
“Proceedings of the 2004 American Society for Engineering Education Annual

Conference & Exposition

Copyright © 2004, American Society for Engineering”

MATLAB INTERFACE WITH JAVA SOFTWARE

Andreas Spanias, Constantinos Panayiotou, Thrassos Thrasyvoulou, and Venkatraman Atti

MIDL, Department of Electrical Engineering

Arizona State University, Tempe, AZ 85287

Abstract

The J-DSP editor is an object oriented environment that enables distance learning students to

perform on-line laboratories. The editor has a rich collection of signal processing functions and

is currently being used in a senior-level DSP course at ASU. In this paper, we present new

enhancements to the infrastructure of J-DSP that provide embedded MATLAB™ scripting

capabilities. The synergy of the J-DSP object-oriented environment with MATLAB

programming enables students and instructors to exchange data and perform DSP simulations on

both platforms. The advantage here is that complex algorithmic programming can be done

visually on the internet using J-DSP and then executed in MATLAB. Conversely MATLAB

programs can be mapped to flowchart-like diagrams and run in J-DSP. Although Simulink does

the latter as well, the J-DSP tool runs on any platform requiring only a Java-enabled browser.

Moreover the Java software integrates seamlessly with web content and animations supporting

internet courses. The MATLAB scripts are generated with a new interpreter that has been

developed for J-DSP. This interpreter encodes all simulation parameters in a script that contains

the equivalent MATLAB code. When the generated script is loaded through the MATLAB editor

(M-editor) the user can reproduce the J-DSP simulation in the MATLAB environment. It is also

noted that there is a provision in J-DSP for generating HTML embeddable scripts that allows the

user to embed simulations in web content. These synergies of MATLAB-JDSP-HTML can be

very useful not only for students but also instructors. We have used embedded HTML scripts in

our web course called MATLAB for DSP applications.

P
age 9.828.1

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference & Exposition

Copyright © 2004, American Society for Engineering”

1. Introduction

The MIDL has developed and evaluated an exemplary laboratory tool, the Java-DSP (J-DSP), for

use in undergraduate and graduate courses such as digital signal processing (DSP),

communication systems, controls, multidimensional DSP, and time-frequency representations
3
.

The J-DSP is an object-oriented simulation editor written as a Java applet and provides hands on

experiences for distance learning and on-campus students. The environment provided by the J-

DSP editor allows students to establish and execute educational lab simulations from any

computer that has Java-enabled browser. Furthermore, it comes with various features such as the

ability to export a particular flowgram into different formats.

An existing feature of J-DSP was the provision of HTML embedded scripting capabilities
1
. This

feature was developed and integrated into J-DSP to enable users to perform interactive

simulations through HTML code. The J-DSP scripts allow instructors to construct and integrate

animated visualization modules using high-level J-DSP scripts.

The newly proposed and developed feature of J-DSP, described in this paper, is the provision for

MATLAB embedded scripting capabilities; it allows users to “translate” the J-DSP simulation

flowgram into MATLAB code. Moreover, it enables users to repeat, verify and more importantly

expand J-DSP simulations in the MATLAB environment. MATLAB provides a vast selection of

additional functions that currently do not exist in the object-oriented environment of J-DSP.

Furthermore, the synergy of the Java applet environment with MATLAB programming enables

students and instructors to exchange data and perform DSP simulations on both platforms. In

other words, this new feature acts as an interface between the MATLAB and the J-DSP object-

oriented environment. This paper is dedicated to describe this new capability of J-DSP and

provides a few examples how users can export MATLAB scripts from J-DSP flowgrams.

This paper consists of four sections that further discuss J-DSP’s MATLAB script capabilities.

Section 2 describes how to create MATLAB scripts through J-DSP simulations and provides a

four-step procedure for script generation. Section 3 illustrates a script generation example in J-

DSP. Section 5 elaborates on the current state of the MATLAB script development in J-DSP and

P
age 9.828.2

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference & Exposition

Copyright © 2004, American Society for Engineering”

section 6 provides a number of suggestions regarding the expansion of J-DSP’s MATLAB script

capabilities.

2. Generating MATLAB scripts from J-DSP simulations

The following section provides an insight how to “compile” J-DSP flowgrams into MATLAB

code. J-DSP is essentially fitted with an interpreter designed to encode all simulation parameters

in a MATLAB™ m-file, which when loaded through the M-editor can run simulation in the

MATLAB environment. The purpose of this new J-DSP Editor capability is to allow users to

verify and/or expand their own J-DSP simulation examples in MATLAB. In addition, they can

use the graphics of MATLAB and its real-time extensions.

The procedure for the script generation is relatively simple. First, a user creates the desired

flowgram using the familiar drag-and-drop procedure of the editor as described in
1,2,3

. Second,

by selecting “File” then “Export as Script” and then “MATLAB™ Code”, the user obtains the

script with all the J-DSP simulation parameters, ready to use in the M-editor. To provide details

on script generation with the aid of graphical illustrations the following paragraphs describe a

four step process.

2.1 M-Script generation in four steps.

The following paragraphs provide step-by-step instructions on how to generate a simple

MATLAB script from a J-DSP simulation.

Step1: The user must start the J-DSP Editor and create the desired flowgram in the simulation

area. Then, the participant must set the desired parameters in all blocks for a complete

simulation.

Step 2: Next, from the main menu, the user selects “File” and then “Export as Script” as shown

in Figure 1. The “Script Export” dialog window appears and the user must choose now the

format in which to export the current simulation set-up. This will be referred to as the J-DSP

script window. From the J-DSP script window the user must select the “MATLAB(TM) code”

from the “Copy and paste this code:” drop down menu to obtain the MATLAB code describing

the simulation, as shown in figure 1. In the J-DSP script window the user is also capable of

choosing to export the simulation in HTML format for online demonstrations. For HTML scripts

generation in J-DSP refer to
1
.

P
age 9.828.3

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference & Exposition

Copyright © 2004, American Society for Engineering”

Figure 1: From the J-DSP script window we select MATLAB(TM) Code

Figure 2: Selecting the generated MATLAB script

Step 3: The user must select now the code from the J-DSP script window either by pressing

Ctrl+C to copy the code into the clipboard or by right clicking. The latter procedure is illustrated

in Figure 2. Non-Windows™ users should be able to follow a similar procedure. If the

participant is unable to use the Ctrl+C option to copy the generated script, installation of the

P
age 9.828.4

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference & Exposition

Copyright © 2004, American Society for Engineering”

latest Java virtual machine of Sun found at http://www.java.com might be necessary. Instructions

are also provided in the troubleshooting section of the J-DSP web site located at

http://jdsp.asu.edu.

Step 4: Finally, the user must run the MATLAB program (version 6.1 R.12 or higher) and open a

new M-editor window (or else called M-file). Then, the participant using either the mouse (right

click and then Paste) or pressing Ctrl+V needs to paste the J-DSP’s exported script in the already

opened M-editor window and save the M-file under a useful name, illustrated in Figure 3. To run

the simulation the user must either click on the “Run” button or press “F5”.

Figure 3: Paste the J-DSP generated script in an M-file

3. Example of a J-DSP simulation exported as a MATLAB script

Figure 4 illustrates a simulation flowgram in the J-DSP environment and the corresponding

generated MATLAB script. The simulation involves the addition of two sinusoids generated by

two signal generators Sig.Gen SIN-1 and Sig.Gen SIN-2 and the result is illustrated in the

frequency domain using the Plot block. Figure 5 depicts the result of the same simulation in

MATLAB followed by copying and pasting the generated script in the M-editor window saved

as JDSPexportedscript.m.

Additional MATLAB code
entered by the user

P
age 9.828.5

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference & Exposition

Copyright © 2004, American Society for Engineering”

Figure 4: J-DSP simulation and the generated MATLAB script

Figure 5: MATLAB simulation created by the J-DSP exported script

P
age 9.828.6

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference & Exposition

Copyright © 2004, American Society for Engineering”

The next section discusses the development of J-DSP blocks with MATLAB script support and

provides some of the MATLAB commands that were used in those blocks.

4. J-DSP functions with MATLAB script support

This section refers to specific J-DSP functions that have embedded the MATLAB script

capability and point out their corresponding MATLAB command used for script generation.

J-DSP

Block

Simulated

function

Samples of Java code with MATLAB commands

 used for script generation

J-DSP

Variables

1 Sig.Gen. Delta
Mcode1= "t=["+timeShift+":1:"+L+"+"+timeShift+"];"

Mcode2 = amplitude+"*[1, zeros(1,"+L+");";

timeShift,
amplitude, L

2 Autocorr.
Biased based

autocorrelation
Mcommand = "\nVAR"+OUT+"=

 xcorr(VAR"+IN+",round("+lag+"/2),'biased') ;" lag, VARIN

3 Plot

Plots

continuous

graphs

Mcommand= "figure("+Blockname+"), plot(VAR"+IN+")"; VARIN

4 Plot
Plots discrete

graphs
Mcommand= "figure("+Blockname+"), stem(VAR"+IN+")"; VARIN

5 Freq.Resp.

Plots the

frequency

response

Mcommand= "figure("+Blockname+"),

 freqz(NUM"+Blockname+",DEN"+Blockname+");";
NUM, DEN

6 LPC

Extracts the

LPC

coefficients

Mcommand= “VAR"+OUT+"= lpc(VAR"+IN+","+lpc_size+");"; VARIN

7 Window Rectangular Mcode1= "window(@rectwin,"+winlength+");"; winlength

8 Window Blackman Mcode1= "window(@blackman,"+winlength+");"; winlength

9 Window Kaiser Mcode1= "window(@kaiser,"+winlength+","+winbeta+");";
winlength,
winbeta

10 D-Sampling
Down

sampling
Mcommand ="VAR"+OUT+"=

 downsample(VAR"+IN+","+M+");";
VARIN, M

11 Convolution Convolution
Mcommand= “\nVAR"+OUT+"= conv(VAR"+IN1+",
 VAR"+IN2+");";

VARIN1,
VARIN2

12 FFT FFT
Mcommand= “\nVAR"+OUT+"=

 abs(fft(VAR"+IN+"," +fft_size+"));";
VARIN, fft_size

13 PZ-plot

Plots poles &

zeros of transf.

functions

Mcommand="\n zplane([ZerosX"+Blockname+"+i*(ZerosY"+
Blockname +")]', [PolesX"+ Blockname +"+i*(PolesY"+

Blockname +")]');";

ZerosX, ZerosY,
PolesX, PolesY

Table 1: List of MATLAB commands used in some of the Java modules

The most frequently used basic, arithmetic, frequency and filter blocks are “equipped” with

MATLAB scripting support. Table 1 lists some of the J-DSP blocks with script support and their

related Java code that generates a long string that builds-in the MATLAB script. The MATLAB

commands used in the Java code are highlighted in bold faced in the third column; the fourth

P
age 9.828.7

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference & Exposition

Copyright © 2004, American Society for Engineering”

column lists the J-DSP variables entered either by the user or assigned automatically by the

editor during a simulation. Future work would be required to modify all the J-DSP blocks to

acquire this new functionality because script generation is not available for a number of blocks

that belong in the statistical, speech processing, communication systems, and controls blocksets.

5. Conclusions and future work

The synergy of the J-DSP object-oriented environment with MATLAB programming enables

students and instructors to exchange data and perform DSP simulations on both platforms. The

advantage here is that complex algorithmic programming can be done visually on the internet

using J-DSP and then executed in MATLAB to exploit its speech, graphics, and real-time

interface capabilities. Furthermore, this functionality enables students to perform simple

simulations in the user friendly environment of the J-DSP editor and use the interface to verify,

and more importantly to expand the simulations in MATLAB. The J-DSP-MATLAB scripting

capabilities are being explored to teach students MATLAB programming for DSP applications.

A number of improvements can be made to this new J-DSP capability. First, the generated

scripts can be modified so that when the simulation runs in MATLAB the plots start from “0”

and not from “1”. Specifically the generated scripts might be adjusted to follow MATLAB’s

convention that the index of vectors starts from “1” and not from “0” like in Java. Second, all J-

DSP blocks may acquire scripting capabilities similar to those described in Section 4. Finally, an

expansion of the exported script is suggested that will allow students to repeat the same J-DSP

simulation in the Simulink environment.

References

[1] A. Spanias, and F. Bizuneth, “Development of new functions and scripting capabilities in Java-DSP for easy

creation and seamless integration of animated DSP simulations in web courses,” IEEE ICASSP ’01, vol. 5,

7-11, pp. 2717-2720, May 2001.

[2] A. Spanias et. al., “Development and evaluation of a Web-based signal and speech processing laboratory for

distance learning,” IEEE ICASSP ’00, vol. 6, 5-9, pp. 3534-3537, June 2000.

[3] A. Spanias, et al, “On-line Laboratories for Speech and Image Processing and for Communication Systems

using J-DSP”, Proc. of IEEE, 10th Digital Signal Processing Workshop, Callaway Gardens, Pine Mountain,

Georgia, USA, Oct, 2002.

P
age 9.828.8

