
Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright (c) 2005, American Society for Engineering Education

2005-2548-1119

Software Engineering Standards in the ECET curriculum

Ron Krahe

Penn State Erie, Behrend College

Abstract

This paper introduces the need for including software engineering standards in the ECET

(Electrical and Computer Engineering Technology) curriculum today, and discusses the desired

depth of coverage. ECET comprises a broad array of topics, including both hardware and

software design and development. Many current electrical and computer systems contain

embedded controls of one sort or another, and in nearly all of them, the control affects the safety

of the user and others, or impacts the efficacy of the system in some way.

An overview of software standards is followed by a listing of national and international

regulatory agencies organizations, including both private industry and public government bodies,

who have an interest in software engineering standards. The criticality of software has led to the

rapid growth in the use of software engineering standards for designers and developers.

After the brief survey, the paper focuses on the comprehensive set of IEEE software engineering

standards as an example. And it puts particular emphasis on condensing the full set to a

manageable size to be incorporated in an intermediate embedded systems algorithmic processes

course.

Introduction

Others
1, 2, 3

 have discussed the need for using formal design methods in engineering courses.

However, simply using such methods do not particularly facilitate students buying into a

complex problem. Experience has shown that it is not uncommon for students to misinterpret an

assignment, to solve the wrong problem, to write programs that contain errors and give the

incorrect answers, and then blame everything and everyone other than themselves for the

mistakes.

This condition is not unique to the education environment. Numerous examples could be given

of lengthy product development projects that yielded defective products; products that didn't

meet the customer need, and worse yet, programs that performed a miscalculation and caused

damage to equipment, and resulted in human injury and death.

Governments, industry, and user organizations have long realized that it is not sufficient to rely

simply on the intelligence, cleverness, and integrity of individuals or organizations to produce

worthwhile software. Many sets of standards have been written to better control the process of

software development.

P
age 10.1123.1

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright (c) 2005, American Society for Engineering Education

By using a standards based approach to teaching software development, students are encouraged

to take responsibility for the success of their work, to refrain from belly-aching, to solve a

meaningful problem, and to reduce or eliminate errors.

Background

To set the stage for using standards, and to justify in the students' minds the added work

necessary to implement the standards, the following ideas are presented:

1. The need for standards:

a. When there is a failure of safety related software such as that used in medical

devices and transportation vehicles and systems, then the results can be

catastrophic in terms of human injury, death, or damage to equipment.

b. When there is any significant product failure, wherein the product fails to meet

the customer needs or expectations, then the customer is liable to become

dissatisfied and look elsewhere for a more reliable product.

c. Since most commercial software has an extended life, it will likely go through

several modifications to remove hidden errors, alleviate shortcomings, or add

improvements in terms of the performance, functionality or ease of use. It must be

clearly documented at each point in the life of the software what the software

must do.

d. There is usually a limited budget for software development, and there isn't enough

time or money to solve the wrong problem, or fail to meet the customer's needs.

e. The software will respond somehow to every conceivable variation of inputs.

Therefore, the software should be designed to consider all these, and deliver a

predictable, safe and effective response. All modes of operation and failure should

be consciously considered and addressed.

2. The variety of organizations and standards:

a. UL
11
 (Underwriters Laboratories Inc., USA) is an independent testing and

certification agency, and author of over 800 standards related to product safety

world-wide.

b. CSA
12
 (Canadian Standards Association, Canada) functions as a neutral third

party providing a structure and a forum for standards related to community safety

and well-being.

c. VDE
13
 (Association of Electrical, Electronic and Information Technology,

Germany) is one of the largest technical and scientific associations in Europe,

interested in manufacturing and process automation, transport and medical

technology, and transfer of technical knowledge.

P
age 10.1123.2

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright (c) 2005, American Society for Engineering Education

d. CE
14
 (European Commission of the European Union) initiated the "New

Approach" to standardization, implemented in 1985, resulting in a new legislative

procedure at Community level, based on the drafting of essential health and safety

requirements and the use of harmonized European standards. EU Directives laid

down common technical requirements for each product category and procedures

for assessing conformity. National authorities issue certificates of conformity, in

accordance with Directives, before products could be placed on the market.

e. ISO
15
 (International Standards Organization) is the world’s largest developer of

technical standards.

f. IEEE
16
 (Institute of Electrical and Electronic Engineers) Standards Association

(IEEE-SA) is the leading developer of global industry standards in a broad-range

of industries, including Power and Energy, Biomedical and Healthcare,

Information Technology, Telecommunications, Transportation, Nanotechnology,

Information Assurance.

g. FDA
17
 (US Food and Drug Administration) provides guidance and oversight of

medical device development according good manufacturing practice.

h. NTSB
18
 (National Transportation Safety Board) is an independent Federal agency

charged by Congress with investigating every civil aviation accident in the United

States and significant accidents in the other modes of transportation -- railroad,

highway, marine and pipeline -- and issuing safety recommendations aimed at

preventing future accidents.

i. FCC
19
 (Federal Communication Commission) is an independent United States

government agency, directly responsible to Congress, established by the

Communications Act of 1934, and charged with regulating interstate and

international communications by radio, television, wire, satellite and cable.

3. Topics of standards

a. Viewing software development as an organized process

b. Phases of software development and life cycle

c. Documents related to development

d. Activities related to development

e. Constituents and responsibilities

4. Relationship of standards to design methodologies

a. Functional decomposition and structured methods

b. Data structured methods

P
age 10.1123.3

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright (c) 2005, American Society for Engineering Education

c. Modeling methods

d. Formal mathematical models method

e. Object oriented methods

f. Ad-hoc methods (just do it, guru hacker attack)

The IEEE has prepared a comprehensive set of standards for developing software.
4
 They are

widely recognized and extensively used, especially the medical device industry. The standards

cover a broad array of topics, much too numerous to cover at one time in one course. So for our

purposes, the entire list has been pared down to a more manageable set that still addresses the

flavor and intent of using software development standards.

Method

Following is a description of how software standards were introduced in a junior-level

intermediate software course on Algorithmic Processes in Engineering. Standards were

introduced one at a time with a specific assignment, and were evolved and enhanced in future

assignments. The following practical example could be modified to fit other courses.

For purposes of classroom use, the document information flow is reduced to the following:

SPMP Software Project Management Plan
5

SVVP Software Verification and Validation Plan
6

SRS Software Requirements Specification
7

SDD Software Design Description
8

SRR Software Review Report
9

TPS Test Procedure Specification (including detailed test procedure)
10

TL Test Log

SVVR Software Verification and Validation Report (including reviews and tests

reports)

The software project management plan allows the student to review and re-focus on the entire

process, including all the various phases of software development. It re-emphasizes the

complexity of the process, and the need for a systematic approach. It adds organization to the

extended process, and it retards the tendency to sit down at the terminal and begin coding. It

includes a commitment on the part of the student to the assignment.

The software verification and validation plan continues where the project management plan

leaves off, and reminds the student of their role in the success of the project. They are required to

buy into the assignment and give serious thought early on to how they will ensure success. For

P
age 10.1123.4

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright (c) 2005, American Society for Engineering Education

each assignment, they can choose the extent to which they will use personal review, peer review,

question and answer feedback, and formal testing in the overall development plan. Both of these

plans tend to be general in nature, much of the content repeated from one assignment to the next,

with variation as needed. Repetition reinforces and expands the concepts.

The software review reports are prepared by fellow students at this stage. Having students peer

review and comment on each others' plans gives each student added perspective, and improves

the quality of their work. Rarely, now, will a student solve the "wrong" problem, or complain

that they don't know what to do or how to do it.

The software requirements spec includes a restatement of the vague problem, and begins to add

specific definition. It limits the scope of the problem, and also clarifies and removes some of the

vagueness. It is the beginning of the dialog between the "customer" (the teacher), and the

"designer" (the student). The student is given as much latitude as possible in clearly defining an

accomplishable problem. Subtle or tricky aspects of the problem come to light during the

analysis phase, and are brought out in the requirements specification. This step in the process

gives more advanced students an opportunity to use their numerous talents, and also allows more

limited students to define a do-able problem for themselves. It encourages each student to think

about the problem early, and it is a checkpoint for the teacher, to be sure students are not waiting

until the last minute. By thinking about and writing down how the program will be validated

often helps clarify an otherwise confusing aspect of the problem. It permits each student to put

their arms around their own problem. The software review reports at this stage are prepared by

the teacher.

The software design description is also written before coding begins. The student gives thought

to the operator interface, the class and object divisions, and to the algorithms and language

constructs that will be used. The data storage requirements are defined, and the algorithmic

approach is described in general terms. Major procedures are described. This detailed design

effort sometimes brings to light the need to further clarify or limit the problem, and so the

requirements specification will be revised.

The test procedure specification is prepared in parallel with the design description, when all the

intricacies of the algorithm, ranges of data, and nuances of the operator interface are fresh in

mind. It should include a general list of the test cases. Tests for each individual procedure are

listed, as well as functional groupings. The detailed test procedure is derived from this

specification, and will often be written after the coding has begun or is completed.

Informal testing, sometimes call development testing, it carried out continuously as the code is

written, run, and debugged. Errors detected by the editor and compiler are corrected

immediately. Repeated runs allow refinement of the operator interface. Detailed tests are

developed that will eventually be used for verification and validation.

Once the student feels the program is complete, a permanent copy is made and filed. No more

changes are made to the program at this stage. An itemized tabular test procedure is written with

specific test cases and input data, as well as the expected (correct) results. Columns are included

for actual data, as well as a pass/fail decision for each item. This actual procedure, once run and

filled out, becomes the test log. This test log is joined to the program. If the student is not

P
age 10.1123.5

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright (c) 2005, American Society for Engineering Education

satisfied with the test results, then the program can be modified and the complete test rerun. This

process is repeated as many times as necessary. There is no penalty for the number of revisions,

other than the obvious time spent by the student.

The final project report includes a final statement of compliance (or not) with the original

problem. It summarizes the pertinent comments of the various reviews and the results of the

formal tests. It also contains the complete design history file, including all revisions of all

specifications and documents, as well as all formally tested versions of the program, full review

comments by the teacher and other students, and the detailed test log. The final report is usually

submitted on-line in a compressed file, parts of which that can be accesses and referenced as

required.

The work product data flow is shown pictorially in Figure 1.

A new project is assigned every two weeks. The total duration of each project is approximately

three weeks, with a little overlap during the beginning and end of each project. This allows time

for student discussions, feedback, and written reviews. The initial (vague) problem is presented

in class, and there is opportunity for questions and clarification. One week is allowed for writing

the management plan, verfication and validation plan, and draft requirements specification, and

the related student discussions and receiving written peer student feedback. The revised and

finalized requirements specification is submitted for teacher comments. During the two schedule

lab periods, students have opportunity to ask further questions and get help as required. Students

also spend time outside scheduled class and lab periods to write and test the program. The

students have one week after the second scheduled lab period to organize the documentation and

complete the final report.

Conclusion

Using this formalized approach to software development based on industry standards has greatly

improved the quality of student work. It has significantly reduced the misinterpretation of the

assignment. It give students a method of attacking a problem without sitting right down at a

terminal to begin coding. It encourages them to think about the problem from various

viewpoints. It allows for cross pollination of ideas among students. It exposes students to the

method of software development that is widely used in practice today.

P
age 10.1123.6

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright (c) 2005, American Society for Engineering Education

Figure 1 Work product data flow diagram

Initial

problem

phase

concept

phase

analysis

phase

design

phase

implement

phase

test

phase

vague

problem

SPMP

SVVP

SRS

SDD

TPS

code

SVVR

test

phase

SRR
1

SRR
2

testing &

SRR
1

TL

SRR
1
 Classroom discussions, student discussions, written student feedback.

SRR
2
 Teacher-student discussions, written teacher feedback.

student

comments

Assessment

and grade

P
age 10.1123.7

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright (c) 2005, American Society for Engineering Education

References

1. Hankley, William, Software Engineering Emphasis for Engineering Computing Courses: An open letter to

Engineering Educators, ASEE Proceedings, 2004-2305.

2. Schmuller, Joseph, UML, 2
nd

 Edition, SAMS Publishing, 2002.

3. Software Engineering Method Taxonomy, http://members.aol.com/kaizensepg/methods.htm

4. Schmidt, Michael E. C., Implementing the IEEE Software Engineering Standards, SAMS Publishing, 2000.

5. IEEE Standard for Software Management Plans, 1058-1998.

6. IEEE Standard for Software Validation and Verification Plans, 1012-1998.

7. IEEE Recommended Practice for Software Requirements Specifications, 830-1998.

8. IEEE Recommended Practice for Software Design Descriptions, 1016-1998.

9. IEEE Standard for Software Reviews, 1028-1997.

10. IEEE Standard for Software Test Documentation, 829-1998.

11. UL, http://www.ul.com/info/standard.htm

12. CSA, http://www.csa.ca/standards/

13. VDE, http://www.vde.com/vde_en/

14. CE, http://www.eurunion.org/legislat/standard/standard.htm

15. ISO, http://www.iso.org/iso/en/ISOOnline.frontpage

16. IEEE, http://standards.ieee.org/sa/index.html

17. FDA, http://www.fda.gov/

18. NTSB, http://www.ntsb.gov/

19. FCC, http://www.fcc.gov/

RONALD P. KRAHE

Ron Krahe has over 30 years industrial experience in product design and development related to embedded controls,

sensors and instrumentation. He joined Penn State in 1988 and currently holds the rank of Associate Professor of

Engineering. His teaching specialties include embedded controls hardware and software design, vision systems, and

electricity and electronics. His research interests include mechatronics, embedded controls, and sensors and signal

processing.

P
age 10.1123.8

