
2006-227: A LIGHT-WEIGHT TOOL FOR TEACHING THE DEVELOPMENT
AND EVALUATION OF REQUIREMENTS DOCUMENTS

Ben Garbers, University of Wisconsin-La Crosse
Ben Garbers has been working with IBM, Rochester, MN for 6 years where he had experience
with software requirements gathering, design, development and testing. His technological
expertise includes Java applications, dynamic web applications and artificial intelligent
applications. Ben is a graduate student in the Master of Software Engineering program at the
University of Wisconsin La Crosse. Currently he is a first line manager of an internal build tools
department at IBM.

Kasi Periyasamy, University of Wisconsin-La Crosse
Kasi Periyasamy is a Professor in the Computer Science Department and the Program Director of
the Master of Software Engineering (MSE) program at University of Wisconsin-La Crosse. His
research interests are in Software Specifications, Requirements Engineering, Software Testing
and Verification. He has published a lot of papers in Software Engineering area, and is the
co-author of the book "Specification of Software Systems" published by Springer-Verlag, 1998.
He is a member of the Association of the Computing Machinery (ACM).

© American Society for Engineering Education, 2006

P
age 11.61.1

A Light Weight Tool for Teaching the Development and

Evaluation of Requirements Documents

Abstract

Writing correct and consistent software requirements specification (SRS) is one of the most

important goals of a requirements engineering process. The SRS serves as the basis for

subsequent design, testing and maintenance of the software product. The more errors and

inconsistencies contained in an SRS, the more time and efforts are required to correct them at a

later stage in the development process. Most SRS documents are manually typed using a word

processor and hence the writer is responsible for ensuring the correctness and consistency of the

document. Without adequate tool support, the manual construction and analysis of SRS

documents is a tedious process and is error-prone. This paper describes an interactive tool

developed at the University of Wisconsin-La Crosse that assists students preparing an SRS

document based on the IEEE standard 8301998
1
. The tool provides an easy-to-use interface and

the ability to create, edit, load and save SRS documents. In addition, it evaluates the

requirements document based on criteria published by the Software Metrics program at the

Software Assurance Technology Center, NASA
2
. A function-point metrics analyzer is also built

into the tool so that the efforts required to complete the project specified in the document can be

evaluated.

Introduction

A project-oriented course in Software Engineering generally requires the students to analyze the

requirements for the problem and then write the software requirements specification (SRS)

document. Since the SRS serves as the basis for design, testing and maintenance of the software

product, the students are expected to follow some standard such as IEEE 830-1998
1
 while

developing the SRS. A sample functional requirement in IEEE standard format is shown in

Figure 1.

Index: ATM.2

Name: Deposit

Purpose: To deposit an amount into an account

Priority: High

Input parameters: account number, amount

Output parameter: None

Action: Ensure that account number exists.

 Ensure that amount is greater than zero.

 Retrieve the account with account number.

 Update the balance in the account by adding amount to it.

Exceptions: account number does not exist.

 amount is less than or equal to zero.

Remarks: None

Figure 1: An IEEE 830 compliant functional requirement in an ATM system

P
age 11.61.2

Often, students use simple word processors to write the document and so are enmeshed with

clerical details such as correctly specifying the section numbers, specifying unique index

numbers for functional requirements and so on, and do not pay much attention to the contents of

the document. With the result, the final document may be well-typed but will not have sufficient

contents. In particular, the review of such documents shows that the students should spend more

time in writing the contents of the document first than structuring the document according to the

standard. Without adequate tool support, the manual construction and analysis of SRS documents

is a tedious process and is error-prone. It is therefore decided to develop a tool to assist the

students in developing the SRS. The students, when using this tool, will be prompted with

various sections and paragraphs within the sections and the tool prints the final document in

IEEE standard format. Thus the students are relieved in focusing on the clerical details of the

document.

The authors developed a tool called Napkins that would assist the students in developing IEEE

compliant requirements document. Using this tool, one would be able (i) to develop a SRS based

on a simplified version of IEEE standard format, (ii) to evaluate the SRS based on criteria

published by the Software Metrics program at the Software Assurance Technology Center,

NASA
2
, and (iii) to evaluate the time to complete the project based on the requirements entered

using the tool. This last evaluation uses function point metrics. The Napkins tool can therefore be

used by the students in a Requirements Engineering course as well as by those in a Software

Metrics course.

Napkins - Design Details

Figure 2 shows the architecture of the Napkins tool. The tool consists of three major components

– the requirements editor, metrics analyzer and the requirements document evaluator.

P
age 11.61.3

Figure 2: Architecture of the Napkins Tool

The editor provides several windows for the user to input various sections of the requirements

document. Internally, the tool stores the document in XML format so that it can be interchanged

with other tools. In addition, the tool also provides the option to generate a PDF file of the

requirements document for printing and publishing. More details of the requirements editor are

given in a subsequent section.

The purpose of the metrics analyzer is to estimate the project deadline using function points

metrics
3
. Information needed to compute the metrics are to be manually extracted from the

requirements document and then use the metrics analyzer just like a calculator. In addition, the

user will be able to interact with the metrics analyzer directly to provide additional information

such as adjustment factors to get a more accurate estimation of the deadline.

The requirements document evaluator scans through the requirement document and displays

some primitive metrics for evaluating the document. The user then evaluates the quality of the

document based on the guidelines provided by NASA Software Metrics Program
2
. This

evaluator is also discussed in detail in a later section.

Requirements Editor

Figure 3 shows the starting screen of the requirements editor. All the three components of the

Napkins tool can be accessed through the menu shown on top of the screen. The left pane

provides the various sections of a IEEE compliant requirements document. A user of the tool will

be able to navigate and input the contents of various sections using the left pane. As an example,

Figure 3 shows how a user can input a new functional requirement.

P
age 11.61.4

Figure 3: The Requirements Editor

The requirements editor enables a user to create a new requirements document, to save it in

XML format, to save it in PDF format, to load a previously created requirements document and

to edit a requirements document. All these functionalities can be invoked through the ‘File’

menu option. The editor also supports uploading of images so that graphical user interface

requirements can be included in the document. The highlighted sections on the left pane include

additional functionalities through the ‘right click’ of mouse button. For example, Figure 3 shows

how a user can add a new functional requirement by right clicking on the Functional

Requirements section first and then clicking on the ‘Add Functional Requirement’.

Currently, the editor supports a simplified version of IEEE standards format for requirements

specification. This includes functional requirements, graphical user interface requirements and

non-functional requirements. Even though the screen shows only a handful of non-functional

requirements, this list can be expanded by the user. The requirements can also be divided into

several subsections, thus allowing modular specification of the requirements.

Metrics Analyzer

The metrics analyzer computes the estimated time to complete the project whose requirements

are described by the current requirements document. The computation is based on function point

metrics. Function point metrics is used to evaluate the complexity of a software product; it uses

P
age 11.61.5

function points as the complexity factor instead of the traditional Lines Of Code (LOC). There

are two steps in the calculation of the number of function points. The first step is to compute the

unadjusted function points for each requirement in the document. We have used the method from

Dreger
3
for this calculation. Accordingly, each functional requirement is classified as simple,

average or complex. Each classification has been given a specific number (for example, simple

may be 3, average may be 5 and complex may be 7). These numbers may vary depending on

further classification of the functional requirement. Accordingly, for each functional requirement

we first identify its business category (Input, Output, Inquiry, File or Interface). We then

analyze the number of data references, file references and logical record format relationships for

the functional requirement. Depending on this analysis, its unadjusted function point value

changes. For example, the following table shows the function point value for the functional

requirement belonging to business category ‘Output’.

 Data items referenced

Files referenced 1 to 5 6 to 19 20 or more

0 or 1 Simple (4) Simple (4) Average (5)

2 or 3 Simple (4) Average (5) Complex (7)

4 or more Average (5) Complex (7) Complex (7)

More details regarding these unadjusted function point values can be found in Dreger’s
3
 book.

Once the unadjusted function points are calculated, the second step is to fine-tune them using 14

adjustment factors. These are tabulated below.

Data communications Online update

Distributed data or processing Complex processing

Performance objectives Reusability

Heavily used configuration Conversion and installation ease

Transaction rate Operational ease

Online data entry Multiple site use

End-user efficiency Facilitate change

The adjustment factors can be entered by clicking on the ‘Function point analysis’ icon on the

left pane and entering the values on the window on the right side. The results of function point

analysis can be viewed through the ‘View’ menu option. They are also displayed when the user

presses the ‘Calculate’ button at the bottom of the screen on Function Point Analysis. However,

this option only shows the final value while the ‘View’ option provides all details of the

calculations.

In order to assist the users to provide the right input for unadjusted function point, a ‘Help’

button is provided on the Function Point Analysis screen. This will open a separate window

explaining the calculation of unadjusted function points.

P
age 11.61.6

Apart from the function point analysis, the tool also provides another option to estimate the

completion time of the project using DeMarco’s model
4
. While entering the details of each

functional requirement, the user is asked to provide a weight for the functional requirement to

determine its size. The following table gives the weights and their associated numeric values.

Function type Weight

Compose or decompose data 0.8

Update information 0.5

Analyze data and take action 1.0

Evaluate input data 0.8

Check for internal consistency 1.0

Text manipulation 1.0

Synchronize interactions with users 1.5

Generate output 1.0

Perform simple calculations 0.7

Perform complex calculations 2.0

These weights for the functional requirements are used to calculate the sizing parameter as

follows:

Total Sizing = Weight * <Total inputs and outputs> * (log2 * <Total inputs and outputs>)

Finally, the estimated time to complete the project is calculated as

 Estimated time = Constant A * Total Sizing ^ Constant B

where ‘Constant A’ and ‘Constant B’ are to be defined by the designer depending on the project.

The results of this calculation are shown on the first screen on Function Point Analysis (see the

screen shot below).

P
age 11.61.7

Requirements Document Evaluator

There are very few publications available on evaluating the quality of requirements documents.

The authors found that the evaluation criteria published by the Software Metrics program at

NASA seem to be appropriate for teaching purposes. In this work, the requirements document is

first scanned for the number of words appearing in five different categories. The categories and

some possible words in each category are tabulated below:

Category Words in this category

Imperatives Shall, should, must, will, are applicable to

Directives Figure, Table, For Example, Note

Weak phrases Adequate, as appropriate, as applicable

Continuances Below, as follows, listed, following

Options Can, may, might, optionally

Once the number of words in each category is extracted, the evaluator can determine whether it

is appropriate to have, say, N number of words in category K. Since this decision depends on the

P
age 11.61.8

application domain, it is not possible to automate this process. Currently, the Napkins tool

includes a mechanism to extract the words in each category and display them indicating their

count and the sections in which they appear. Further, a user can also add or delete specific words

in each category. The user can invoke the requirements document evaluation component through

the ‘Analysis’ menu option. A sample screen shot of this component is shown below:

Major advantages

The major advantages of the Napkins tool are summarized below:

• It enables a user to develop an IEEE compliant requirements document focusing on the

contents of the document and not worrying about the clerical details.

• It allows the user to estimate the time taken to implement the product using function

points metrics. In addition, the user will also be able to configure the parameters for the

function point analysis. The tool also provides another option to estimate the completion

time using DeMarco’s model. With the two options together, not only the students learn

about metrics but also will be able to compare the two techniques.

• The tool provides a count of primitive metrics to evaluate the quality of the requirements

document.

• The requirements document can be saved in PDF format for printing, viewing and

publishing. It internally saves the document in XML format. This allows other tools to

process the document.

• Using the ‘Review’ menu option, a user will be able to add a review of the requirements

document (generally done by a reviewer other than the requirements writer). These

reviews are stored within the tool for later analysis.

P
age 11.61.9

Limitations

The Napkins tool is currently used by the students in Software Engineering courses at the

undergraduate and at the graduate level. The requirements editor is more or less complete even

though it has a simplified version of IEEE standard format. This is because the tool is designed

primarily for the students in Software Engineering courses. If the tool is planned to be used for

actual software development, it needs to be extended to include other sections based on IEEE

standards. The authors are planning to develop the extended version in the near future.

The metrics analyzer provides the mechanism to compute the function points more accurately by

implementing the adjustment factor. However, the user is expected to manually input the five

parameters to compute the unadjusted function points and the 14 adjustment factors to compute

the final count of function points. It is possible to extract the five parameters for unadjusted

function points directly from the requirements document provided that the user identifies them

while writing the document. For example, the number of internal files can be extracted if the user

indicates them while typing in the input and output parameters for functional requirements. The

authors are planning to add such mechanism in the next version of this tool.

The requirements document evaluator simply counts the number of words in each category. The

assessment of the quality of the requirements document based on the counts of words in each

category is not implemented in the current version. This is because NASA has not published the

details of such assessment. Moreover, such assessment depends on the application domain and

hence is not possible to be automated. The authors are investigating the possibility of providing

guidelines for such assessment but it requires extensive research in this area.

Evaluation

The tool was used by a small group of students and some people at IBM, Rochester, MN. The

overall comments about the tool and its usage were positive and encouraging. The small group of

students who evaluated this tool was part of the Software Engineering course; these students

used the requirements editor more than the metrics analyzer. From the students’ perspective, the

user interface needs some improvements and some features such as cutting and pasting text from

one portion to another portion of the requirements document must be improved. Another concern

was the lack of on-the-fly help facility. Overall, the students were satisfied with the

functionalities of the tool. Some comments from the students are included below:

• It is easy to understand this tool.

• No need of remembering the requirements document format.

• The GUI elements are not aligned in some windows. Layout needs to be changed.

• Help functionality gives an overview of the tool. It would be great if help can be in detail

and interactive instead of reading long pages of text.

• Converting to pdf file make it platform independent.

In contrast to the students’ population, the evaluators from IBM mostly commented on the

metrics analyzer. The use of metrics analyzer and requirements document evaluator were

appreciated. The major concern is the lack of help facility. Currently, the tool provides online

help which is an overview of the entire tool. Some of the comments from IBM evaluators are

listed below:

P
age 11.61.10

• I like the fact that it will keep track of project estimation using different theories such as

DeMarcos Model.

• Help text needs to be written on how to successfully use the review comments process.

• Was not apparent that you have to right click to add functional requirements.

• The estimation of time is apparent on how it is calculated when adding functional

requirements.

All evaluators suggested that the tool must provide tool tips and short on-the-fly help facilities.

The authors have planned to improve the tool based on the first set of evaluations. In addition,

the authors are going to make the tool available for public in order to get more feedback.

Currently, the authors are demonstrating the tool to other institutions in the same region. Three

of these institutions have agreed to use the tool in their software engineering courses and send

feedback to the authors next year.

Conclusion

This paper describes the Napkins developed by the authors for developing a software

requirements document. The document’s structure complies with IEEE standard 830-1998. The

tool also provides a metrics analyzer for computing function point metrics and the time taken to

complete the project based on the requirements. In addition, the tool also includes another

component to extract primitive metrics for assessing the quality of the requirements document.

This assessment is based on the guidelines provided by the Software Metrics Program at NASA.

The limitations and continuing work on the tool are briefly addressed.

Another requirements editor called Requirements Compiler (RC)
5
 is also in development at the

authors’ institution. Even though RC provides somewhat similar mechanisms to develop an

IEEE compliant requirements specification document, the method and the interface are quite

different from those of Napkins. Further, the purpose of RC is to assist in automatic derivation of

an object-oriented design from the requirements document. RC also provides some additional

validations such as missing sections so that the user will be able to write a truly IEEE compliant

requirements specification. In order to facilitate document exchange between the two editors,

both of them use XML format to store the contents. The designers of both the editors are

working cooperatively to support this document exchange.

The authors are also developing a management activities tracking tool which helps project

managers assign management tasks to team members and keep tracking the individual

assignments. The Napkins tool is linked to the management activities tracking tool and hence the

requirements specification, requirements review and deadline estimation can all be used within

the management activities tracking tool.

Bibliography

1. IEEE Recommended Practices for Software Requirements Specification, IEEE Standard 830-1998, 1998.

2. http://satc.gsfc.nasa.gov/metrics/index.html

P
age 11.61.11

3. Brian Dreger, “Function Point Analysis”, Prentice Hall Advanced Reference Series, 1989.

4. Stephen Kan, “Metrics and Models in Software Quality Engineering”, Addison-Wesley, 2003.

5. Tom Harron, “Requirements Compiler”, final manuscript in preparation for the Master of

 Software Engineering Degree, Department of Computer Science, University of Wisconsin-La Crosse, 2006.

P
age 11.61.12

