
2006-2339: EXPERIENCES WITH ALLOY IN UNDERGRADUATE FORMAL
METHODS

Michael Lutz, Rochester Institute of Technology
Michael Lutz is Professor of Software Engineering at the Rochester Institute of Technology,
where he led the effort resulting in the first baccalaureate software engineering program in the
United States. His professional interests include software architecture and design, formal
methods, and engineering education.

© American Society for Engineering Education, 2006

P
age 11.616.1

Experiences with Alloy in Undergraduate Formal Methods

Introduction

At the core of all engineering endeavors is the modeling of proposed system designs and the use

of these models to determine system properties. While some models are physical, the vast

majority use mathematics to both describe and analyze the consequences of design decisions. In

the case of traditional engineering disciplines, most models are based on continuous

mathematics, e.g., calculus and differential equations. The situation is quite different in software

engineering, however, where the applicable models are more likely to be drawn from discrete

mathematics, logic, and set theory. The term of art for such modeling approaches is formal

methods.

One complaint about formal methods, voiced by both practitioners and students alike, is the lack

of applicability to “real” problems. While some of these objections are undoubtedly based on an

unwillingness to learn the relevant mathematics, this does not mean they can be dismissed out-

of-hand. To be useful in practice, a modeling method must provide engineers with information

that more than compensates for the cost of learning the technique and creating its models. Model

checking is one formal method that has proven its value as a tool for describing and analyzing

concurrency effects
1,2

. Alloy
3,4,5

, a modeling tool created by Daniel Jackson’s research group at

MIT, provides similar value when modeling and analyzing the structural and behavioral

consequences of software design decisions.

This paper reports on the value Alloy has brought to the undergraduate formal methods course

within the software engineering program at RIT. The next section introduces Alloy by way of a

well-known example problem, the birthday book
6
. This is followed by a section discussing the

advantages Alloy for teaching undergraduates, especially as compared to traditional methods

such as VDM
7
 and Z

8
. The final section discusses some areas where Alloy’s support for

instruction needs improvement.

Birthday Book Example

Consider a system for maintaining a birthday book (that is, a book that lists birthdays for some

set of persons); this example was originally presented in The Z Notation6. In Alloy, we would

start by defining the necessary signatures: Named sets of indivisible, immutable, atomic objects

and the relations that hold among these sets.

sig Person{}
sig Date{}
sig BirthdayBook {
 known : set Person, // those persons known in this book
 dates : Person -> Date // the birth day for each known person
}

Here we have defined three signatures, Person, Date, and BirthdayBook, along with two

relations, known and dates. The signature declarations implicitly state that the three underlying

sets of atoms partition the universe of all atoms (that is, the three sets are pair-wise disjoint and

P
age 11.616.2

their union is the universe). At the modeling level, however, all that exists are relations – Person,

Date, and BirthdayBook are really unary relations, containing a 1-tuple for each of the elements

in the underlying set.

The declaration of a relation within a signature means the relation consists of tuples whose first

element is an atom from the signature’s underlying set. Thus known is a binary relation mapping

each book to those persons recorded in the book, and dates is a ternary relation, whose tuples

consist of a book, a person known in that book, and that person’s birthday. Or at least that’s what

we intend: without further constraints there is nothing to ensure the persons known in a book are

exactly those whose dates are recorded.

To create the needed constraints we add “facts” – predicates that must hold in any legal state of

the system. In our case, we can state our constraint in one fact:

fact {
 all b : BirthdayBook | b.known = b.dates.Date
}

This fact says “the persons known in book b are exactly those who have a birthday recorded in

b” – but how? Consider first the declaration b : BirthdayBook. Since everything in Alloy is a

relation, then b must be a relation, and it is – it’s a singleton subrelation of BirthdayBook, which

is itself a unary relation. This is as close as we can get to a set element in Alloy – a singleton,

unary relation. As Alloy uses first-order relational logic, there is no danger of tripping over

Russell’s paradox, so we can use “element” and “singleton set” interchangeably.

The expression b.known is a relational join between the (singleton, unary) relation b and the

binary relation known. In Alloy, relational join matches the last column of every tuple from the

left relation to the first column of every tuple in the right relation; on a match, the tuples are

concatenated and the two matching columns are dropped. In this case, we get the unary relation

(set of) Persons who are listed in book b.

The expression b.dates.Date is similar – first we join unary relation b to ternary relation dates,

resulting in a binary relation between Persons and Dates. This is then joined (on the right) to the

unary relation Date; the effect is to simply “strip off” the Date column from the binary relation,

leaving a unary relation (set of) Persons. The equality simply states that the two sets of Persons

defined by the joins are identical – just what we want.

So far Alloy seems to be just another formal method: similar to C in syntax, and with its own

peculiarities (e.g., everything is a relation), but nothing new. What makes Alloy stand out,

however, is its support for exploring the consequences of a design. First of all, we can create

predicates describing the properties we wish to see in a solution; the properties become, in effect,

temporary constraints in addition to the facts. What is more, we can “run” a predicate and have

the tool produce a conforming solution (or tell us that it cannot).

pred show() {
 some known
}
run show for 3

P
age 11.616.3

The show() predicate above has a body that says there must be some (one or more) tuples in the

known relation. That is, there must be at least one BirthdayBook that knows of at least one

Person (and, given our fact, this Person has a birthday recorded in the book).

The run command instructs the Alloy tool to search for a solution which has at most three

elements in each of the declared signatures. Alloy compiles the declarations, facts, and predicate

into a Boolean expression that is then sent to a Boolean constraint satisfier (SAT); if the satisfier

finds a solution, Alloy displays it in one of several formats. Figure 1 gives the graphical version

of one possible solution for our model:

Figure 1 – Solution to run show for 3

There’s something peculiar about this solution, however – Person0 has two distinct birthdays

recorded in the BirthdayBook. Assuming we don’t want this, we can add another fact

constraining the solution so that no person can have more than one birthday recorded in a given

book:

fact {

 all b : BirthdayBook, p : Person | p in b.known <=> one p.(b.dates)
}

The expression p in b.known says relation p is a subrelation of b.known. Given that p is an

element (singleton, unary relation) and b.known is a set (unary relation), this is equivalent to the

traditional “element of” predicate from set theory. In general, however, both operands of in will

be relations, in which case we have a subrelation (or subset) test. Indeed, the keyword in was

chosen for its ambiguity, as it can represent either “element of” or “subset of,” depending on the

left operand involved.

From the previous discussion, we know that b.dates is a binary relation between Persons and

Dates; thus p.(b.dates) is a set (unary relation) consisting of those Dates associated with Person

p. The expression one p.(b.dates) states this set has exactly one member. Thus the whole

predicate, p in known <=> one p.(b.dates) says a Person is known if and only if the Person has

exactly one Date recorded for their birthday. In the context of the universal quantifier, this states

that any Person known in any BirthdayBook will have exactly one birthday in the book.

After adding this fact, running the show() predicate produces the solution in Figure 2. P
age 11.616.4

Figure 2 – run show() with augmented facts

Alloy has many features and facilities beyond those shown in this simple example, including

• Functions that extract information from the solution state,

• Checkable assertions (i.e., universal claims that follow from the declarations and the

facts), and

• State changing operations modeled by predicates relating the pre and post states.

The goal of this section was simply to give a flavor of Alloy; more information can be found in

the Alloy documentation
3,4,5

.

Pedagogical Advantages

Alloy’s primary advantage over traditional methods such as VDM and Z is that it supports

analysis and exploration without the need to become a mathematician. Tools for these traditional

methods come in two basic forms: simple syntax checkers and complex proof assistants, neither

of which is appropriate for undergraduate education. Syntax checkers do little to help students

understand the consequences – often quite subtle – of what they design. That is, while the syntax

checker can ensure the model is meaningful, it cannot help determine whether that meaning is

what is intended.

The only way out of this problem is to do formal proofs of claims made in the model. When done

by hand, such proofs are tedious and error prone. When done via proof assistant tools, students

soon see the necessity of deep knowledge of both proof theory and the idiosyncrasies of the

specific tool they are using. The tradeoff is obvious: Either hope the models says what you want

to say, or become expert in mathematics at a level not required of any other engineering

discipline
9,10

. In light of this, it is hard to refute student perceptions that formal methods provide

no improvement over informal and ad hoc methods for designing, validating, and verifying

software.

Alloy, on the other hand, requires one to be knowledgeable of discrete mathematics but not an

expert mathematician. One need only understand what Alloy’s constructs mean and be able to

interpret its graphical or textual output in order to use the tool effectively for exploring the

consequences of design decisions. The dirty work of finding solutions (or looking for

counterexamples to universal claims) is left to the sophisticated SAT systems on which Alloy is

P
age 11.616.5

built. One must make compromises, of course – Alloy cannot express higher order constructs,

and it is limited to searching finite state spaces – but in practice these compromises are rarely

problematical. If a counterexample to a claim cannot be found in a relatively small state space,

say 3-5 atoms per signature, then it is highly unlikely (but not impossible) that a counterexample

exists in an infinite universe.

There is another advantage that should not be dismissed: Alloy is interactive, allowing users to

iterate among design, specification and analysis. This makes Alloy much more attractive to

students familiar with interactive, integrated development environments. One can easily explore

large state spaces from the keyboard, making design verification much more comprehensive than

with unit testing. This interactivity is a boon to instruction as well; I often build a model in class,

asking students to fill in key facts, predicates, and assertions, and then I use the tool to see if their

solutions are correct. Alloy also makes it easier to take side-tracks that either interest students or

reinforce material they find confusing. There is no need to anticipate every possible problem – an

impossible task in any event – rather, one can let the nature of student questions and answers

direct the creation of a model.

Instructional Needs

Despite its manifest advantages, Alloy is not without problems. Fortunately, none of these

involve the tool per se, but rather the pedagogical framework needed for effective undergraduate

instruction.

First and foremost, a solid undergraduate text based on Alloy is a critical need. It wasn’t until

Kramer and Magee’s text
1
 on concurrency in Java that research on safety and liveness in the

context of interacting state machines was brought to a level appropriate for undergraduates.

Jackson’s new book on Alloy
5
 is a step in the right direction, but the presentation is a bit too

terse for a text. A book that presents Alloy with many examples and periodic review exercises

would be a great pedagogical aid.

In addition, a set of real (or at least realistic) case studies is needed, with the studies presented at

a level accessible to undergraduates. In part this would serve to provide a rich set of examples

that could be emulated; in part it would be useful propaganda to help persuade students that

formal methods are worth consideration.

Finally, we need the equivalent of “design patterns” for Alloy. That is, we need prepackaged

templates showing proven modeling approaches to common design problems. Such a pattern

library would help students become proficient that much sooner, and allow instructors to assign

design problems that bring to light the value of formal modeling.

Conclusion

All in all, Alloy is the most satisfying tool I’ve used in the 15+ years I have been teaching formal

methods. My hope is this paper at least sparks some interest in others who teach this material,

and that they will consider adopting Alloy or a similar tool. After all, if we are to place software

engineering on a firm mathematical foundation, we must do so in a way that makes this useful to

practicing engineers. To my mind, Alloy is a step in this direction.

P
age 11.616.6

Bibliography

1. Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Programs. John Wiley & Sons, 1999.

2. Michael Lutz and James Vallino. “Concurrent System Design: Applied Mathematics & Modeling in Software

Engineering Education.” 2005 ASEE Annual Conference and Exposition, June, 2005.

3. Daniel Jackson. “Alloy: A lightweight object modelling notation.” ACM Transactions on Software Engineering

and Methodology, April, 2002.

4. The Alloy Analyzer. http://alloy.mit.edu/

5. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006.

6. J. M. Spivey. The Z Notation. Prentice-Hall, 1992.

7. John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Practical Tools and Techniques in Software

Development. Cambridge University Press, 1998.

8. Jonathan Jacky. The Way of Z. Cambridge University Press, 1997.

9. David Parnas. "Mathematical Methods: What We Need And Don't Need", IEEE Computer, April, 1996.

10. Michael Lutz. “Formal Methods and the Engineering Paradigm.” SEI Conference on Software Engineering

Education, October, 1992.

P
age 11.616.7

