conduct of laboratory activities for three lower division introductory classes.

P
age 9.1070.12

