
Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Session 1532

String of Perls: Using Perl to Teach Perl

Matthew Z. Smith and Joseph J. Ekstrom

Brigham Young University

Abstract:
This paper discusses the features and design of a web-based system utilizing the unique

abilities of Perl to teach Perl to students having little or no prior background in the

language, with the goal of writing useful and functional CGI scripts.

The system provides a customized experience instructing students on basic to

intermediate skills. The student is presented with interactive content and instruction as

well as individual tasks to apply their developing skills, with evaluation and intelligent

feedback provided by the system. The system receives student Perl code as input, tests it

for compilation, evaluates both the syntax and the semantics of the input code, measures

its effectiveness at completing the assigned task, provides feedback to the student, and

supports revision and resubmission. The system also contains reference information and

direction to external resources.

Using Perl to test and evaluate Perl code has inherent advantages over other methods.

Perl is able to compile and execute code in a restricted compartment with a new

namespace and share variables and data between the student code and the instructional

system. This enables input code to be safely executed and makes possible the generation

of detailed feedback.

This paper also discusses the progressing implementation of the system and future plans

and expectations. Early experience with limitations, strengths, and applicability of the

system to online, lab, and distance learning situations are also discussed.

Introduction:
Over the past three years, Brigham Young University has been implementing a program

in the emerging academic discipline of Information Technology
1
. We do not believe that

there is sufficient time in any 4 year curriculum to provide proficiency in all of the

programming languages that are in common use. We have taken an approach that uses

Java as the primary programming language and expect some proficiency in this language.

However, we introduce other languages in various courses through providing examples

and having students modify working code to provide additional functionality in lab

exercises.

We have been seeking ways to increase language proficiency without using class time

and without forcing all students to learn the same set of languages. As the authors P
age 9.107.1

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

discussed this issue of language instruction we decided that Perl provided a unique

opportunity to experiment with delivery of web-based language instruction.

One of the authors was employed for a number of years as part of the team that built and

maintained web services for millions of websites and developed web-based tools to build,

enhance, promote, and maintain those services. This team serviced a broad clientele of

enthusiasts, hobbyists, communities, ISPs, schools, portals, businesses, and personal and

corporate e-commerce sites. All of this development was done in Perl. This background

in web hosting and web-based development in Perl, provided impetus to the idea of

creating a web-based system that would provide instruction on basic to intermediate skills

in Perl.

Design and Implementation:

We designed the system with a basic distance learning model in mind. Students would

access the system through a web browser and progress through various lessons providing

a customized experience during the presentation of core language syntax and semantics.

Additionally, the system would present various problems for skill exercise and evaluation

with intelligent feedback to the student upon submission of the exercise. Reference

materials and links to external resources would also be amassed within the system to

additionally aid students.

Because our system to teach Perl has been developed in Perl
3
, we call it “A String of

Perls” (SOP). For the SOP system to provide a customized experience for each student, it

begins with a registration process. Each student chooses a unique username and is

registered in the system with some basic information. Students choose a password, and

are logged into their account on the system upon successful completion of the registration

process. Students are able to return to the system at any time and login to their account.

Instructors are able to define various lessons as “required”, and students’ actions and

progress are individually logged and tracked, providing them with guided direction

through the required lessons based on their completion of requisite instruction and skills.

Individual student logs also allow us to collect and analyze data throughout the student’s

experience with the SOP system, giving us the opportunity to measure the effectiveness

of the system and make improvements. The SOP system also provides a notes repository

for each student. Students can, at any point within the SOP system, create and save notes

as well as retrieve and view any previous notes they may have made. They can also

retrieve a history of the code they have written for skill evaluations and the feedback they

received. At any time, students can also provide complaints, suggestions, bug reports, or

praise through a system-wide feedback mechanism, again in an effort to measure and

improve the SOP experience.

After the initial registration process, students are taken directly to the first of the

predefined required lessons. Currently the content of the lessons is concise and assumes a

basic understanding of programming principles. After each required lesson, a Skill

Exercise and Evaluation (SEE) task is presented to the student, and successful completion

is required before progressing on to subsequent lessons. The SEE task focuses on

performing the core elements of the lesson and asks the student to write a small piece of

P
age 9.107.2

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Perl code that would meet the requirements of the task. The code is written in a text area

within the browser page and submitted to the system. The SOP system then executes the

code that the student submitted, testing it for compilation, execution, effectiveness at

accomplishing the task, and efficiency. The SOP system compiles intelligent feedback

based of these parameters and provides the feedback to the student. The required skills

also require a successful completion of the SEE for each skill. If the student passes the

evaluation, the next lesson is presented. When the submission of a SEE task does not

pass, the student is presented with the compiled feedback and permitted to repeat the task

or return to the content of the lesson. The SOP system also provides lessons for skills that

may not be defined as required. The majority of these skills will still have an associated

SEE task, but a passing response would not be required to proceed to other optional

lessons. The SEE is the heart of the SOP system, and we will focus on its function and

design separately.

Upon completion of the required lessons, students are presented with their individualized

Student Area. The Student Area provides organized access to all the functionality of the

SOP system. Menus and customized focus elements provide links to the optional lessons,

back into the required lessons, to reference materials and documents, to collections of

links to external resources, and to the student’s history and notes. They also provide

access to the community aspects of the SOP system where the instructor(s) and TA(s) can

provide announcements or information, and where students can communicate with each

other in a student forum, fostering collaborative progress and assisted development. After

becoming familiar with the Student Area, students are asked to complete an evaluation

survey on the SOP system, rating their experience and providing feedback for evaluating

and improving the system. Even after all lessons are completed, the SOP system can

serve the class as both reference material and portal-community resource.

Specific Advantages of Using Perl:

Though language choice for software development is often the result of pure inertia, there

have been several benefits of using Perl for development of the SOP system. A module

has been developed in Perl by Andy Wardley called Template Toolkit
4
. The overview

description from his website follows:

The Template Toolkit is a fast, powerful and easily extensible template processing system written

in Perl with certain key elements coded in C for maximum speed. It is ideally suited (but not

limited) to the creation of static and dynamic web content, and incorporates various modules and

tools to simplify this process. The Toolkit is highly portable, with minimal dependencies or

restrictions on how and where it can be used. It is robust, reliable, well documented and freely

available as Open Source
5
.

Template Toolkit allowed us to develop the format of the pages within the SOP system

independently of the content, providing the needed flexibility for producing, modifying,

maintaining and expanding the lessons and reference materials as well as dynamically

generating the individualized Student Area. Using Template Toolkit will also allow us to

easily add components and features we anticipate developing in the future, such as class

and school grouping, branding, and customizations.

 P
age 9.107.3

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

One of the standard modules provided with the Perl language is the Safe
6
 module.

Originally designed and implemented by Malcolm Beattie, reworked by Tim Bunce, and

currently maintained by Arthur Bergman, Safe is one of the key components that give the

SEE subsystem its functionality. The Safe module was developed to provide a protection

layer between a Perl program and possibly dangerous operations. It allows for the

creation of a new namespace contained within a compartment and provides a way to

restrict the viable operations that can be executed within the compartment. To the

compartment code, it appears to have its own root (main::) namespace, while the parent

program is able to both access the compartment’s namespace and to define variables and

subroutines it wishes to share with the compartment.

Safe does not, however, prevent many malicious behaviors that will allow code to have a

negative effect on the system as a whole. To control these behaviors we have utilized

some of the functionality of BSD Resource
7
, a Perl module by Jarkko Hietaniemi. BSD

Resource allows the getting and setting of process resource limits, which, when used in

conjunction with Safe, allows us to adequately control the arbitrary execution of code.

The final restriction that we implemented on the SEE subsystem was a modification to

the Linux
8
 kernel, restricting the rate and number of forks a process can call. These

additional restrictions currently restrict the portability of the SOP system to a Linux-

based architecture. We will re-evaluate portability in the future, but have accepted this

limitation for now.

The SEE subsystem accepts the code submitted from the student and creates a Safe

compartment for it. It sets process resources to acceptable limits and executes the code

within its Safe compartment. Feedback to return to the student is collected based several

factors. If the code does not compile, all compile errors are collected. In addition to

compilation errors, the SEE subsystem parses the code and compares it syntactically for

key elements that would be required to accomplish the task. Whether or not it finds what

it was looking for is translated to English comments and suggestions and added to the

feedback collection. The feedback is then returned to the student and logged, giving the

student the opportunity to re-attempt the exercise and giving the SEE subsystem the

ability to reference previous attempts during subsequent retries. This process also gives

the SOP system the opportunity to gather data for evaluation and improvement. If the

submitted code successfully compiles, it is executed and the SEE subsystem tests for

completion of the assigned task. If the task was not completed, the SEE subsystem parses

the code as if it had not compiled, then logs and returns feedback to the student. If the

submitted code compiles, executes, and accomplishes the assigned task, it is considered

to have passed. Additionally, a rudimentary test for efficiency is provided. If the code is

determined to be relatively inefficient, it is parsed and any basic suggestions that can be

made for improving the efficiency are logged and returned to the student as feedback.

Present Limitations:

During development tests, it was discovered that the SEE subsystem had a possible

weakness in discovering the accomplishment of a task if strange and arbitrary limitations

of scope occur within the student code submitted. Perl utilizes different methods of

limiting scope, among which using “my” to create a lexically-scoped private variable

P
age 9.107.4

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

proved to function as intended, making it impossible for the SEE subsystem to explore

such memory structures. It became necessary to modify the SEE subsystem, to at least

attempt to return from the Safe compartment the requested result of the task. Therefore, if

“my” is used significantly within a student’s submitted code feedback may be more

limited than if private variables were not used. However, accommodations have been

made for most cases that can be currently anticipated.

Future work:

 The first course to use the SOP system will be taught during Spring 2004. We will

use this class as a field trial to collect data and draw conclusions about the effectiveness

of the SOP system. We will also undoubtedly gain experience with limitations, strengths,

and applicability of the system to online, lab, and distance learning situations. Additional

development plans include a contextual help system derived from collected data and

feedback. We expect that development and improvement of the system will continue over

the next several semesters as we use the system for instruction purposes.

Bibliographic Information:
1
 Lunt Designing an IT Curriculum: The Results of the First CITC Conference, ASEE

2002 Session 1626

2
 BYU 2003–2004 Undergraduate Catalog. Retrieved from

http://ar.byu.edu/catalog/undergrad_cat/2003/departments/Tech.pdf

3
 Resource: perl, v5.8.0 built for i386-linux-thread-multi (with 1 registered patch).

4
 Resource: Template Toolkit version 2.10, released on 24 July 2003. Author: Andy

Wardley.

5
 Text retrieved from http://www.template-toolkit.org/info.html

6
 Resource: Safe version 2.09, released on 06 Oct 2002. Author: Arthur Bergman.

7
 Resource: BSD Resource version 1.23, released on 07 Oct 2003 Author: Jarkko

Hietaniemi.

8
 Resource: Red Hat 9.0 OS (2.4.20-8smp)

Biographic Information:

MATTHEW Z. SMITH

Matthew Z. Smith is an Information Technology major at Brigham Young University. Prior to returning to

school, he worked as Systems and Quality Assurance Manager for About Web Services. In addition to

being a full-time student, he continues to contribute to online development on a contract basis.

P
age 9.107.5

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

JOSEPH J. EKSTROM

Joseph J. Ekstrom (Ph. D. Computer Science, BYU 1992) has been Associate Professor of Information

Technology at BYU since 2001. During 30 years of industrial experience he held positions from developer

through senior management. His research interests include network and systems management, distributed

computing, system modeling and architecture, system development, and IT curriculum and instruction.

P
age 9.107.6

