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1.0 Introduction 

 

Most major U.S universities offer a design course based on Verilog at the undergraduate 

level. Verilog is used in the high-tech industry to design and develop their commercial 

products. The increase in design complexity, shortened time to market and intellectual 

property based methodologies has created a knowledge gap for both the practicing 

engineer and the new graduate. Today, there is need for higher levels of abstraction and 

use of system level description languages. 

 

The technology roadmap from the semiconductor industry and a Dataquest market 

analysis of the EDA (engineering design automation) industry shows that the primary 

growth in the EDA industry will come from ESL (electronic system level) tools. Similar 

to the digital design tools of the 1990s, the current and future ESL tools will drive the job 

market in the SoC (system-on-a-chip) domain over the next decade.  A major contender 

for a unifying language at this level is SystemC. SystemC is based on the C++ language 

and has constructs to support hardware modeling. The language supports multiple levels 

of abstraction, a common environment for design and verification, and hardware-software 

co-design. Currently the SystemC language is undergoing standardization, but has 

already been adopted by over one hundred design companies. The infrastructure 

requirement is quiet low as SystemC is open source. Visual C++ and Open source OSCI 

simulator provide sufficient support to develop SystemC code.  

  

We have developed a CAD Based Computer Design course using SystemC. Thirty five 

students enrolled in the course that was offered recently. The major challenges in 

delivering this course were the ability to express hardware components using a high level 

language preferred for software development and the adaptability of the students. 

Important SystemC concepts related to hardware modeling was discussed initially. Many 

design examples developed helped in explaining the concepts and bring out the difference 

between sequential and concurrent modeling. All the enrolled students had taken a basic 

course on C++ earlier. In our experience, previous knowledge of C++ helped regarding 

the syntax, but at times it turned out to have a negative effect. The negative effect was 

more due to the sequential nature of software programs. We developed a template which 

is being extensively used for expressing all our designs during the course. It has helped us 

in sharing our design ideas better. Reusability of the designed models is another 

important feature that is being stressed upon in this course.  

 

In this paper, we will present our experiences in developing a software-hardware co-

design environment, using SystemC, a new concurrent design language. Exposure to this 
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state of the art system level description language and methodology will make the students 

be better prepared to face the real world industry challenges upon graduation. Armed 

with the right skill set, the graduates will be productive straight away with very little need 

for further technical training. The stress on reusability in the design course will also help 

in visualizing larger SoC based designs built using intellectual property blocks.   
 

In the following sections we discuss in detail the course content and evaluation scheme 

followed in this course. 

 

2.0 Course Content 

 

At a broad level the course content included an introduction to SystemC and various 

constructs of SystemC, designing combination and sequential circuits using SystemC, 

implementing simple finite state machines using SystemC, and finally designing a simple 

instruction set computer using SystemC. 

 

SystemC can be visualized to consist of a layered architecture as shown in Fig 1 
[1]

. 

SystemC being an extension of C++ has additional classes available to support hardware 

designs. As a pre-requisite for taking this course it was indicated that students have 

preliminary knowledge of  C++ language.  

C++ Language StandardC++ Language Standard

Core Language
Modules
Ports
Processes
Interfaces
Channels
Events

Event-Driven Simulation
Kernel

Elementary Channels
Signal, Timer, Mutex, Semaphore, FIFO, etc.

Extensions
Verification Extensions

Models of Computation (Dataflow, Kahn Process Networks)

Abstract Data Types
Arbitrary Precision Integers
Fixed Point Numbers
C++ Built-In Types (int, char, double, etc.)
C++ User-Defined Types
Logic Data Types
Logic Type (01XZ)
Logic Vectors
Bits and Bit Vectors

 
Figure 1. SystemC architecture. 
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The initial introduction in the course involved the history of SystemC, role of SystemC 

and the infrastructure requirement and setup for running and simulating SystemC design. 

Important data types supported in SystemC for expressing hardware design is discussed 

next. The data types discussed included sc_bit, sc_logic, bit-vector, logic vector, 

sc_int<>, sc_uint<> and sc_bigint<>. Suitable examples were provided for better 

understanding of the salient properties of each data type and when to choose one over the 

other. We also discussed differences between Verilog a hardware description language 

and SystemC as appropriate. 

 

During the introduction of the core language concepts we used many design examples. 

Each of the design examples was carefully chosen so as to explain the SystemC core 

concepts clearly. The design examples varied in complexity starting with the design of a 

simple 1-bit half adder to more complex designs involving the design of state-machines. 

All the SystemC code for different designs developed followed a similar pattern as shown 

in Figure 2. The lowest levels (level 2 and higher) involved the modules providing the 

functionality of the target design. This could be made up of more layers depending on the 

complexity and modularity required in the design. Above the module description layer is 

the “TOP” module (level 1) in which we provide the test bench code for testing the 

design developed. Finally the sc_main ( ) (level 0) function is from where the simulation 

begins. Due to the inherent hierarchy followed in this standard pattern it made it easy to 

develop design models, understand, extend and reuse.  

 

 

 

 

 

 

 

  

 

 

  

   Figure 2. SystemC design module pattern followed. 

 

Reusability is ensured by suitably using the modules developed at lower levels in 

subsequent higher levels. Reusability in SystemC is also supported by suitable 

parameterization of the design module. Reusability is showcased with the help of simple 

example wherein we initially developed a simple 1-bit half adder and use this to develop 

a 4-bit adder. The example is discussed in more detail here. Figure 3 provides the 

diagrammatic representation of the 1-bit adder module. Two input ports A and B each of 

1-bit size are provided. SUM and Carry are the output ports each of 1 bit size.  

 

 

 

 

sc_main() 

Top Module 

Design Module Design Module Design Module 

Level 0

Level 1

Level 2
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Figure 3. 1-bit Adder Block Diagram. 

 

Figure 4 provides the SystemC code snapshot of the sc_main() or level 0 module where 

execution begins. In the sc_main() we instantiate the “TOP” module and start the 

simulation. We control the duration of simulation by providing suitable values for 

sc_start(). Tracing constructs are also included in the sc_main() to enable waveform 

traces of signals of interest. 

 

 

 

 

 

 
 

 Figure 4. 1-bit adder  sc_main() – level 0. 

 

In the level 1 or “TOP” module we instantiate the 1-bit adder module or the module 

designed and perform port binding. SystemC supports both named and positional 

techniques for port binding. We used the named technique as that provides us flexibility 

in the ordering of the ports. Also present in the “TOP” module is the test bench which is 

used to verify the correctness of the module designed. The SystemC code snapshot of the 

“TOP” module is provided in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

int sc_main (int argc , char *argv[]) 

{ 

TOP top1("Top1"); 

sc_start(100, SC_NS); 

return 0;  } // End of sc main

 
 
 
 

Adder 

Sum A

Carry 
B
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Figure 5. 1-bit adder TOP  module – level 1. 

 

The actual functionality of the 1-bit adder is provided in layer 2. In Figure 6 we present 

the actual SystemC code implementing the 1-bit adder functionality.  The different input 

and output ports are declared along with their data types. The sensitivity triggering the 

modules is attached to the processes describing the module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. 1-Bit Adder SystemC functional description. 

SC_MODULE(TOP)  { public:  //Various Signals declarations 

 sc_signal<sc_bit> in1; sc_signal<sc_bit> in2; 

 sc_signal<sc_bit> sum_out; sc_signal<sc_bit> carry_out; 

    Adder *Adder1; 

 SC_HAS_PROCESS(TOP); 

 TOP(sc_module_name name) : sc_module(name) { 

  Adder1 = new Adder("Adder1"); 

  Adder1->A(in1); 

  Adder1->B(in2); 

  Adder1->sum(sum_out); 

  Adder1->carry(carry_out); 

  SC_THREAD(main_action);             }      

void main_action() 

 {   while(1)    { 

     in1 =sc_bit ('0');  in2 =sc_bit ('0'); print_out();  wait(10,SC_NS); 

     in1 = sc_bit('0'); in2 = sc_bit ('1'); print_out();  wait(10, SC_NS); 

     in1 = sc_bit('1'); in2 = sc_bit ('0'); print_out();  wait(10,SC_NS); 

     in1 = sc_bit('1'); in2 = sc_bit ('1'); print_out();  wait(10, SC_NS); 

   } // END of WHILE LOOP 

} //END of main_action 

…. }; //END of TOP MODULE

SC_MODULE(Adder)  {  

public:  // PORT declarations 

 sc_in<sc_bit> A; sc_in<sc_bit> B; 

 sc_out<sc_bit> sum; 

 sc_out<sc_bit> carry; // End of Port declarations 

 SC_HAS_PROCESS(Adder); 

 Adder(sc_module_name name) : sc_module(name) 

 {   

SC_METHOD(main_action); 

  sensitive<<A<<B; } 

void main_action()                              { 

 sum = A.read() ^ B.read(); 

 carry = A.read() & B.read();   } 

}; //END OF MODULE 
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To develop a 4-bit adder using the above 1-bit adder, one more layer will be added in 

between level 1 and level 2 of Figure 2. The lowest layer would consist of the reusable 

module which is the functional description of the 1 bit adder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. SystemC code snapshot of 4-bit adder using 1-bit adder. 

 

The above simple example of 1-bit adder module and its usage to develop a 4-bit adder 

module introduced the students with various SystemC constructs. Important among them 

are module, ports, processes, sensitivity and the skeleton of a module description in 

SystemC. Reusability and a simple way of achieving it using SystemC are also presented. 

 

The next example design presents a sequence detector module developed in SystemC. 

The sequence detector module developed detects a continous series of three 1’s appearing 

in the input. The sequence detector module is synchronized to a clock signal. This 

example showcases the ability to develop and simulate sequential circuits. Figure 8 

presents the block diagram of the sequence detector module. It has two input ports named 

Input and Clock, and one output port named Output. 

 

 

SC_MODULE(Adder4bit)  { public: //Various PORT declarations 

  sc_in<sc_bv<4> >inputA; sc_in<sc_bv<4> >inputB; 

  sc_out<sc_bv<4> >Sum;  sc_out<sc_bit> Carry_out; 

     Adder *Adder1, *Adder2, *Adder3, *Adder4; 

 SC_HAS_PROCESS(Adder4bit); 

 Adder2bit(sc_module_name name) : sc_module(name) 

 { Adder1 = new Adder("Adder1"); 

  Adder1->A(in1); Adder1->B(in2); Adder1->Carry_in(Carry_in); 

        Adder1->sum(sum_out0); Adder1->carry(temp); 

  Adder2 = new Adder("Adder2"); 

  Adder2->A(in11); Adder2->B(in22);Adder2->Carry_in(temp); 

         Adder2->sum(sum_out1);    Adder2->carry(c_out); 

  … 

SC_METHOD(main_action); 

  sensitive<<inputA<<inputB<<Sum<<Carry_out;    } 

 

}; //END of MODULE 
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Figure 8. Block diagram of Sequence Detector Module. 

 

Figure 9 presents the digital logic equivalent of the sequence detector module. It is 

developed using three flip-flops and one three input AND gate. This helped in bridging 

the gap for the students between the SystemC description and a possible digital logic 

equivalent. Currently there are no commercially available tools which would generate the 

gate level equivalent of the SystemC code description. 

 

 
  

Figure 9. Digital logic equivalent of the Sequence Detector Module. 

 

Figure 10 presents the SystemC code developed for expressing the sequence code 

detector module. 
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Figure 10.  Sequence Detector module functional description in SystemC. 

 

Figure 11 provides the SystemC code snapshot of the TOP (level 1) module. As can been 

seen, it has structural similarities to that of the 1-bit adder module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SC_MODULE (detector) 

{ //Input Output PORTS 

 sc_in<bool> clk, input; 

 sc_out<bool > output; 

 //Internal Signals 

 sc_signal<bool> in1,in2, in3; 

 SC_HAS_PROCESS(detector); 

  detector(sc_module_name name) : sc_module(name) 

 { 

  SC_METHOD(main_action); //Sequential Logic 

  sensitive_pos<<clk; 

  SC_METHOD(out);         //Combinational Logic 

  sensitive<<in1<<in2<<in3; 

 } 

void main_action() { 

  in1 = input; 

  in2 = in1; 

  in3 = in2; 

                   } 

void out()   { 

 output = in1 & in2 & in3; 

       } 

}; // END of DETECTOR module 

P
age 9.10.8



Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition 

Copyright © 2004, American Society for Engineering Education 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11. SystemC code snapshot of TOP module for sequence detector. 

 

Figure 12 presents the sc_main() SystemC code for the sequence detector module. It 

contains additional code used for tracing the various signals of the sequence detector 

module. 
 

 

Figure 12. SystemC code of sc_main() for Sequence Detector module. 

 

SC_MODULE(TOP) { 

 public: 

 sc_signal<bool> input; 

 sc_signal<bool> output; 

 sc_clock clk; 

    

 detector *detect; 

 SC_HAS_PROCESS(TOP); 

 TOP(sc_module_name name) : sc_module(name),clk("clk",10,SC_NS) 

 { detect = new detector("Seq_detector"); 

  detect->clk(clk); 

  detect->input(input); 

  detect->output(output); 

  SC_THREAD(main_action); 

 } 

void main_action(){   

  while(1) { 

   input = 1;  print_out(); wait(10,SC_NS); 

   input = 1; print_out(); wait(10,SC_NS); 

               input = 1; print_out();wait(10, SC_NS); 

   input = 0;print_out();wait(10,SC_NS); 

   input = 0;print_out();wait(10,SC_NS); 

   input = 1;print_out();wait(10, SC_NS); 

                } // End of WHILE 

              } // End of main_action 

…. 

}; // END of TOP Module 

int sc_main(int argc, char *argv[]) 
{    sc_trace_file *tf = sc_create_vcd_trace_file("vcddump"); 
     TOP top1("top1"); 
     sc_trace(tf, top1.clk, "CLOCK"); 
     sc_trace(tf, top1.input, "INPUT"); 
     sc_trace(tf, top1.output, "OUTPUT"); 
     sc_start(300,SC_NS); 
      sc_close_vcd_trace_file(tf); 
    return 0;          } 
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Figure 13 provides the waveform trace obtained after simulating the sequence detector 

module. All the input and output ports present in the sequence detector module are traced.  

 

 
 

Figure 13. Sequence Detector Waveform Trace. 

 

Around the seventh week of the course we started with the design of a simple instruction 

set computer (SISC). A brief introduction of the important concepts in processor design 

including the fetch, decode, and execute stage was discussed. Figure 14 provides the 

instruction set and format used in the design of the simple instruction set computer. The 

instruction set is very similar to the one described by Sternheim, et, al [2].  
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Figure 14. Instruction Set and Format of SISC. 

 

Figure 15 provides a high level view of the SISC and memory module interaction using 

various ports. After discussing the various registers and their role in the SISC design we 

first started with the design of the memory module and the test bench code loaded in it.  

 
Figure 15. SISC and Memory Module Interaction via various ports. 

 

Figure 16 provides a snapshot of the SystemC code of the Memory module. The memory 

module was made sensitive to negative edge of the clock. 
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Figure 16. Memory Module SystemC code snapshot. 

 

The rest of the SISC design used similar template as discussed earlier. Figure 17 provides 

snapshot the sc_main () for the SISC SystemC code. It involved instantiating the Memory 

and SISC modules and providing suitable port binding. We also traced various signals of 

interest to verify the cycle accuracy of the design. The TOP module is absent in this 

design as the test bench code being a part of memory module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. SystemC code snapshot of sc_main(). 

 

SC_MODULE (Memory) 

{         //PORT declarations 

 sc_in<bool> rd_wr, clk; 

 sc_in<sc_uint<ADDRESS_SIZE> > address_bus; 

 sc_inout<sc_bv<DATA_SIZE> > data_bus; 

 

 sc_bv<DATA_SIZE> mem[SIZE]; 

 SC_HAS_PROCESS(Memory); 

 Memory(sc_module_name name):sc_module 

 { 

  SC_METHOD(main_action); 

  sensitive_neg<< clk; 

 } 

};// END of MEMORY module 

int sc_main(int argc, char *argv[]) 

{ 

    sc_trace_file *tf = sc_create_vcd_trace_file("vcddump"); 

 sc_signal<sc_uint<ADDRS_SIZE> > address_bus; 

 sc_signal<sc_logic> rd_wr; 

 sc_signal<sc_uint<WIDTH> > data_bus; 

 sc_clock clk("clk",10, SC_NS); // SISC clock 

sisc1 sisc("sisc");  // Module Instantiation 

 memory mem1("mem1"); 

 //PORT binding  

sisc.address_bus(address_bus); sisc.rd_wr(rd_wr); 

 sisc.data_bus(data_bus);          sisc.clk(clk); 

 mem1.address_bus(address_bus); mem1.rd_wr(rd_wr); 

 mem1.data_bus(data_bus);        mem1.clk(clk); 

 // Tracing 

 sc_trace(tf, sisc.clk, "CLOCK"); 

           sc_trace(tf, sisc.address_bus, "ADDRESS BUS"); … 

            return 0;       } //End of sc_main
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Figure 18 provides the SystemC snapshot code of the SISC module. This contained the 

actual SystemC code necessary for the implementation of the SISC module. The fetch, 

decode, and execute stages of the processor is very clearly implemented in the design. 

Modularity is maintained by keeping the actions at each stage separate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Figure 18. SystemC code snapshot of  SISC module. 

 

The above SystemC code of the SISC module was extended in the term project by the 

students by suitably extending the instruction set to include a larger instruction set and 

supporting different addressing modes. The detailed waveform trace of the SISC module 

designed is presented in Figure 19. The test bench code developed was simple and 

performed addition of two numbers N1 and N2. The two numbers N1 and N2 are stored 

at different memory locations and the result was stored in another memory location N3. 

 

 

 

 

 

 

 

 

 

SC_MODULE(sisc1) 

{ 

sc_out<sc_uint<ADDRS_SIZE> > address_bus; 

sc_out<sc_logic> rd_wr; 

sc_inout<sc_uint<WIDTH> > data_bus; 

sc_in<bool> clk; 

 

SC_HAS_PROCESS(sisc1); 

 

sisc1(sc_module_name name):sc_module(name) 

{ 

 init1(); 

 SC_THREAD(main_action); 

} 

void main_action() 

{ 

  while(1) 

  { instr_fetch(); wait(CYCLE, SC_NS); 

   instr_decode();wait(CYCLE, SC_NS); 

   instr_exec(); wait(CYCLE,SC_NS); 

  } 

 }  …. 

}; // END of SISC Module 
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Figure 19. Detailed Waveform trace of the SISC module. 

 

3. Evaluation 

 

The course was designed to be a hands-on laboratory intense course with three laboratory 

assignments, two tests and one term project. Some of the laboratory assignments involved 

extending few of the design examples developed and provided in class. For example, part 

of the first assignment involved reusing the 1-bit adder to develop a 4-bit adder. The 

other part of first assignment involved reusing the 4-bit adder to develop a 8 bit adder. 

 

For the term project a simple instruction set computer was first discussed in detail in 

class. This involved the various stages of the processor design including the SystemC 

design code being made available. Later the students were given a specific instruction set 

with few addressing modes and encouraged to develop the design for the processor. To 

maintain consistency, students used the same instruction bit encoding for the instructions. 

The test bench used for verifying the processor designed was also standardized. Many 

students reused majority of the code used for the design of the simple instruction set 

computer. 
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In the first test students were evaluated on the understanding of the SystemC concepts. 

The ability to develop SystemC code for combinational and sequential logic, and 

involving state machines was tested. The second test was completely based on the 

processor design. Students were tested on their ability to make suitable changes to their 

term project to accommodate newer instructions and addressing modes. 

 

4. Observations 

 

Our aim was to expose the students to a state of the art system level design language – 

SystemC. Developing a new course and handling a class strength of thirty five students 

was a real challenge. Exposure to courses such as C++, course on logic design, and an 

introductory course on microprocessors were key to the successful designs in this course. 

We concentrated more on SystemC concepts and processor design. Currently there is no 

single book which does both. Knowledge of C++ was helpful in debugging the 

assignments and term project designs. But it also caused hindrance in understanding of 

the concurrent support as required in hardware design. This was overcome by a variety of 

design examples done in class. Also the usages of a standard template in expressing the 

designs further helped in easier understanding and visualize reusability of design. The 

“SystemC Primer”[3] and the SystemC [4] website helped as good references for the 

students. A major advantage is the infrastructure cost involved. As SystemC is available 

freely, the only cost involved in terms of simulating the designs was that of the cost of an 

ANSI compliant C++ compiler. Over seventy percent of the participating students owned 

a computer. Each one had the necessary environment setup for running SystemC designs. 

This provided flexibility in terms of the laboratory resource requirement and also making 

it a laboratory intense course with many assignments involving designs. Over 90 % of the 

participating class was able to perform inline or above the expectation set for the class.  
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