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Introduction 
 

A common instructional model for freshman engineering is the lecture/laboratory model. 
In this model, students usually spend two to four hours per week in a large lecture section 
typically of one hundred or more students, and three to six hours per week in small 
laboratory (or recitation) sections typically of twenty or fewer students.  

 
Although not universal, the most common implementation of this instructional model is 

that lecture introduces material of a given “unit” while laboratory (or recitation) sections are 
used to provide hands on, detailed experience with applying knowledge introduced in 
assigned readings and lecture. The paradigm on which this implementation is rooted would 
be along the lines that students need a framework for understanding before they can apply 
material of a given unit, and that such a framework is best developed by students reading 
assigned material then hearing a professor go over the same material to emphasize important 
points.  

 
There is a critical flaw in the standard lecture-before-lab implementation: it depends on 

students reading assigned material before lecture. If not, then lecture is unintelligible to 
students who have not read the assigned readings supposing the instructor hits the “high” or 
“hard” points of a unit, or lecture becomes a replacement for assigned readings supposing the 
instructor simply “plows through” material from the assigned readings. Neither of these two 
results is desirable, and neither places the freshman learner in a position to actively engage in 
her own learning. 

 
An alternative implementation of the “large lecture/lab” instructional model would 

reverse the order of lecture and lab (or recitation). Students would be expected to read 
material, attend laboratory sections emphasizing hands on work, then at the end of the 
“cycle” students would attend lecture. The lecture in this implementation would play the role 
of “wrap up” for the unit students have completed - including making generalizations from 
the specifics students have learned, and demonstrating any common mistakes students make 
when applying the material of the unit. In this implementation, students are more or less 
obligated to read assigned material before their first unit meetings (labs/recitations) because 
in lab they must “perform” using what they have learned from the assigned readings.  
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The bottom line would be that it’s easy for a student to “hide” in lecture, but not in small 
lab sections. The pedagogically larger picture is that “lecture as wrap up” should require 
students to take more responsibility for their own learning, and in the end be more actively 
engaged in their learning than the more common “lecture as introduction” path.  

 
In fall semester, 2004, we undertook an experiment to objectively compare the “lecture as 

wrap up” implementation to the more standard “lecture as introduction” implementation. 
Although not included in our initial focus, in the course of analysis of our data we found it 
necessary to consider the possible effects of multiple underlying populations on our data 
samples. 

 
In this report, we describe this experiment, the results of the experiment, an analysis of 

our results, and the implications of our results. 
 
 
Background and major hypothesis 
 

One of the current bedrocks of pedagogy is active learning and its importance in 
transforming the educational enterprise from a view of the student as a vessel into which the 
professor pours “knowledge” to one in which the learner is actively engaged in her own 
construction of knowledge. [1] One example of the introduction of principles of active 
learning into engineering studies can be found in [2]. The goal of establishing active learning 
has become wide spread in computer science and engineering to the extent of enabling 
students to set the term grade they desire, then work towards that goal. [3]. 

 
Pursuit of active learning is one of the backdrops for research reported here. As noted 

above, we believe that requiring students to do assigned reading before any class dependent 
on the assigned reading has the effect of actively engaging students in their learning process, 
certainly more so than the standard lecture situation in which lecture material closely mirrors 
assigned reading. 

 
Specifically, our experimental hypothesis is that students who participate in lecture as 

wrap up will perform better than those who participate in lecture as introduction. Any past 
studies on this specific issue were extremely difficult to find, and in fact, we found no 
relevant literature. 
 
 
Description of the experiment 
 

Computer Science and Engineering (CSE) 131 is a high enrollment (approximately 250-
300 students per term), multi-section (approximately 24 sections), freshman engineering 
course in technical problem solving with MATLAB. It is offered fall and spring semesters 
with an additional offering in summer term with a substantially lower enrollment. CSE 131 is 
a required gateway course for most majors in the College of Engineering, Michigan State 
University. The standard “Calculus 1” is a pre-requisite/co-requisite for CSE 131. P
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Because of a scheduling “glitch,” in fall semester, 2004, CSE 131 was offered in two 
lecture sections at opposite ends of the week. One lecture section met on Monday nights at 
7:00 p.m., with associated labs running on Tuesdays, Wednesdays, Thursdays, and Fridays. 
A second lecture section met on Friday mornings at 10:20 a.m., with associated labs running 
on Tuesdays, Wednesdays, Thursdays, and Fridays. Lecture section enrollments were 
approximately the same, with 122 students enrolled in the Monday lecture section at the end 
of the semester and 109 students enrolled in the Friday lecture section at the end of the 
semester. Laboratory sections entailed enrollments of a maximum of 16 students, and were 
not mixed – that is laboratory sections included students either totally in the Monday lecture 
section, or totally in the Friday lecture section. 

 
Each student in CSE 131 meets for one lecture session per week lasting one hour and 

twenty minutes, and meets twice per week in laboratory sessions twice per week with each 
lab meeting lasting one hour and twenty minutes. Thus the Monday lecture session students 
met in lecture before participating in any lab assignments, while Friday lecture session 
students met in lecture after participating in lab assignments for the week. Both lecture 
sections had identical reading assignments, and both sections had identical laboratory 
exercises, laboratory quizzes, midterms, term project and final examination. 

 
An exception for the Friday lecture section was that several associated lab sessions met 

after the Friday lecture for the second of the two lab meetings each week. This exception 
covered 24 students of the total 109 students in the Friday lecture section. 

 
Because of the scheduling situation in fall 2004, it was decided to operate CSE 131 such 

that the two lecture sections would receive different treatments: 
 
• lecture material for the Monday lecture section consisted of the typical introduction 

of a unit. Lectures largely paralleled assigned readings for the unit. MATLAB 
problems were worked that were drawn from examples in the assigned readings. 

• lecture material for the Friday lecture section consisted of wrap–up for a unit. 
Lectures focused largely on two areas: (a) demonstrating MATLAB points that 
beginning students are likely to misunderstand and (b) working MATLAB problems 
drawn from the exercise sets that students were assigned for lab sessions. 

 
The two different lecture treatments presented an opportunity for retrospective, 

experimental comparison of student performance under “lecture as introduction” versus 
“lecture as wrap-up.” The single metric selected for student performance was the total of 
“course points” earned by a student over the entire term (of a possible 100) plus the number 
of “extra credit points” earned (of a possible 4). This metric, of course, was also the basis for 
student term grades. 
 
 
Initial characterization of datasets 
 

For simplicity of presentation, we will refer to the dataset of term scores for the students 
in the lecture before laboratory treatment as the "lecture-before" dataset, and the dataset of 
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term scores for the students in the lecture after 
laboratory treatment as the "lecture-after" 
dataset.  

 
Both lecture-before and lecture-after 

datasets are not statistically drawn from normal 
populations as revealed by application of the 
Jarque-Bera test. The Jarque-Bera test is a 
quantitative test of the difference between the 
observed skewness and kurtosis of a dataset and 
that which would be expected if the dataset 
were drawn from an underlying population that 
was normally distributed.  

 
The Jarque-Bera test applied to the lecture-

before dataset yields the result that the dataset is not normally distributed at the 5% 
confidence level (p= 0.00000507). The Jarque-Bera test applied to the lecture-after 
dataset yields the result that the dataset is not normally distributed at the 5% confidence level 
(p= 0.000349).1   

 
Results of applying a two-sample Kolmogorov-Smirnov test on the lecture-before and the 

lecture-after datasets results in rejecting the hypothesis that the two datasets are drawn from 
different underlying populations at the 5% confidence level (p= 0.50384).  

 
Histograms for both lecture-before and lecture-after datasets are shown in Figure 1; 

Figure 2 shows the experimental cumulative frequency for the two datasets; and finally, 
Figure 3 shows a smoothed probability distribution for the two datasets. The charts in Figure 
3 were obtained with the MATLAB tool ksdensity, which utilizes a normal kernel function 
for creating the estimate. Thus the charts of Figure 3 should be used only as an exploratory 
tool given the earlier results that the lecture-before and lecture-after datasets were not drawn 
from an underlying normal population. 
                                                 
1 All statistical tests reported were carried out using tools in the MATLAB Statistics Toolbox. 

Figure 1: Histograms raw data Figure 2: Cumulative frequency distributions 

Figure 3: Smooth probability distributions 
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As noted above, the Kolmogorov-Smirnov two-sample test indicates that the lecture-
before and lecture-after datasets were not drawn from statistically significantly different 
populations. However, there remain several points of interest in comparing the charts of 
Figures 1-3.  

 
First, in Figure 2, there is a hint that the two distributions systematically differ. Note that 

for scores higher than a “cross over” point at a score of approximately 65, students in the 
lecture-after situation perform somewhat better compared to students in the lecture-before 
situation. 65 is the nominal (pre-curve) level for passing the course. Second, also in Figure 2, 
note that between scores of approximately 40-60, the lecture-before students seem to 
systematically outperform the lecture-after students.  

 
Thus the conclusion about Figure 2 is that there appear to be systematic differences 

between the lecture-before and lecture-after datasets that are dependent on the range of 
scores on which attention is focused. This in turn implies the possibility that the datasets 
lecture-before and lecture-after may each be drawn from more than one underlying 
population. 

 
Third, focusing on the histogram in Figure 1 of the lecture-after dataset, note the 

secondary peak in scores in the 40-50 range. This visual observation would again be 
consistent with the possibility that the datasets may be drawn from multiple underlying 
populations. 

 
Characterization of the complete datasets lecture-before and lecture-after yields no 

definitive conclusions.  Application of two-sample Kolmogorov-Smirnov test indicates that 
there are no statistically valid differences between the samples for the lecture-before and the 
lecture-after datasets. The difference in the peaks for the smoothed probability functions for 
the two entire datasets as shown in Figure 3 (74 for lecture-before and 71 for lecture-after) 
must be treated as an artifact both because (a) the result from the Kolmogorov-Smirnov test 
indicates no statistically valid difference in the underlying populations of lecture-before and 
lecture-after and (b) because the smoothed probability densities shown in Figure 3 were 
generated with a normal kernel procedure while the Jarque-Bera tests for normalcy indicated 
that neither dataset could be characterized as drawn from a normal population. 

 
However, as noted above, visual inspection of Figure 1 and Figure 2 indicates the 

possibility that the single dataset lecture-before and the single dataset lecture-after may each 
be drawn from multiple underlying populations. This is not a surprising suggestion for most 
instructors of large lecture session, freshman courses. From many anecdotal conversations, it 
is a common perception among instructors for freshman engineering courses that the total 
population of incoming students is drawn from multiple populations. 

 
In the next section, we will describe our partitioning of the two complete datasets, 

lecture-before and lecture-after, into partitions, justification of the partitioning of the 
univariate datasets, and our characterization of the sub-datasets resulting from the partitions. 
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Partitioning the datasets; Characterization of partitioned data 
 

To further analyze the lecture-before and lecture-after datasets, the k-means [4] non-
hierarchical clustering algorithm was applied to both datasets. The k-means iterative 
procedure takes as inputs (a) a dataset, (b) a user-specified number of clusters, k, and (c) a 
metric for determining point-to-point distances between points in the dataset. The output 
from k-means is k groupings of the points in the dataset so as to minimize the cumulative 
measure of inter-point, within cluster distances.  

 
K-means is often applied to multivariate datasets by clustering on one (or more) of the 

variables, and examining the result on the other variables. In our application, we have 
univariate datasets. K-means is still applicable provided care is exercised to ensure that the 
clustering is qualitatively justified by some external reason to suspect that the sample 
comprising the dataset is drawn from multiple populations and that the results of clustering 
produce well defined and distinct clusters.[5]  

 
There are two reasons to suspect multiple underlying populations for the lecture-before 

and lecture-after datasets. First, as noted earlier, a common anecdotal perception among 
instructors in high enrollment freshman engineering courses is that class makeup consists of 
students drawn from multiple populations. Second, results from the section above included 
seemingly systematic effects in given score ranges of the experimental data.  

 
The cluster tightness resulting from k-means clustering can be qualitatively obtained by 

examination of a silhouette plot for the clusters obtained. The silhouette value for each point 
in a cluster (found by application of k-means) is a measure of how close that point is to 
points in its own cluster compared to points in other clusters, and ranges between -1 and +1. 
The complete silhouette chart is a plot of all silhouette value for all clusters. A rule of thumb 
applied to evaluation of silhouette plots is the more points with a silhouette value of 0.8 or 
higher, the better the “cluster fit” to the data.  

 
We analyzed the two datasets by clustering each into (a) two partitions and (b) three 

partitions. The distance metric used in the 
k-means clustering and in generating 
silhouette plots was the squared Euclidean 
distance, thus emphasizing the importance 
of the cluster “tightness.” The silhouette 
plots for all four application of k-means is 
shown in Figure 4.  

 
Examination of the four silhouette 

plots in Figure 4 shows that either two or 
three cluster solutions produce groupings 
of scores that are relatively tightly 
organized, thus amounting to a “good 
clustering result.” The one exception is the 
silhouette for the #2 cluster in the three  

Figure 4: Silhouettes for 2 and 3 cluster solutions P
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cluster partitioning for the lecture-after dataset (lower right quadrant in Figure 4). This #2 
cluster is the “low performing cluster” and would be judged of marginal tightness.  

 
 Table 1 and Table 2 contain 

characterizations and the results 
of statistical tests applied to the 
clustered datasets resulting from 
k-means clustering. Table 1 
shows results of three-cluster 
grouping; Table 2 shows results 
of two-cluster grouping. The first 
row in each table identifies a 
subgroup; the second row in each 
table identifies the dataset from 
which cluster scores were drawn. 
The remaining rows contain 
characterizations of resulting 
clustered dataset: 

• number is the number of scores in each clustered group, 
• range is the minimum and maximum values of scores in the clustered group, 
• centroid is the cluster centroid of the clustered groups (from k-means), 
• median is the median value of each clustered group, 
• result JB test is the result of applying the Jarque-Bera test for normal distribution 

at the 5% confidence level to each clustered group,  
• result KS2 test is the result of applying Kolmogorov-Smirnov two sample test for 

distribution differences at the 5% confidence level to paired clusters so that the 
result is a comparison between the lecture-before treatment and the lecture-after 
treatment, and 

• result ranksum is the result of applying the ranksum test for differences between 
medians of two sample datasets at the 5% confidence level to paired clusters so 

Table 1: Three cluster partitioning results 
 low performing cluster mid performing cluster high performing cluster 
 before after before after before after 

number 15 23 58 46 49 40 
range [12,48] [1,54] [50,73] [55,77] [74,97] [79,99] 

centroid 35 40 64 68 84 88 
median 38 46 65 69 83 88 
result 
JB test 
(5%) 

normal 
(p=0.046) 

not normal 
(p=0.0012) 

normal 
(p=0.046) 

normal 
(p=0.046) 

normal 
(p=0.15) 

normal 
(p=0.17) 

result 
KS2 
(5%) 

distributions 
SAME 

(p=0.11) 

distributions 
DIFFERENT 

(p=0.0032) 

distributions 
DIFFERENT 

(p=0.025) 
result 

ranksum 
(5%) 

medians 
SAME 

(p=0.10) 

medians 
DIFFERENT 
(p=0.00070) 

medians 
DIFFERENT 

(p=0.0066) 

Table 2: Two cluster partitioning results 
 low performing cluster high performing cluster 
 before after before after 

number 31 32 91 77 
range [12,60] [1,62] [62,97] [63,99] 

centroid 45 46 76 80 
median 50 47 76 80 
result 
JB test 
(5%) 

normal 
(p=0.069) 

not normal 
(p=0.00035) 

normal 
(p=0.060) 

normal 
(p=0.073) 

result 
KS2 
(5%) 

distributions 
SAME 

(p=0.80) 

distributions 
SAME 

(p=0.11) 
result 

ranksum 
(5%) 

medians 
SAME 

(p=0.92) 

medians 
DIFFERENT 

(p=0.04) 
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that the result is a comparison between the lecture-before treatment and the 
lecture-after treatment. 

 
Figure 5 shows the smoothed probability distribution for the two cluster groupings; 

Figure 6 shows the smoothed probability distribution for the three cluster groupings. 
Remembering that the smoothing procedure (using the MATLAB tool ksdensity) utilizes a 
normal kernel, and using the results of the Jarque-Bera test shown in Table 1 and Table 2, the 
smoothed probability distribution for the low performing cluster in both the three cluster 
grouping and the two cluster grouping should be discounted and are included in the figures 
for completeness only. 

 

 
 
 
Summary and implication of results 
 

There are two results from our study, one from the topic we set out to explore and one 
from a path we had to traverse. The focus of research reported here was to explore the effect 
of two modes of lecture delivery in high enrollment, gateway courses in freshman 
engineering: lecture as introduction versus lecture as wrap up. 

 
Our focus was not on examining the hypothesis that high enrollment, freshman 

engineering classes are populated from multiple underlying populations. For the two 
univariate datasets of scores from the lecture as introduction and lecture as wrap up 
treatments, we found there was no statistically significant difference between student scores 
under the two differing treatments. However, as shown in Figure 2, we observed what 
appeared to be differences if attention was focused on results in ranges of scores. For 
example, scores above approximately 65 seemed to be better for the lecture as wrap up 
treatment. Because 65 is nominally the threshold for a passing grade in the course, we were 
lead to consider the possibility of multiple underlying populations of students.  

 

Figure 5: 2 cluster smoothed probability 
distributions 

Figure 6: 3 cluster smoothed probability 
distributions 
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We were thus lead to considering partitioning the data in each dataset into two and three 
cluster groups, and then analyzing the resultant subset groups, and in particular testing for 
differences between like groups in the lecture as introduction and lecture as wrap up 
datasets. Further support to justify the clustering of our univariate datasets was from the 
common external perception by instructors in large, freshman courses that class populations 
are typically drawn from multiple underlying populations of students. 

 
The clustering was accomplished using the k-means clustering algorithm. Mild support 

for the internal consistency of the clustering was obtained by examination of the silhouette 
plots of the resultant clusters indicating that the clusters formed were relatively tight and 
distinct from each other. 

 
Analysis of the sub-datasets formed by clustering indicate that no valid statistical 

conclusions can be drawn from the two cluster partitioning of the original datasets, as shown 
in Table 2. However, for the three cluster partitioning, as indicated in Table 3, scores from 
the mid-performing clusters and the high performing clusters were statistically significantly 
different. Moreover, in both cases the lecture as wrap up treatment produced median cluster 
scores that were statistically higher than the lecture as introduction treatment. Given the 
statistical validity of this result, the smoothed probability distributions shown in Figure 6 
should be taken as more than artifice for the mid-performing group and the high-performing 
group.  

 
The first implication from our work confirms the importance of active learning. Students 

in typical high enrollment, freshman engineering classes are presented with lectures that 
largely mirror reading assignments. Following the “standard model” of large lecture classes, 
students are assigned readings, come to lecture to get a second dose of the same material, 
then proceed to lab/recitation. Unfortunately, many students simply do not engage in this 
process until the time has come to “perform” – that is, many students do not read assigned 
material prior to lecture, but only just before they are asked to perform in lab/recitation 
meetings. In fact, many students simply skip the step of doing assigned readings altogether. 

 
An “end run” on this problem of lack of student engagement in their own learning is both 

possible and effective as suggested by our results. Following our lecture as wrap up model, 
students go to lab/recitation before they attend lecture. Because they are asked to “perform” 
in lab/recitation, students are fully aware that they must do required readings because they 
will be graded on performance during the lab/recitation meeting. The lecture meeting then 
plays the role of clearing up misconceptions and further applying the material of the course 
unit via demonstration of problem solutions.  

 
The second implication of our work is more of a question than a result: What are the 

factors that partition our entry level freshman students? Candidate factors include (a) student 
background in science and mathematics classes in high school, (b) student ability, (c) student 
motivation, especially because these are students making the transition from high school to 
university classes, (d) individual student learning styles, …  
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Our results are preliminary. We have built a case that lecture as wrap up is effective in 
our target course that is based on a “model-consistency argument.” In our model, starting 
from common freshman instructor intuitions and hints from our initial analysis, we assume 
the existence of multiple underlying populations of students. From that assumption, we 
moved on to explore the consequences of the assumption by partitioning the data (using k-
means), then to comparing like partitions between lecture as wrap up and lecture as 
introduction. This is not a definitive style of statistical argument, but rather best 
characterized as exploratory. 

 
In our next steps, we intend to obtain post hoc student GPA data and use it to perform 

grouping of the students, then compare results of those grouping between lecture as wrap up 
and lecture as introduction. For freshman, GPA data is either not available at all, or is based 
on just one term of class work. As reported in [6], ACT results correlate to a freshman level, 
high enrollment computer literacy course at only about the 0.5 level. Hence university GPA 
and ACT scores were ruled out as external measures that could be used to partition our data, 
and we performed the analysis reported above based on internal partitioning.  However, by 
Fall 2005, there will be reliable GPA data for the students whose work was analyzed in this 
study. We intend to obtain that GPA information and reanalyze our data accordingly.  

 
In addition to utilizing an external factor to partition our students, in the future we look 

forward to performing another experiment in which we also intend to systematically measure 
student attitudes towards the lecture as wrap up delivery method. Anecdotally, and only as 
anecdote, we note that students seemed to participate in the lecture as wrap up grudgingly, 
and with some antagonism that tended to trail off late in the term. This initial antagonism 
may, if actually present, be a result of effectively forcing students to engage more fully as 
opposed to getting most (or all) of their surface understanding passively from lecture and 
with no reliance on assigned readings. In succeeding years, we intend to systematically 
investigate this issue of attitude. 
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