
Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

CAD BASED DESIGN COURSE USING A STATE OF THE ART

SYSTEM LEVEL LANGUAGE

Suryaprasad Jayadevappa

(esj002c@motorola.com)

Ravi Shankar

(ravi @cse.fau.edu)

1.0 Introduction

Most major U.S universities offer a design course based on Verilog at the undergraduate

level. Verilog is used in the high-tech industry to design and develop their commercial

products. The increase in design complexity, shortened time to market and intellectual

property based methodologies has created a knowledge gap for both the practicing

engineer and the new graduate. Today, there is need for higher levels of abstraction and

use of system level description languages.

The technology roadmap from the semiconductor industry and a Dataquest market

analysis of the EDA (engineering design automation) industry shows that the primary

growth in the EDA industry will come from ESL (electronic system level) tools. Similar

to the digital design tools of the 1990s, the current and future ESL tools will drive the job

market in the SoC (system-on-a-chip) domain over the next decade. A major contender

for a unifying language at this level is SystemC. SystemC is based on the C++ language

and has constructs to support hardware modeling. The language supports multiple levels

of abstraction, a common environment for design and verification, and hardware-software

co-design. Currently the SystemC language is undergoing standardization, but has

already been adopted by over one hundred design companies. The infrastructure

requirement is quiet low as SystemC is open source. Visual C++ and Open source OSCI

simulator provide sufficient support to develop SystemC code.

We have developed a CAD Based Computer Design course using SystemC. Thirty five

students enrolled in the course that was offered recently. The major challenges in

delivering this course were the ability to express hardware components using a high level

language preferred for software development and the adaptability of the students.

Important SystemC concepts related to hardware modeling was discussed initially. Many

design examples developed helped in explaining the concepts and bring out the difference

between sequential and concurrent modeling. All the enrolled students had taken a basic

course on C++ earlier. In our experience, previous knowledge of C++ helped regarding

the syntax, but at times it turned out to have a negative effect. The negative effect was

more due to the sequential nature of software programs. We developed a template which

is being extensively used for expressing all our designs during the course. It has helped us

in sharing our design ideas better. Reusability of the designed models is another

important feature that is being stressed upon in this course.

In this paper, we will present our experiences in developing a software-hardware co-

design environment, using SystemC, a new concurrent design language. Exposure to this

P
age 9.10.1

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

state of the art system level description language and methodology will make the students

be better prepared to face the real world industry challenges upon graduation. Armed

with the right skill set, the graduates will be productive straight away with very little need

for further technical training. The stress on reusability in the design course will also help

in visualizing larger SoC based designs built using intellectual property blocks.

In the following sections we discuss in detail the course content and evaluation scheme

followed in this course.

2.0 Course Content

At a broad level the course content included an introduction to SystemC and various

constructs of SystemC, designing combination and sequential circuits using SystemC,

implementing simple finite state machines using SystemC, and finally designing a simple

instruction set computer using SystemC.

SystemC can be visualized to consist of a layered architecture as shown in Fig 1
[1]

.

SystemC being an extension of C++ has additional classes available to support hardware

designs. As a pre-requisite for taking this course it was indicated that students have

preliminary knowledge of C++ language.

C++ Language StandardC++ Language Standard

Core Language
Modules
Ports
Processes
Interfaces
Channels
Events

Event-Driven Simulation
Kernel

Elementary Channels
Signal, Timer, Mutex, Semaphore, FIFO, etc.

Extensions
Verification Extensions

Models of Computation (Dataflow, Kahn Process Networks)

Abstract Data Types
Arbitrary Precision Integers
Fixed Point Numbers
C++ Built-In Types (int, char, double, etc.)
C++ User-Defined Types
Logic Data Types
Logic Type (01XZ)
Logic Vectors
Bits and Bit Vectors

Figure 1. SystemC architecture.

P
age 9.10.2

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

The initial introduction in the course involved the history of SystemC, role of SystemC

and the infrastructure requirement and setup for running and simulating SystemC design.

Important data types supported in SystemC for expressing hardware design is discussed

next. The data types discussed included sc_bit, sc_logic, bit-vector, logic vector,

sc_int<>, sc_uint<> and sc_bigint<>. Suitable examples were provided for better

understanding of the salient properties of each data type and when to choose one over the

other. We also discussed differences between Verilog a hardware description language

and SystemC as appropriate.

During the introduction of the core language concepts we used many design examples.

Each of the design examples was carefully chosen so as to explain the SystemC core

concepts clearly. The design examples varied in complexity starting with the design of a

simple 1-bit half adder to more complex designs involving the design of state-machines.

All the SystemC code for different designs developed followed a similar pattern as shown

in Figure 2. The lowest levels (level 2 and higher) involved the modules providing the

functionality of the target design. This could be made up of more layers depending on the

complexity and modularity required in the design. Above the module description layer is

the “TOP” module (level 1) in which we provide the test bench code for testing the

design developed. Finally the sc_main () (level 0) function is from where the simulation

begins. Due to the inherent hierarchy followed in this standard pattern it made it easy to

develop design models, understand, extend and reuse.

 Figure 2. SystemC design module pattern followed.

Reusability is ensured by suitably using the modules developed at lower levels in

subsequent higher levels. Reusability in SystemC is also supported by suitable

parameterization of the design module. Reusability is showcased with the help of simple

example wherein we initially developed a simple 1-bit half adder and use this to develop

a 4-bit adder. The example is discussed in more detail here. Figure 3 provides the

diagrammatic representation of the 1-bit adder module. Two input ports A and B each of

1-bit size are provided. SUM and Carry are the output ports each of 1 bit size.

sc_main()

Top Module

Design Module Design Module Design Module

Level 0

Level 1

Level 2

P
age 9.10.3

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Figure 3. 1-bit Adder Block Diagram.

Figure 4 provides the SystemC code snapshot of the sc_main() or level 0 module where

execution begins. In the sc_main() we instantiate the “TOP” module and start the

simulation. We control the duration of simulation by providing suitable values for

sc_start(). Tracing constructs are also included in the sc_main() to enable waveform

traces of signals of interest.

 Figure 4. 1-bit adder sc_main() – level 0.

In the level 1 or “TOP” module we instantiate the 1-bit adder module or the module

designed and perform port binding. SystemC supports both named and positional

techniques for port binding. We used the named technique as that provides us flexibility

in the ordering of the ports. Also present in the “TOP” module is the test bench which is

used to verify the correctness of the module designed. The SystemC code snapshot of the

“TOP” module is provided in Figure 5.

int sc_main (int argc , char *argv[])

{

TOP top1("Top1");

sc_start(100, SC_NS);

return 0; } // End of sc main

Adder

Sum A

Carry
B

P
age 9.10.4

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Figure 5. 1-bit adder TOP module – level 1.

The actual functionality of the 1-bit adder is provided in layer 2. In Figure 6 we present

the actual SystemC code implementing the 1-bit adder functionality. The different input

and output ports are declared along with their data types. The sensitivity triggering the

modules is attached to the processes describing the module.

Figure 6. 1-Bit Adder SystemC functional description.

SC_MODULE(TOP) { public: //Various Signals declarations

 sc_signal<sc_bit> in1; sc_signal<sc_bit> in2;

 sc_signal<sc_bit> sum_out; sc_signal<sc_bit> carry_out;

 Adder *Adder1;

 SC_HAS_PROCESS(TOP);

 TOP(sc_module_name name) : sc_module(name) {

 Adder1 = new Adder("Adder1");

 Adder1->A(in1);

 Adder1->B(in2);

 Adder1->sum(sum_out);

 Adder1->carry(carry_out);

 SC_THREAD(main_action); }

void main_action()

 { while(1) {

 in1 =sc_bit ('0'); in2 =sc_bit ('0'); print_out(); wait(10,SC_NS);

 in1 = sc_bit('0'); in2 = sc_bit ('1'); print_out(); wait(10, SC_NS);

 in1 = sc_bit('1'); in2 = sc_bit ('0'); print_out(); wait(10,SC_NS);

 in1 = sc_bit('1'); in2 = sc_bit ('1'); print_out(); wait(10, SC_NS);

 } // END of WHILE LOOP

} //END of main_action

…. }; //END of TOP MODULE

SC_MODULE(Adder) {

public: // PORT declarations

 sc_in<sc_bit> A; sc_in<sc_bit> B;

 sc_out<sc_bit> sum;

 sc_out<sc_bit> carry; // End of Port declarations

 SC_HAS_PROCESS(Adder);

 Adder(sc_module_name name) : sc_module(name)

 {

SC_METHOD(main_action);

 sensitive<<A<<B; }

void main_action() {

 sum = A.read() ^ B.read();

 carry = A.read() & B.read(); }

}; //END OF MODULE

P
age 9.10.5

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

To develop a 4-bit adder using the above 1-bit adder, one more layer will be added in

between level 1 and level 2 of Figure 2. The lowest layer would consist of the reusable

module which is the functional description of the 1 bit adder.

Figure 7. SystemC code snapshot of 4-bit adder using 1-bit adder.

The above simple example of 1-bit adder module and its usage to develop a 4-bit adder

module introduced the students with various SystemC constructs. Important among them

are module, ports, processes, sensitivity and the skeleton of a module description in

SystemC. Reusability and a simple way of achieving it using SystemC are also presented.

The next example design presents a sequence detector module developed in SystemC.

The sequence detector module developed detects a continous series of three 1’s appearing

in the input. The sequence detector module is synchronized to a clock signal. This

example showcases the ability to develop and simulate sequential circuits. Figure 8

presents the block diagram of the sequence detector module. It has two input ports named

Input and Clock, and one output port named Output.

SC_MODULE(Adder4bit) { public: //Various PORT declarations

 sc_in<sc_bv<4> >inputA; sc_in<sc_bv<4> >inputB;

 sc_out<sc_bv<4> >Sum; sc_out<sc_bit> Carry_out;

 Adder *Adder1, *Adder2, *Adder3, *Adder4;

 SC_HAS_PROCESS(Adder4bit);

 Adder2bit(sc_module_name name) : sc_module(name)

 { Adder1 = new Adder("Adder1");

 Adder1->A(in1); Adder1->B(in2); Adder1->Carry_in(Carry_in);

 Adder1->sum(sum_out0); Adder1->carry(temp);

 Adder2 = new Adder("Adder2");

 Adder2->A(in11); Adder2->B(in22);Adder2->Carry_in(temp);

 Adder2->sum(sum_out1); Adder2->carry(c_out);

 …

SC_METHOD(main_action);

 sensitive<<inputA<<inputB<<Sum<<Carry_out; }

}; //END of MODULE

P
age 9.10.6

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Figure 8. Block diagram of Sequence Detector Module.

Figure 9 presents the digital logic equivalent of the sequence detector module. It is

developed using three flip-flops and one three input AND gate. This helped in bridging

the gap for the students between the SystemC description and a possible digital logic

equivalent. Currently there are no commercially available tools which would generate the

gate level equivalent of the SystemC code description.

Figure 9. Digital logic equivalent of the Sequence Detector Module.

Figure 10 presents the SystemC code developed for expressing the sequence code

detector module.

Sequence
Detector
Module

Input

Clock

Output

FF1

FF2

FF3

Input

Clock

Output

Q
Q

Qn

Qn

Qn

Q

AND

Gate

P
age 9.10.7

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Figure 10. Sequence Detector module functional description in SystemC.

Figure 11 provides the SystemC code snapshot of the TOP (level 1) module. As can been

seen, it has structural similarities to that of the 1-bit adder module.

SC_MODULE (detector)

{ //Input Output PORTS

 sc_in<bool> clk, input;

 sc_out<bool > output;

 //Internal Signals

 sc_signal<bool> in1,in2, in3;

 SC_HAS_PROCESS(detector);

 detector(sc_module_name name) : sc_module(name)

 {

 SC_METHOD(main_action); //Sequential Logic

 sensitive_pos<<clk;

 SC_METHOD(out); //Combinational Logic

 sensitive<<in1<<in2<<in3;

 }

void main_action() {

 in1 = input;

 in2 = in1;

 in3 = in2;

 }

void out() {

 output = in1 & in2 & in3;

 }

}; // END of DETECTOR module

P
age 9.10.8

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Figure 11. SystemC code snapshot of TOP module for sequence detector.

Figure 12 presents the sc_main() SystemC code for the sequence detector module. It

contains additional code used for tracing the various signals of the sequence detector

module.

Figure 12. SystemC code of sc_main() for Sequence Detector module.

SC_MODULE(TOP) {

 public:

 sc_signal<bool> input;

 sc_signal<bool> output;

 sc_clock clk;

 detector *detect;

 SC_HAS_PROCESS(TOP);

 TOP(sc_module_name name) : sc_module(name),clk("clk",10,SC_NS)

 { detect = new detector("Seq_detector");

 detect->clk(clk);

 detect->input(input);

 detect->output(output);

 SC_THREAD(main_action);

 }

void main_action(){

 while(1) {

 input = 1; print_out(); wait(10,SC_NS);

 input = 1; print_out(); wait(10,SC_NS);

 input = 1; print_out();wait(10, SC_NS);

 input = 0;print_out();wait(10,SC_NS);

 input = 0;print_out();wait(10,SC_NS);

 input = 1;print_out();wait(10, SC_NS);

 } // End of WHILE

 } // End of main_action

….

}; // END of TOP Module

int sc_main(int argc, char *argv[])
{ sc_trace_file *tf = sc_create_vcd_trace_file("vcddump");
 TOP top1("top1");
 sc_trace(tf, top1.clk, "CLOCK");
 sc_trace(tf, top1.input, "INPUT");
 sc_trace(tf, top1.output, "OUTPUT");
 sc_start(300,SC_NS);
 sc_close_vcd_trace_file(tf);
 return 0; }

P
age 9.10.9

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Figure 13 provides the waveform trace obtained after simulating the sequence detector

module. All the input and output ports present in the sequence detector module are traced.

Figure 13. Sequence Detector Waveform Trace.

Around the seventh week of the course we started with the design of a simple instruction

set computer (SISC). A brief introduction of the important concepts in processor design

including the fetch, decode, and execute stage was discussed. Figure 14 provides the

instruction set and format used in the design of the simple instruction set computer. The

instruction set is very similar to the one described by Sternheim, et, al [2].

P
age 9.10.10

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Figure 14. Instruction Set and Format of SISC.

Figure 15 provides a high level view of the SISC and memory module interaction using

various ports. After discussing the various registers and their role in the SISC design we

first started with the design of the memory module and the test bench code loaded in it.

Figure 15. SISC and Memory Module Interaction via various ports.

Figure 16 provides a snapshot of the SystemC code of the Memory module. The memory

module was made sensitive to negative edge of the clock.

SISC

Memory

Address_bus

Data_bus

Read/Write

Instruction Set:

̈ NOP

̈ MOVE

̈ ADD

̈ SUB

̈ LOAD

̈ STORE

̈ HALT

Instruction Format:

OP-CODE Operand

07 5 4

OP-CODE Operand

07 5 4

P
age 9.10.11

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Figure 16. Memory Module SystemC code snapshot.

The rest of the SISC design used similar template as discussed earlier. Figure 17 provides

snapshot the sc_main () for the SISC SystemC code. It involved instantiating the Memory

and SISC modules and providing suitable port binding. We also traced various signals of

interest to verify the cycle accuracy of the design. The TOP module is absent in this

design as the test bench code being a part of memory module.

Figure 17. SystemC code snapshot of sc_main().

SC_MODULE (Memory)

{ //PORT declarations

 sc_in<bool> rd_wr, clk;

 sc_in<sc_uint<ADDRESS_SIZE> > address_bus;

 sc_inout<sc_bv<DATA_SIZE> > data_bus;

 sc_bv<DATA_SIZE> mem[SIZE];

 SC_HAS_PROCESS(Memory);

 Memory(sc_module_name name):sc_module

 {

 SC_METHOD(main_action);

 sensitive_neg<< clk;

 }

};// END of MEMORY module

int sc_main(int argc, char *argv[])

{

 sc_trace_file *tf = sc_create_vcd_trace_file("vcddump");

 sc_signal<sc_uint<ADDRS_SIZE> > address_bus;

 sc_signal<sc_logic> rd_wr;

 sc_signal<sc_uint<WIDTH> > data_bus;

 sc_clock clk("clk",10, SC_NS); // SISC clock

sisc1 sisc("sisc"); // Module Instantiation

 memory mem1("mem1");

 //PORT binding

sisc.address_bus(address_bus); sisc.rd_wr(rd_wr);

 sisc.data_bus(data_bus); sisc.clk(clk);

 mem1.address_bus(address_bus); mem1.rd_wr(rd_wr);

 mem1.data_bus(data_bus); mem1.clk(clk);

 // Tracing

 sc_trace(tf, sisc.clk, "CLOCK");

 sc_trace(tf, sisc.address_bus, "ADDRESS BUS"); …

 return 0; } //End of sc_main

P
age 9.10.12

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Figure 18 provides the SystemC snapshot code of the SISC module. This contained the

actual SystemC code necessary for the implementation of the SISC module. The fetch,

decode, and execute stages of the processor is very clearly implemented in the design.

Modularity is maintained by keeping the actions at each stage separate.

Figure 18. SystemC code snapshot of SISC module.

The above SystemC code of the SISC module was extended in the term project by the

students by suitably extending the instruction set to include a larger instruction set and

supporting different addressing modes. The detailed waveform trace of the SISC module

designed is presented in Figure 19. The test bench code developed was simple and

performed addition of two numbers N1 and N2. The two numbers N1 and N2 are stored

at different memory locations and the result was stored in another memory location N3.

SC_MODULE(sisc1)

{

sc_out<sc_uint<ADDRS_SIZE> > address_bus;

sc_out<sc_logic> rd_wr;

sc_inout<sc_uint<WIDTH> > data_bus;

sc_in<bool> clk;

SC_HAS_PROCESS(sisc1);

sisc1(sc_module_name name):sc_module(name)

{

 init1();

 SC_THREAD(main_action);

}

void main_action()

{

 while(1)

 { instr_fetch(); wait(CYCLE, SC_NS);

 instr_decode();wait(CYCLE, SC_NS);

 instr_exec(); wait(CYCLE,SC_NS);

 }

 } ….

}; // END of SISC Module

P
age 9.10.13

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Figure 19. Detailed Waveform trace of the SISC module.

3. Evaluation

The course was designed to be a hands-on laboratory intense course with three laboratory

assignments, two tests and one term project. Some of the laboratory assignments involved

extending few of the design examples developed and provided in class. For example, part

of the first assignment involved reusing the 1-bit adder to develop a 4-bit adder. The

other part of first assignment involved reusing the 4-bit adder to develop a 8 bit adder.

For the term project a simple instruction set computer was first discussed in detail in

class. This involved the various stages of the processor design including the SystemC

design code being made available. Later the students were given a specific instruction set

with few addressing modes and encouraged to develop the design for the processor. To

maintain consistency, students used the same instruction bit encoding for the instructions.

The test bench used for verifying the processor designed was also standardized. Many

students reused majority of the code used for the design of the simple instruction set

computer.

P
age 9.10.14

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

In the first test students were evaluated on the understanding of the SystemC concepts.

The ability to develop SystemC code for combinational and sequential logic, and

involving state machines was tested. The second test was completely based on the

processor design. Students were tested on their ability to make suitable changes to their

term project to accommodate newer instructions and addressing modes.

4. Observations

Our aim was to expose the students to a state of the art system level design language –

SystemC. Developing a new course and handling a class strength of thirty five students

was a real challenge. Exposure to courses such as C++, course on logic design, and an

introductory course on microprocessors were key to the successful designs in this course.

We concentrated more on SystemC concepts and processor design. Currently there is no

single book which does both. Knowledge of C++ was helpful in debugging the

assignments and term project designs. But it also caused hindrance in understanding of

the concurrent support as required in hardware design. This was overcome by a variety of

design examples done in class. Also the usages of a standard template in expressing the

designs further helped in easier understanding and visualize reusability of design. The

“SystemC Primer”[3] and the SystemC [4] website helped as good references for the

students. A major advantage is the infrastructure cost involved. As SystemC is available

freely, the only cost involved in terms of simulating the designs was that of the cost of an

ANSI compliant C++ compiler. Over seventy percent of the participating students owned

a computer. Each one had the necessary environment setup for running SystemC designs.

This provided flexibility in terms of the laboratory resource requirement and also making

it a laboratory intense course with many assignments involving designs. Over 90 % of the

participating class was able to perform inline or above the expectation set for the class.

5.References

 [1] Grotker, T., Liao, S., Martin, G., and Swan, S., “ System Level Design using SystemC”, Kluwer

Academic Press, 2001.

[2] Sterheim, E., Singh, R., Madhavan, R., Trivedi, Y., “Digital Design and Synthesis with Verilog HDL“,

Automata Publishing Company 1993.

[3] Bhasker, J., “ SystemC Primer”, Star Galaxy Publishing, 2002.

[4] SystemC website, www.systemc.org

[5] Arnold, M., G., “Verilog Digital Computer Design – Algorithms to Hardware”, Prentice Hall 1999.

P
age 9.10.15

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Biographical Information

SURYAPRASAD JAYADEVAPPA

Received his PhD in computer engineering from Florida Atlantic University in 2003. He worked in various

teaching capacities offering many computer sciences and engineering courses for over 8 years. He worked

as a summer intern at Cadence Design Systems in 2001. After which he worked there for over 14 months.

Currently he is working with Motorola. His research interests include high level system design

methodologies, embedded system design and design automation.

RAVI SHANKAR

Professor Ravi Shankar has a PhD in electrical and computer engineering from the University of

Wisconsin, Madison, WI, and an MBA from the Florida Atlantic University (FAU), Boca Raton, FL. He is

the director of a college-wide center at FAU on chip and system design. He has been a consultant to

Motorola, IBM, and Cadence. At present he is leading a major industrial project on enhancing system

design productivity.

P
age 9.10.16

