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Assessing Critical Thinking in Mechanics  

in Engineering Education 

 
Abstract.  Typically, mechanics education in engineering schools focuses on 

communicating explicit content to students, but de-emphasizes the critical thought that 

underlies the discipline of mechanics.  We give examples of the failure of students to 

apply basic principles of mechanics in solving problems.  We develop assessment tools 

that measure critical thinking in student work, and how well mechanics textbooks engage 

students in critical analysis.  Both tools focus on the treatment of three criteria that we 

judge to be fundamental, but that are commonly overlooked or undervalued: 

completeness of free body diagrams, consideration of physical dimension, and careful use 

of vectors, coordinates and sign conventions.  Data collected from employing our 

assessment tools indicates that most of the time, students omit or misunderstand at least 

one critical idea when solving a problem, even when they obtain a correct answer.  We 

also found that most of the textbooks surveyed exhibit at least one significant 

shortcoming pertaining to our criteria.  Mechanics educators should vigorously 

emphasize fundamental aspects of mechanics, such as those that we suggest here, as a 

necessary (though insufficient) step to improve the ability of students to think critically 

and solve problems independently. 

 
1. Introduction 
 

Rooting Mechanics Education in Mechanics.  Mechanics provides the educational foundation 

for nearly all branches of engineering, due to its dual role (1) to convey explicit content and 

subject matter (e.g. the behavior of mechanisms and structures), and (2) to develop analytical 

skills and rational thought (e.g. building equations, based on rational models, that describe 

physical phenomena).  Our experience indicates that students and instructors in mechanics 

courses emphasize the explicit content, but often at the expense of developing analytical 

technique.  This view echoes Schafersman, who, though not a mechanician, writes of the need to 

develop critical thinking in education: 

 
Perhaps you can now see the problem.  All education consists of transmitting to students two 

different things: (1) the subject matter or discipline content of the course ("what to think"), and 

(2) the correct way to understand and evaluate this subject matter ("how to think").  We do an 

excellent job of transmitting the content of our respective academic disciplines, but we often fail 

to teach students how to think effectively about this subject matter, that is, how to properly 

understand and evaluate it1. 

 

While in the short run the narrower focus on content enables students to (sometimes) get answers 

to some problems fairly quickly, students often lack even a basic working knowledge of how to 

consistently apply principles of mechanics to approach general problems – even problems that 

require only technique that they have already learned.  We proffer that such shortcomings often 

result from the failure to carefully address fundamentals of mechanics in mechanics pedagogy 

[1].  Such fundamentals include the completeness of free body diagrams, the consideration of 

physical dimension, and the careful definition and use of coordinates and sign conventions.  
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Consider, for example, a student who incorrectly derives the equation of an oscillating mass as 

0?/ kxxm %% .  The sign error in this equation may be, in the student’s mind, simply due to a 

minor algebraic error that is of little consequence – “it’s just a sign.”  But it is likely that the 

source of this error lies not in careless algebra, but in misunderstanding, or not perceiving, the 

role of the coordinate x and the need to define it precisely with a sign convention.  In this light, 

the error was arguably conceptual.  Resolving this problem at its root – not just “fixing” the sign, 

but really establishing a proper coordinate – would likely lead to a deeper understanding that 

would be transferable to many other problems. 

 

One approach to correcting this error is to identify its context.  Fortunately, mechanics naturally 

lends itself to establishing well-defined categories that may be used to characterize various 

elements of a given problem.  It is well accepted that a given mechanics problem comprises three 

basic elements: (1) Kinematics (geometrical properties), (2) Fundamental Laws of Mechanics 

(balance laws, such as Newton’s Laws), and (3) Constitutive Laws (material properties).  In their 

textbook An Introduction to Statics and Dynamics, Ruina and Pratap refer to these elements as 

the “Three Pillars of Mechanics”
2
.  They present the pillars as a fundamental concept in the 

introductory chapter, and repeatedly refer to them throughout the text [2].  The three pillars 

constitute a useful, consistent, and philosophically grounded framework with which to formulate 

and solve essentially all problems.  We argue that all students in mechanics should learn to 

formulate and solve problems according to this framework. 

 

Critical Thinking.  By critical thinking, we mean a systematic approach to problem solving, 

including complete and well-conceived problem formulation, generation of a solution, and 

careful assessment of the solution.   While this definition can be applied across a wide range of 

disciplines, it is somewhat narrow and operational.  Many other definitions abound.  Further 

discussion and ideas may be found in Schafersman
1
, Gunnink and Bernhardt

3
, Bean

4
, Kanaoka

5
, 

and Paul and Elder
6
.  Organizations that maintain related material are the Foundation for Critical 

Thinking
6
 and the Critical Thinking and Pedagogy group at National University of Singapore

7
.  

Also, The Scientific Reasoning Research Institute
8
 is a research organization at the University of 

Massachusetts-Amherst that has produced literature regarding critical thinking in physics and 

mathematics education. 

 

Employing our definition, critical thinking in mechanics refers specifically to critical thinking 

applied to mechanics problems, using the framework of the Three Pillars.  In this sense, was the 

student who wrote the equation 0?/ kxxm %%  thinking critically?  We provide a brief 

commentary below. 

 
The equation is dimensionally balanced, indicating at least a partially correct application of 

Newton’s 2nd Law, which is part of the 2nd Pillar.  On the other hand, as was suggested 

previously, the sign error may indicate a conceptual error in establishing a coordinate, which is 

associated with the 1st Pillar.  Even if this is the case, perhaps the student was thinking critically 

in the sense that he or she applied the Pillar of Kinematics, but did so erroneously.  Finally, the 

student would be thinking critically if he or she examined the resulting exponential solutions, and 

realized that these solutions do not represent the expected oscillatory motion.  The pinnacle of 

critical thought would be reached if the student used this realization to re-examine the entire 

problem solution, identify the error, and re-solve the problem correctly. 
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2. The Breakdown of Critical Thinking in Mechanics Education 
 

In this section we examine evidence from situations in mechanics education in which students 

fail to employ critical thinking, and in which pedagogical materials fail to engage students in 

critical thinking.  We believe that these examples are representative of typical situations 

encountered by students and instructors at many institutions, and that they provide a clear and 

accurate assessment of some fundamental issues that must be addressed. 

 

Anecdotes from Student Questions.  In the last two years or so, several of our former students 

have visited us to ask questions pertaining to their current course projects.  Strikingly, although 

their questions varied in topic, all questions fit a disturbing pattern.  In each case the students 

began by saying “we just have one question,” implying that only one ‘simple’ obstacle stood in 

the way of completing their project.  After a few minutes of discussion, and discovering that their 

question was not so simple, and that it led to new questions, the students would concede that 

only a week remained in which to complete the project.  Seeing that a week was not nearly 

enough time to adequately address their new realizations, the students would declare that their 

initial, though incorrect, assessment of the problem would be “good enough,” and that 

furthermore, they were sure that their instructor did not intend the problem to be as complicated 

as it now appeared to be.  Below is an example that recounts one specific case, told from the 

point of view of the first author, paraphrased and slightly modified for brevity and simplicity. 

 
Two former students came to ask me for some help with a class project from another instructor’s 

class.  Their project was to analyze the stresses in a hook used to lift prefabricated walls upright.  

The hook was approximately J-shaped, with a lip.  The hook grips one end of the wall and lifts, 

while the other end of the wall remains in contact with the ground. 

 

The students said, “We just have one question.  Can we assume that the hook is resisting all of the 

force?”  I replied, “All of what force?  Your question needs to be more precisely stated.”   After 

pursuing this clarification for a few minutes, I was able to draw out from them that they had 

really meant to ask, “Can we assume that the hook supports the entire weight of the wall?”  I said, 

“Draw a free body diagram, and you tell me.  For simplicity, assume that the wall is flat on the 

ground and is just about to have one end lifted.” 

 

After more prodding than should have been necessary for these students, who had completed 

Strength of Materials (in my class, no less!), one of them drew a simple FBD of the wall, and 

realized that it could be viewed as a uniform, simply-supported beam.  The hook, therefore, 

would support half of the weight of the wall, W/2. 

 

We were only just beginning.  I then asked the students to draw a FBD of the hook itself, 

detailing how it carried the half-weight of the wall.  The students proposed an upward force of the 

cable, equaling W/2, but they had some difficulty in seeing that, although the force of the wall on 

the hook was equivalent to a single downward force, the distributed contact resulted in a more 

complicated force distribution.  I suggested that a simple model would be to assume that the wall 

contacted the hook at two places, on adjacent faces, without friction, rendering the hook a 3-force 

body, obliquely oriented (see Figure 1). 
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Figure 1.  Sketches of hook lifting wall, and suggested Free Body Diagrams. 

 

Beyond these issues, we discussed that the static analysis was only the first step to solve their 

problem.  The students readily agreed that they needed to analyze the stresses, and suggested that 

they could apply ideas from Strength of Materials, such as the theories for axial bars and beams.  

I commended them for appealing to this line of reasoning, but I cautioned that these approaches 

were limited, and would be least useful precisely at the locations where the stresses may be most 

critical.  I mentioned the finite element method, with which neither student had experience, and I 

also explained more about the importance of properly modeling the boundary conditions. 

 

By this point, we had spent about an hour, and the students appeared somber.  They told me that 

they thought that my suggestions were correct, but that they didn’t have time to try tackling any 

of them, save for perhaps using the half-weight of the wall, instead of the full weight, in their 

originally intended analysis.  They told me not to worry, because they were sure that what they 

were already doing would be sufficient to satisfy the expectations of their instructor.  I have no 

idea how they actually solved their problem, and decided ‘not to ask, not to tell.’ 

 

Regrettably, this example, which is representative of several other actual cases, reveals a serious 

lack of critical thinking on the part of our students.  The imperative to address this problem lies 

well beyond academic perfectionism.  The hook project was ‘real-world,’ and some of its 

essential analysis was amenable to techniques that the students surely knew.  In this case, the 

static analysis of a simply-supported member was applicable.  Had the students been given a 

simply-supported beam to analyze, they undoubtedly would have analyzed it correctly.  But in a 

context in which the objects at hand were not so literally defined, the students could not apply, 

from scratch, a simple free body analysis; had they attempted this seriously, they would have at 

least discovered the answer to their immediate question. 

 

What are the reasons for these lapses in critical thinking, and how can educators address this 

problem?  Complete and definitive answers are likely to prove elusive, as a number of factors – 

for example, prior mechanics education, innate student ability or interest, demanding schedules 

and pressures, quality of instruction – are all influential, and are likely to vary significantly from 

case to case. 

 

Nevertheless, we contend that some definite pedagogical improvements can be advanced, and 

that while limited in scope, they are necessary if we are to seriously engage our students in 

critical thinking.  In the next two sub-sections we present tools to assess specific aspects of 

student work and assessments of some textbooks that illuminate some areas where effort should 

be placed. 
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Quantitative Measures of Student Performance.  We identified three specific criteria against 

which to examine student homework: (1) completeness and correctness of Free Body Diagrams 

(FBD), (2) incorporating proper physical units (UNITS), and (3) proper use of vectors, 

coordinates, and sign conventions (VCS).  While these criteria are not exhaustive, they constitute 

a useful set of criteria that can be reasonably quantified and measured, and their importance is 

certainly intuitive.  As we demonstrate, the overall quality of student work is correlated to their 

performance in these critical areas.  Therefore, we advocate pedagogy that emphasizes attention 

to these areas. 

 

We developed a protocol to evaluate student performance on specific homework problems.  For 

each problem, the instructor or grader would assign a sub-score for each criterion, from 0 – 3: 

 

 Free Body Diagrams (FBD)     0 1 2 3 

 Physical Units (UNITS)     0 1 2 3 

 Vectors, Coordinates, Sign Conventions (VCS)  0 1 2 3 

 

where the sub-scores correspond to the following meanings: 

  

0:  serious error in final answer, and is attributed to poor application of criterion 

1:  serious error in final answer, but not attributed to application of criterion 

2:  final answer essentially correct, despite poor application of criterion 

3:  final answer essentially correct, and criterion was applied correctly 

 

A detailed set of rules was established to determine each sub-score (see Appendix A). 

 

The total score p for a given problem is the sum of the three sub-scores, i.e. p = z1+ z2+ z3, 

where zi Œ  {0, 1, 2, 3}.  The resulting set of possible scores is {0, 1, 2, 3, 6, 7, 8, 9}.  Scores of 4 

and 5 are not possible, for if p Œ{4, 5}, there must exist sub-scores zi and zj such that 

simultaneously, ziŒ  {0, 1}, and zjŒ  {2, 3}.  However, this cannot occur, because if ziŒ  {0, 1} 

the final answer was incorrect; yet if zjŒ  {2, 3}, the final answer was correct.  Clearly, these two 

cases cannot occur simultaneously.  Although this dichotomous scoring system rewards the 

attainment of a correct answer, students who obtain correct answers for correct reasons are 

further distinguished from those who get correct answers from incorrect reasons. 

 

The dichotomy between sub-scores in {0, 1} and sub-scores in {2, 3} also implies that each 

score p arises from a unique triad of sub-scores, though the ordering of the sub-scores is not 

unique.  For example, a score p = 7 can be realized as (2 + 2 + 3) or (2 + 3 + 2), but 7 cannot be 

realized as (1 + 3 + 3); in other words, 7 can be realized only from two 2’s and one 3.  Thus, 

each score represents a unique level of total quality, but a given score does not uniquely indicate 

the level of quality derived from each individual criterion.  As a result, this scoring system 

provides a monotonic scale against which to measure overall quality of work, but does not favor 

the importance of one criterion over another. 
 

We employed this scoring system to assess five different homework problems from Dynamics 

and Strength of Materials classes.  The average scores are reported in Table 1 (N is the number 
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of homework papers evaluated (incidences); the total N = 105 arises from five distinct 

assignments). 
 

HW N FBD UNITS VCS TOTAL 

1 20 1.3 1.6 1.6 4.5 

2 19 1.7 1.7 1.5 4.9 

3 29 1.9 2.3 2.1 6.3 

4 29 1.0 1.5 1.9 4.4 

5 8 2.3 2.8 2.1 7.1 

NET 105 1.6 2.0 1.8 5.4 

 

Table 1.  Results of Homework Assessments, by Criterion, and by Homework Assignment. 
 

The results indicate, on average, a modest tendency for students to reach an acceptable final 

answer (the average score, 5.4, is greater than 4.5, which is the mean of the score set {0, 1, 2, 3, 

6, 7, 8, 9}).  However, the average tendency is also for students to neglect reasoning or make a 

significant error in each criterion (each sub-score average is a full point below 3, the score that 

requires the execution of the criterion without significant error).  No single criterion emerges as 

an area of particular strength or weakness. 

 

By consolidating the data across all criteria and all assignments, we reveal how often a correct 

(or incorrect) reason correlated to a correct (or incorrect) answer.  An explanation for how the 

data was recompiled is in Appendix A, but roughly speaking, a “correct reason” correlates to the 

maximum sub-score for a given criterion.  “Immeasurable Reason” refers to incorrect answers 

that we not directly attributed to any of the three basic criteria (e.g. a student who made no 

sensible progress).  Also, the total number of total incidences here is 315, which is 3 times the 

number of problems studied (105), because each problem is scored against 3 distinct criteria.   
 

N = 3 x 105 = 315 Correct Answer Incorrect Answer Total 

Correct Reason       57    (18.1%)       7      (2.2%)   64   (21.3%) 

Incorrect Reason     153    (48.6%)     29      (9.2%) 

Immeasurable Reason      69    (21.9%) 
251   (79.7%) 

Total     210    (66.7%)   105    (33.3%) 315 (100.0%) 

 

Table 2.  Correlation between Correct Reasons and Correct Answers. 

 

Note that the tabulation generating Table 2 gives a generous impression of student work.  For 

example, a student who arrived at a correct answer on the basis of 2 correct reasons (say FBD 

and VCS), but one incorrect reason (say UNITS), would contribute 2 tallies for “correct reason, 

correct answer,” and one tally for “incorrect reason, correct answer.”  (A strict scoring system, 

requiring that each reason be correct for each correct answer, would identify this student entirely 

in the category of “incorrect reason, correct answer.”)  According to this tabulation, most 

incidences (210, 66.7%), represent correct answers, but also, most incidences (251, 79.7%) also 

represent incorrect or immeasurable reasoning (immeasurable reasoning likely indicates 

incorrect reasoning not explicitly measured here, such as trigonometry errors.) 
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Analysis of Textbook Materials.  If students are to be challenged to consider precise aspects of 

mechanics reasoning, such as the criteria identified here, it follows that textbooks and other 

educational materials bear the responsibility to present theory and problems with a 

commensurate level of detail.  We therefore evaluated several major textbooks, critiquing them 

on the basis of the same three criteria as with our student assessment: (1) FBD, (2) UNITS, and 

(3) VCS.  For simplicity, we restricted our evaluations to the standard first three chapters (or 

equivalent) of introductory Dynamics: Particle Kinematics, Particle Kinetics using Newton’s 

Law, and Particle Kinetics using Energy Methods.  For each category we represented our general 

opinion of the book’s presentation of the criteria throughout these three chapters using comments 

of “consistent,” “inconsistent,” or “infrequent.” 

 

In conducting the textbook evaluations, we did not exhaustively catalog every occurrence of each 

criterion.  Rather, we formed judgments by finding two or three key examples in each text, and 

then browsing the rest of the selected pages to get a sense of how representative the examples 

were.  An improved study would more exhaustively track each occurrence, and be evaluated by a 

panel of several people.  Nevertheless, even if our conclusions are somewhat subjective, we 

submit that we have established a useful protocol for examining textbooks and that our results 

are reasonable. 
 
 

 

 

 

 

 

 

 

 

 

Table 3.  Textbook Assessments: Completeness of Free Body Diagrams (FBD); Inclusion of Physical 

Units (UNITS); Complete Use of Vectors, Coordinate Systems, and Sign Conventions (VCS). 

 

Table 3 summarizes the results of the textbook evaluations.  The texts that were selected were 

those that were readily available to us.  Appendix B contains images of various selections that 

we examined, with further commentary. 

 

According to our assessment, free body diagrams  are generally used appropriately, but most 

textbooks have at least some instances of free body diagrams that excluded some forces.  The 

most frequent misuse of free body diagrams seems to occur in problems solved using energy 

methods, in which some forces do no work, and thus do not enter into the calculations (see 

Appendix B, Figure B2).  Even forces that do no work, or that otherwise may not enter into a 

calculation, impose real, physical effects, such as enforcing constraints.  In some engineering 

situations, the examination of such ‘negligible’ forces is crucial; therefore, we advocate that all 

forces be included in solving problems, regardless of whether they appear in the calculations.  

Instruction that omits any force gives students an exit through which to escape the consideration 

and comprehension of the true physical reality of the problem at hand, and allows them to pursue 

lines of thinking according to their own, often flawed, reasoning [3].  Indeed, the absence of a 

free body diagram is the root cause of why the students who were trying to analyze the J-hook 

Text FBD UNITS VCS 

Bedford/Fowler9 consistent inconsistent inconsistent 

Beer/Johnston/Clausen10 mostly consistent inconsistent inconsistent 

Boresi/Schmidt11 inconsistent infrequent inconsistent 

Hibbeler12 inconsistent inconsistent consistent 

Meriam/Kraige13 mostly consistent infrequent inconsistent 

Ruina/Pratap2 consistent consistent consistent 

Tongue/Sheppard14 consistent consistent consistent 
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(recounted above) had difficulty in even beginning the problem.  To exclude a force, even one 

that appears to be irrelevant, is to surrender an important opportunity for the instructor to 

cultivate the complete understanding of the problem at hand. 
 

Next, we found that nearly all textbooks frequently exclude units, especially in intermediate 

calculations, although usually they are attached to the final answer (see Appendix B, Figure B3).  

Repetitious inclusion of the units, accompanied by emphatic comments, provides a valuable 

opportunity for the educator to lead the students to realize that units reveal insights and special 

properties of the underlying mechanics.  Students who develop the habit to consider and include 

units will be more disposed to critically assessing their own work, and ultimately, they will 

develop the habits of mind that will assist them in solving problems in more advanced subjects, 

such as fluid mechanics. 

 

The texts had mixed evaluations on the use of coordinates and sign conventions.  In many cases, 

careful establishment of coordinates is simply omitted (see Appendix B, Figure B1).  Most texts 

do consistently define sign conventions for summing forces and moments (see Appendix B, 

Figure B3).  However, the senses of the coordinates are often ambiguously sketched with double-

headed or non-headed arrows.  A well-defined coordinate should have a single-headed arrow 

pointing away from a reference point, defining a positive direction or orientation (a correct 

illustration is given in Appendix B, Figure B2).  This might seem fussy, and agreeably, merely 

drawing proper arrowheads without explanation or emphasis is of little use.  The point is that the 

careful establishment of a coordinate, including its sense, should be impressed upon the student 

as a fundamental part of the solution of any problem, and therefore, instruction should include 

the careful identification of coordinate directions.  Such emphasis will prepare students for more 

advanced courses, such as Finite Element Analysis, in which a systematic establishment of 

coordinate definitions is required to formulate problems and interpret computed results. 

 

3. Conclusions and Future Work 

 

We have emphasized the need to train students in mechanics courses to think critically, 

grounding their problem-solving skills in the core ideas of mechanics itself.  We have also 

defined reasonable and practical measures that can be used to assess both student work and 

educational materials.  Our work shows that in general, students usually miss at least one critical 

element of a problem, even when they get the correct answer.  It is precisely this gap – between 

getting the right answer with faulty reasoning, and getting the right answer with correct 

reasoning – that must be filled if students are to become true problem solvers.  We have also 

demonstrated that textbooks often fall short in demanding critical thinking of their student 

readers. 

 

We believe that the assessment tools that we present here are useful and innovative, but we also 

acknowledge their limitations.  For example, our homework assessments might not be 

repeatable.  For, would other instructors, using our same protocol, give the same analysis of what 

is acceptably correct?  Indeed, the outcomes likely depend on the judgments of the evaluator.  

However, the assessment tool is likely to be effective for use by a given instructor. 

 

We also recognize that our assessment tool may not categorize student errors uniquely.   For 

example, is an incorrectly labeled force, say k vs. kx, an error in the free body diagram, or an 
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error in the use of physical units?  Again, different evaluators might make different assessments, 

and perhaps further work could be done to catalogue and define various kinds of errors.  

Nevertheless, the overall assessment of how frequently students demonstrate proper reasoning 

will be reasonably invariant. 

 

Allowing, then, that our assessment tools and procedures are reasonable, we hope that their 

underlying substance – demanding complete free body diagrams, including physical units, and 

requiring careful definition and use of coordinate systems and sign conventions – will inform 

pedagogy in mechanics, so that educators and educational materials will emphasize these 

concepts.  In the future, we hope to use our assessment tools on a larger scale to determine, in 

fact, whether such pedagogical shifts would really improve students’ understanding of 

mechanics, and their ability to independently solve problems. 

 

Finally, while we have focused here on improving analytical technique and developing habits of 

mind, other teaching strategies, such as writing exercises, assignments with structured iterations 

for feedback and revision, and design projects, will also help students to cultivate their critical 

thinking abilities.  We hope that our contribution complements these other activities. 

 

In the end, merely presenting the fundamentals of mechanics, even if done with precision, will be 

of little use without engaged instruction.  For what good will result, from, say, sketching 

coordinates with single-headed arrows, without an engaged discussion of why this is done?  Our 

real point is not simply to call for correcting details, but rather, to engender within mechanics 

pedagogy the well-conceived and planned articulation of the concepts that underpin these 

details.  Without such an approach, we will be left with our current situation, so keenly described 

by Hestenes et al.,  

 
The implications could not be more serious.  Since the students have evidently not learned the 

most basic Newtonian concepts, they must have failed to comprehend most of the material in the 

course.  They have been forced to cope with the subject by rote memorization of isolated 

fragments and by carrying out meaningless tasks.  No wonder so many are repelled!  The few 

who are successful have done so by their own devices, the course and the teacher having supplied 

only the opportunity and perhaps inspiration17. 
 

We educators can more positively influence the learning of our students if we recognize that 

sound education requires a mutually engaged relationship between the instructor and the student, 

in which the educator perseveres in challenging the student to understand the subject matter 

critically, and the student will embrace this as an opportunity for discovery, and not as a burden 

to be shed.  If we fail to do our part, as engineering educators, to create such an engaged learning 

environment, we will have made no progress in attaining our goal of training students to think 

critically and become independent problem solvers. 

 
Endnotes 

 
[1] Perhaps one reason for this shortcoming in mechanics education is that in typical engineering 

programs, mechanics is taught as a service for degree-bearing disciplines, such as Mechanical 

Engineering and Civil Engineering.  Few universities offer undergraduate degrees in the 

discipline of Mechanics. 
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[2] In introductory Statics and Dynamics, bodies of interest are often assumed rigid.  In such 

cases, only pillars (1) and (2) are applicable, although pillar (3) is implicitly applied if one views 

rigidity as a limiting case of constitutive behavior. 

 

[3] Physics educators have long perceived the tendency for students to follow their own intuition, 

rather than the actual dictates of the mechanics.  Several researchers have investigated how 

students’ preconceptions interfere with their ability to learn mechanics, notably Clement
15

 and 

McDermott
16

.  As this research developed, the Force Concept Inventory (FCI) emerged as a tool 

to measure students’ understandings or misunderstandings of how forces act on bodies (see 

Hestenes et al.
17

).  Recently an ASEE group has been formed to collect FCI data (see Gray et 

al.
18

).  We contend that our recommendation to construct complete Free Body Diagrams will help 

students to overcome many of their erroneous preconceptions. 

 

 

Appendix A.  Evaluation Form for Assessment of Student Homework 

 

 

Use of CRITERION [FBD, Units, Coordinates, Vectors & Coordinates] 

 

CRITERION not used at all               Flag    Sub-score

 

   serious error committed and is due to the absence of the FBD  1 0 

   serious error committed, but not due to the absence of the FBD  2 1 

   answer correctly obtained       3 2 

 

CRITERION present but incomplete or incorrect 

 

   serious error committed and is due to the poor FBD   4 0 

   serious error committed, but not due to the poor FBD   5 1 

   answer correctly obtained       6 2 

 

CRITERION is present and essentially correct 

 

   serious error committed       7 1 

   no serious errors and answer correctly obtained    8 3 

 
 

 correct reason, correct answer   corresponds to Flag #8 

 incorrect reason, correct answer   corresponds to Flags #3 & #6 

 correct reason, incorrect answer   corresponds to Flag #7 

 incorrect reason, incorrect answer  corresponds to Flags #1 & #4 

 incorrect answer, immeasurable reason  corresponds to Flags #2 & #5 
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Appendix B.  Excerpts from Textbooks 

 

 
 
Figure B1.  In this excerpt of Example 15.2 from Bedford and Fowler9, the calculation of velocity 

depends on the use of a coordinate s.  However, the sketches are absent of any mention of this coordinate, 

although the absolute distance of 0.4 m is labeled.  Mechanics texts should emphasize careful 

establishment of coordinates, including their senses.  The free body diagram is appropriate. 
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Figure B2.  In this excerpt of Example 15.18 from Boresi and Schmidt11, a proper free body diagram of 

the bob, showing the force of the rod, is not provided.  Even though the force of the rod does no work on 

the bob, and is thus not needed in the calculations, elementary mechanics texts should show all forces on 

bodies under consideration.  The coordinate s is properly sketched, with a single-headed arrow. 

 

 
 
Figure B3.  In Sample Problem 3/1 from Meriam and Kraige13, the calculations omit the inclusion of the 

physical units.  Physical units are merely attached to the final answers.  Elementary texts in mechanics 

should not only include, but should emphasize the presence of physical units in all calculations, as the 

physical dimension itself carries important meaning.  The coordinates are well-defined. 
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Figure B4.  This excerpt of Example 3.16 from Tongue and Sheppard14 properly presents all key 

elements: the free body diagram includes all forces that act on the body, including one that does not 

appear in the calculations; coordinates are clearly drawn and properly defined; and physical units are 

included in all calculations, as appropriate. 
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