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Abstract 
 
Determining physical properties of substances is an important subject in many advanced 
engineering applications. Physical properties of liquids and gases, such as thermal conductivity, 
play an important role in the design of a wide variety of engineering applications such as heat 
exchangers. This paper describes an undergraduate junior-level heat transfer experiment 
designed for students to determine the thermal conductivity of liquids and gases. Details of the 
experimental apparatus, testing procedure, data reduction, and sample results are presented. One 
of the objectives of this experiment is to strengthen and reinforce some of the heat transfer 
concepts, such as conduction, covered in the classroom lectures. The experimental setup is 
simple, the procedure is straightforward, and students’ feedback is very positive.  
 
I.   Introduction 
 
Heat transfer is a basic and very important topic that deals with energy and has long been an 
essential part of mechanical engineering curricula all over the world. Heat transfer processes are 
encountered in a large number of engineering applications. It is essential for thermal engineers to 
understand the principles of thermodynamics and heat transfer and be able to employ the rate 
equations that govern the amount of energy being transferred. However, the majority of students 
perceive these topics as difficult. 
 
To make the subject of heat transfer a more pleasant experience for the undergraduate 
mechanical engineering students at Indiana University-Purdue University Fort Wayne, the 
students are required to take a junior-level heat transfer laboratory. The different experiments in 
this laboratory enhance and add another dimension to the teaching/learning process of the 
subject of heat transfer. One of the objectives of this heat transfer laboratory is to familiarize the 
students with different experimental methods, techniques, and devices that can be employed to 
study heat transfer problems. One important experiment in this laboratory, which is the subject 
of this paper, is the measurement of the thermal conductivity of liquids and gases. 
  
Physical properties of liquids and gases, such as thermal conductivity, play an important role in P
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the design of a wide variety of engineering applications such as heat exchangers. Convective 
heat transfer coefficients in these devices are usually computed using correlations that require 
thermal conductivity data of the working fluid (liquid or gas). 
 
A review of the literature indicates that there are several studies that report different techniques 
to measure the thermal conductivity of liquids and gases. Kaye and Higgins [1] suggested a 
guarded hot-plate method for measuring thermal conductivity of liquids. Keyes and Sandell [2] 
and Vines [3] used a concentric-cylinder arrangement for the measurement of thermal 
conductivity of gases. This paper presents a technique/method that can be employed for the 
measurement of the thermal conductivity of both liquids and gases. 
 
II.   Theory  
 
Thermal conduction is a very important and a major topic in the study of heat transfer [4, 5]. 
Conduction is the transfer of energy from energetic particles of a substance to the adjacent less 
energetic ones as a result of interactions between the particles. Conduction can take place in solids, 
liquids, or gases. In gases and liquids, conduction is due to the collision and diffusion of the 
molecules during their random motion. The rate of heat conduction is proportional to the area and 
the temperature difference, and inversely proportional to the thickness of the material. The constant 
of proportionality is the thermal conductivity. 
 
Thus the thermal conductivity, k, of a material is defined as the rate of heat transfer through a 
unit thickness of the material per unit area per unit temperature difference. Therefore it is a 
measure of how fast heat will flow in the material. A large value for thermal conductivity 
indicates that the material is a good conductor, and a low value indicates that the material is a 
poor conductor or a good insulator. 
 
The thermal conductivities of materials vary with temperature. This variation, for some materials 
over certain temperature ranges, is small enough to be neglected; but for many cases, such as 
liquids and gases, the variation of the thermal conductivity with temperature is significant. 
 
III.   Experimental Apparatus  
 
The experimental apparatus, shown schematically in Fig. 1, is a compact unit made by P.A. 
Hilton Ltd. It consists of two parts: Test Module and Control Panel. 
 
Test Module: It is a plug and jacket assembly that consists of a cylindrical heated plug and 
cylindrical water cooled jacket. The fluid (liquid or gas) whose thermal conductivity is to be 
measured fill a small radial clearance between the heated plug and the water cooled jacket. It 
should be noted that the clearance is made small in size to prevent natural convection in the 
fluid.  
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Figure 1: Schematics of the experimental apparatus and instrumentation 
 
 
 
 
 

 
Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition  

Copyright © 2005, American Society for Engineering Education 

P
age 10.1366.3



 
Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition  

Copyright © 2005, American Society for Engineering Education 

The cylindrical plug is made of aluminum (to reduce thermal inertia and temperature variation) 
with a built-in cylindrical heating element and temperature sensor (thermocouple). The 
temperature sensor is inserted into the plug close to its external surface. The plug also has ports 
for the introduction and venting of the fluid (liquid or gas) whose thermal conductivity is to be 
measured. The plug is placed in the middle of the cylindrical water jacket. The water jacket is 
constructed from brass and has a water inlet and drain connections. A thermocouple is also fitted 
to the inner sleeve of the water jacket. 
 
Control Panel: The test module is connected to the control panel (a small console) by flexible 
cables for the voltage supplied to the heating element. The control panel includes all necessary 
electrical wiring with variable transformer, power transducer, temperature controller/indicator, 
digital displays for temperature, analogue meter for voltage, and thermocouple selector switch.  
 
IV.   Determination of the Incidental Heat Transfer (or Calibration)  
 
Before using the unit to measure a thermal conductivity of a fluid (liquid or gas), the unit must be 
calibrated. This is because not all power input is transferred by conduction through the test fluid, 
some energy (incidental heat transfer) will be lost to the surroundings and some will be radiated 
across the annulus. In this calibration process, the students will generate a curve that characterizes 
this incidental heat loss. The incidental heat transfers in the unit are determined by using air (whose 
thermal conductivity is well known and documented) in the radial space. 
 
Procedure:  The following is a brief summary of the procedure to carry out the calibration of the unit 
(Refer to Fig. 2) 
 

1. Set up the equipment and make the necessary connections.  
2. Pass water through the jacket at about 3 liters per min. 
3. Connect the small flexible tubes to the charging and vent unions. 
4. Close off the tubing with a pure air sample trapped in the device. 
5. Switch on the electrical supply. 
6. Adjust the variable transformer to give about 10V. 
7. At intervals check the temperature of the plug, T1, and jacket, T2, and when they are 

stable, record their values and also the voltage. 
8. Repeat steps 6 and 7 for 20V, 30V, 40V, 50V, and 60V. 
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Figure 2: Schematic of experimental apparatus 
 
 
    Calculations: 
 

1. Find the thermal conductivity of the air, kair , at the average temperature, Tave = 
(T1 + T2)/2. Temperature dependent thermal conductivity values for air are found 
in any heat transfer textbook such as Incropera and DeWitt [4] and Özisik [5].    

2. Calculate the rate of heat conducted through the air lamina, , from Fourier’s 
Law, i.e., 

cQ

r
TkAQc ∆

∆
=                         (1)  

   
where the area is A  = 0.0133 m2, the radial clearance is r∆ = 0.34 mm, and the 
temperature difference is 21 TTT −=∆ . 

 
3. Calculate the rate of electrical heat input, , from eQ
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R

VQe

2

= ,                        (2)  

 
where V  is the voltage and R  is the resistance of element,  R = 54.8 . Ω

 
4. Find the incidental heat transfer, , (loss, radiation, etc.). The incidental heat 

transfer is the difference between the electrical heat input and the heat conducted 
through the fluid in the radial clearance, i.e.,  

iQ

 
   cei QQQ −= .                        (3)     
   
Results: 
 
From the measured data and the results obtained above, a calibration curve of the incidental heat 
transfer, , against the average temperature, TiQ ave, can be generated. Figure 3 presents the 
calibration curve of the unit that was obtained by one of the laboratory student groups.  As can be 
seen from the figure, the incidental heat transfer increases linearly as the average temperature 
increases. 
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Figure 3: Calibration curve 
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V.   Determination of the Thermal Conductivity of a Liquid or Gas 
 
Once the calibration curve is obtained and the unit is cleaned and reassembled, the students can 
then introduce the fluid (liquid or gas) to be tested into the radial clearance. It should be noted 
that it is important to ensure that no bubbles exist if the test fluid is liquid.  Water is then passed 
through the jacket and the variable transformer is adjusted to the desired voltage. The voltage 
value is chosen to give a reasonable temperature difference and heat transfer rate. When stable, 
the plug and jacket temperatures and the voltage are recorded. 
 
The incidental heat transfer rate, , is then found from Fig. 3 at the average temperature , TiQ ave. 
Once the rate of the incidental heat transfer is determined, the rate of heat conducted through the 
test fluid (liquid or gas) is then found from Equation (3) as iec QQQ −= , and the thermal 
conductivity of the test fluid (liquid/gas) can be calculated from Equation (1), i.e. 

.  It is recommended that this procedure is repeated at another voltage value to 
ensure the consistency of the measurements. 

( TArQk c ∆∆= / )

 
In addition, an uncertainty analysis of the measured thermal conductivity of the test fluid is 
performed. The calibration process can be used to estimate the uncertainty in the heat conduction 
across the sample.  The conduction across the sample is found from Fourier’s Law which, for 
this situation, is given in Eq. 1 as 
 

( )
r
TTkA

r
TkAQc ∆

−
=

∆
∆

= 21 .                          (4) 

 
Application of the standard uncertainty procedure as described in Ref. [6] to Eq. (4) yields 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

∆
+⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∆

22222

2
T
U

A
U

r
U

k
U

Q
U

TArk

c

Qc  ,                      (5) 

 
where U represents the uncertainty in the quantity indicated with the subscript and uncertainty in 
the temperature measurements are assumed equal, i.e., TTT UUU ≈≈

21
.  The radial clearance and 

the area are provided by the manufacturer and assumed to be very accurate so that 0≈≈∆ Ar UU . 
The thermal conductivity of the air at a given temperature is assumed to be known within 2.5%, 
and the uncertainties in the temperature measurements are assumed to be less than 1oC.  Thus, 
the uncertainty in the heat conduction across the sample is estimated to be less than 4%.   
 
The uncertainty in the thermal conductivity can be found with a similar procedure.  First, Eq. (4) 
is rearranged to solve for the thermal conductivity, i.e. 
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( )21 TTA
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and the procedure outlined in Ref. [6] yields 
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As previously, the radial dimension and the area are assumed to be very accurate so that 

, and the uncertainty in the temperature measurements are assumed to be equal, 
, so that Eq. (7) can be simplified to  

0≈≈∆ Ar UU

TTT UUU ≈≈
21
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The uncertainty heat conduction across the sample was estimated be 4% and uncertainty in the 
temperature measurement was conservatively estimated to be 1oC, so that the relative uncertainty 
in the thermal conductivity is less than 5% for typical experimental conditions.    
 
The uncertainty in the measured results are estimated (at the 95% confidence level) according to 
the procedure outlined by Moffat [6].   
 
VI.   Conclusion 
 
A heat transfer laboratory experiment in which undergraduate mechanical engineering students 
measure the thermal conductivity of a liquid or a gas is presented. In this experiment, students 
perform the calibration of the experimental apparatus and then employ the apparatus to 
determine the thermal conductivity of a liquid or a gas. This kind of experience serves to 
enhance the understanding of the transfer of thermal energy by undergraduate mechanical 
engineering students, while also exposing them to several important concepts involved in heat 
transfer.    
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