
Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

Writing Card Games: An Early Excursion

into Software Engineering Principles

John K. Estell

Electrical & Computer Engineering and Computer Science Department

Ohio Northern University

1. Introduction

Card game programs are both visual and event-driven; playing cards serve as a well-recognized

graphical element and the play of the game progresses through the handling of discrete user-

generated events. As assignments, games are often challenging to write, but provide both a

definite goal to strive for and a greater sense of accomplishment as the completed program

actually does something. Along with the motivational value of such assignments, the writing of

games promotes strategic thinking. A programmer must consider how to properly utilize data

structures to represent the elements of the game and how to establish the necessary heuristics for

evaluating the status of the game.

In the past, each card game program had to be essentially written from scratch, but what really

changes from implementation of one game to the next? How does the concept of a card or a

deck differ? There is a great deal of functionality that stays the same, regardless of the card

game being implemented. This card game assignment is used in our third introductory

programming course, where after two quarters of C++ in a text-based context, students are

introduced to graphical user interfaces (GUI), event handling, and code libraries (including the

Collections Framework) using Java. This assignment takes an object-oriented programming

approach to the problem to determine the constituent parts of a card game, from which contracts

are developed that students are asked to implement. By taking this approach, the writing of the

code can be compartmentalized into classes that are easy to write and can be readily reused,

leaving only a small amount of code that has to be explicitly written for a particular card game

application. Additionally, multiple test programs are written during the development of the

contracted classes, allowing for reliability verification as well as providing first-hand experience

with class reusability. With this approach, students receive an early exposure to the essence of

software engineering principles: working out the specification, design, and testing of a construct

of interlocking concepts involving data sets, relationships among data items, algorithms, and

invocations of functions
1
. This exposure can then serve as a foundation upon which these

concepts can be expanded and refined throughout the remainder of the curriculum.

P
age 10.1478.1

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

2. Design by contract and the importance of documentation

One of the major concepts to be conveyed to students is that program development is usually not

performed in isolation. Due to their size and complexity, modern applications require teams of

developers; accordingly, classes have to be written such that they can be understood by various

constituencies: those who write the class, those who use the class, those who extend the class,

and those who maintain the class. Additionally, students need to be aware that, upon entry into

their first job, their place will be on the lowest rung on the career ladder, and in that position they

will often be asked to implement, not design, functionality for a portion of an application. It is

within this context that the topics of Design by Contract and documentation are introduced.

The concept of Design by Contract (DBC) was developed by Bertrand Meyer as part of the Eiffel

programming language
2
; however, the principles can be applied to other languages such as Java.

The basic premise involves improving the reliability of software systems through the

establishment of contracts that define the benefits and obligations between parties; specifically,

between those who write classes and those who use those classes. The contract protects both

parties by stating how much should be done by the contractor on behalf of the client and by

stating the limited scope for which the contractor is liable. In practice, this is done through the

specification of preconditions and postconditions for every method made publicly available

through a class. The set of preconditions constitute the requirements placed upon the client by

the class for using the method; these are usually requirements stating restrictions on the

arguments being passed to the method. The class implementing the method is only held

responsible for working correctly if the caller adheres to the stated preconditions. The set of

postconditions constitute promises made by the class to the client; these are usually a

specification of the effects that the method will have on program data or program state. The goal

of DBC is to construct a specification for a class that is simple, clear, and accurate which allows

a client to easily understand and utilize the features of a class without having to worry about its

implementation.

Java provides a mechanism for incorporating DBC information from source code through the use

of Javadoc
3
, a utility program distributed with the Java SDK that builds API documentation in

the form of HTML files from specially embedded comments contained within the source code of

the classes that constitute the project. Javadoc has been used to generate the vast majority of API

documentation; in many cases, it constitutes the only documentation for a class. As it is part of

the source code, responsibility for proper documentation rests with the programmer
4
;

accordingly, it is incumbent upon the instructor to discuss the need for proper documentation, as

bad documentation is just as severe an affront to software engineering principles as bad code is

as it inhibits, and frequently prevents, code reusability. The use of documentation needs to be

more than just the bare essentials that state the purpose of a method. At a minimum, beginning

programmers should specify the preconditions and postconditions for each method, and provide

a description of the purpose and behavior of each class and its use of or by other classes. Ideally,

this documentation exercise is performed early in the coding process so as to serve as a blueprint

for code development instead of the “stating the obvious” afterthought comment commonly

inserted into code at the end of the development process. The use of the Javadoc @param tag

allows for the easy declaration of most of the preconditions, in terms of declaring the purpose of

each parameter and, if necessary, any constraints upon that parameter. Correspondingly, the

P
age 10.1478.2

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

Javadoc @return tag provides a mechanism to describe the meaning of the returned value, the

potential range of values and how special circumstances that may occur are reflected in the

returned value. Given that the card game assignment described here is targeted toward first-year

students, attempting to have them incorporate comprehensive documentation could prove to be

counterproductive; in short, it is not a fun exercise. Therefore, for the purposes of this

assignment, the instructor develops stub code for the fundamental classes (Rank, Suit, Card,

Deck, and Hand) that incorporate Javadoc-formatted comments; the Javadoc program is used to

generate the contracts to be provided to the students. The documentation contained therein is

kept minimal so as to provide classroom discussion fodder and for encouraging students to

enhance the specifications of the method behaviors. The next four sections
5
 provide an overview

of the contracted classes.

3. The Rank and Suit classes

There are two properties that describe a playing card. The suit of a card refers to one of four

possible sets of playing cards in a deck: clubs, diamonds, hearts, and spades. The rank of a card

refers to the name of a card within a suit: ace, two, three, four, five, six, seven, eight, nine, ten,

jack, queen, and king. Traditionally, the rank is used to specify the ordering of cards within a

suit, e.g. the two comes before the three, and the jack comes before the queen. The combination

of suit and rank describes each card found in a standard deck of playing cards. To express the

rank and suit values, students are instructed through the contract specifications for both the Rank

and Suit classes to implement the values (such as ACE, FIVE, and JACK) as publicly accessible

symbolic constants defined through the instantiation of the appropriate private constructor. This

methodology allows the necessary values to be readily available without the headache of

erroneous values potentially being instantiated by the client; it also gets away from the use of

explicit “magic numbers” to represent conceptual values such as a club or a jack.

As cards must be evaluated in order to determine a winning hand, and are often sorted for the

purpose of displaying a hand, the Comparable interface is implemented for both classes. The

compareTo() method utilizes an unmodifiable public list of values of the symbolic constants

for each class, constructed in ascending order of value,. The comparison is performed by

calculating the difference between the list indices of the two values being compared and

returning that result. The Rank class presents a special case in that it is commonplace for card

games to specify that either the rank of king or ace constitutes the highest rank within a suit.

Accordingly, the static methods setAceHigh() and setKingHigh() in the Rank class allow

comparisons to be performed with whatever rank is appropriate for the implemented game being

set by the client as the highest ranking card. The implementation of the public list of values for

each class also allows for iteration over both lists when one instantiates a set of cards to be

placed into a deck.

P
age 10.1478.3

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

4. The Card class

For uniquely describing a card, it is sufficient to use the rank and suit properties. However, in

order to work in a visually-oriented environment, a third property is required: the image

containing the graphical representation of the card. One of the problems with GUI

implementations of card games is finding card images that are not encumbered by copyrights;

fortunately, there is a set of card images available through the GNU General Public License
6
.

The presentation of this resource to students allows for a discussion of both computer ethics

issues and an introduction to the Free Software Foundation and the ongoing discussion between

free and proprietary software.

The format of the filenames for these images is such that the process of reading in the images can

be automated. All of the images are stored in individual files using filenames in the form of:

RS.gif

where R is a single character used to represent the rank of the card and S is a single character

used to represent the suit of the card. The characters used for R are: 'a' (ace), '2', '3', '4',

'5', '6', '7', '8', '9', 't' (for 10), 'j' (jack), 'q' (queen), and 'k' (king). The

characters used for S are: 'c' (clubs), 'd' (diamonds), 'h' (hearts), and 's' (spades). Two

additional cards are also available: b.gif (back of card) and j.gif (joker). To assist with the

generation of filenames, the symbolic constant objects defined in the Rank and Suit classes

store the characters associated with each rank and suit value. The static getFilename()

method refers to these values and bases its generation of the filenames according to the rules

specified above. The instantiation of a Card object is thereby based on not only the rank and

suit values, but also with a reference to the appropriate image file.

The Card class implements the Comparable interface for the purpose of sorting a hand of

cards; its compareTo() method, in turn, relies on the implementation of the Comparable

interface in the Rank and Suit classes. As it is preferable in some games to sort the cards in

rank-major order whereas in other games suit-major order is preferred, the Card class has two

static methods, setRankMajorSort() and setSuitMajorSort(), that allows the client to

specify the appropriate ordering method for the card game being implemented.

5. The Hand class

The Hand class represents the basic functionality of a hand of cards. Those operations that are

normally conducted upon a hand, such as adding or removing cards, are supported; however, the

evaluation of the cards contained in the hand is defined as an abstract method. This allows code

common to the implementation of a hand in various games to be written once and reused as

needed. The code specifically required for the evaluation of a hand in a particular game is

developed within a class extended from Hand by providing a definition of the

evaluateHand() method; this method can then be accessed either directly or via a superclass

reference when comparing or evaluating hands.

P
age 10.1478.4

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

6. The Deck class

The Deck class serves as a container for Card objects, and possesses the functionality of a

typical deck of cards. When instantiated, a Deck object is deliberately left empty; the client is

required to populate the deck with cards via iteration on the sets of rank and suit values. This is

done because the nature of what constitutes a deck of cards differs between games; for example,

a “standard” deck contains 52 cards, with each card present only once, whereas a pinochle deck

contains 48 cards consisting of an ace, king, queen, jack, 10, and 9 in each of the four suits, with

two of each card being present. The population of a Deck object is performed by iterating over

the range of rank and suit values appropriate to the game being implemented, instantiating the

card, then adding the card to the deck. For each card, the relative pathname of the image

associated with those values must be generated; this is usually a combination of the name of the

directory storing the card images and the filename of the specified image. Once the deck has

been populated with cards, it is normally shuffled, then used to “deal” cards. It is important to

emphasize to students throughout the curriculum that the performance of actions should not

necessarily be implemented literally; dealing from a deck of cards provides an excellent

example. To deal cards from a deck, the literal approach would remove one card from the deck,

and add that card to a player’s hand. However, this approach adds needless complexity to the

implementation of the game, as the transition from the play of one hand to the next would require

the collection of all cards from discard piles and player’s hands. Instead, a instructor can show

that, by treating the set of cards in the deck as immutable after initialization and allowing the

ordering of these cards to be mutable through invocation of a shuffle() method, the drawing

of cards from a deck can be easily implemented by using an integer index referring to the “top of

deck” location in the list to pass back a Card reference for the player’s hand. At the end of each

hand, all “dealt” references to the cards are simply discarded, and the deck is restored through

invocation of the restoreDeck() method, which simply resets the integer index to its initial

value.

7. Testing the classes

The need to test the correctness of one’s code cannot be overstressed; fortunately, this

assignment provides opportunities to systematically check the implementation of the various

classes. Before the actual card game is written, students are instructed to write three programs

that test various features of the contracted classes. Students are provided with written

specifications for each of these programs, and detailed images of the user interface are included

with the program specifications to provide the appropriate look and feel of each test application.

In addition, the web site for the assignment contains fully-implemented executables of all three

test programs for the students to play with; while this is not a normal situation that one

encounters in the development of software engineering products, the ability to interact does

provide a bridge of understanding for the first-year student in need of reassurance. The design of

the test programs is such that students are exposed to an iterative development process, where

one builds upon the successes of the previous test programs, all of which serves as a stable

foundation for the development of the actual card game program. This methodology acts as a

quality assurance program that focuses on discovering implementation bugs early on in the

process through the use of test programs employing simple constructs that permits students to

P
age 10.1478.5

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

focus on the contracted classes as the source of any observed defects. The result of this approach

allows students to have confidence in the performance of the contracted classes when writing the

actual card game, so when an error occurs, the focus of the debugging efforts can be localized to

just the GUI, event handlers, and hand evaluation algorithms developed for the game. The

concept of finding defective code early should be mentioned to the students as part of the overall

discussion for the assignment, ideally in such a way so as to contrast the relative levels of

difficulty between finding an error where the scope is limited to a small amount of untested code

and finding the same error where the scope encompasses the entire program.

The first test program, CardDeckDemo, is used to exercise the implementation of the Card and

Deck classes. The program uses a simple interface, shown in Figure 1. A JLabel displays both

the image and the name of the card just drawn from a deck; by displaying the rank and suit

information of the card, it is easy to verify that the correct image has been associated with the

card object. Two JButtons are used to handle user interactions: one for drawing a card from the

deck, and the other to both restore and shuffle the deck. A second JLabel is used to indicate the

number of cards remaining in the deck; when the deck is empty, the “Draw a card” button is

disabled until the “New & shuffled deck” button is pressed. This program allows the student to

verify that all of the cards were instantiated correctly and that the basic deck operations of

dealing, restoring, and shuffling a deck, along with the detection of an empty deck, are properly

implemented.

Figure 1. Snapshot from CardDeckDemo program.

The second test program is the “Dumb Game” card game, which is exactly that, at least when

viewed as a game. However, its real purpose is to allow the student to write a simple extension

of the Hand class to implement the evaluation algorithm and to exercise some additional

methods in the other contracted classes. The implementation of this program is relatively simple,

P
age 10.1478.6

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

as most of the code has already been written. Only two additional source code files need to be

developed: DumbGameHand, which is a subclass of Hand where one provides the definition for

the evaluateHand() method, and DumbGame, which contains the definitions of the GUI and

the event handlers for this card game.

The operation of the game is straightforward. Eight cards are drawn from a full deck of cards

and placed into the player's hand; the cards are displayed on separate JLabels with both their

graphical image and their name. Each card is worth its displayed pip value (ace = 1, two = 2,

etc.) in points, with face cards worth ten points. The value of a hand is equal to the summation

of the points of all the cards held in the hand; this value is displayed to the user. Figure 2

presents the initial display of the program’s user interface; note that in this instance the hand is

deliberately dealt from an unsorted deck to further verify the proper instantiation of the cards and

construction of the deck.

Figure 2. Initial display for DumbGame program.

When the “Draw a Hand” button is pressed, the generated event is used to restore the deck to its

original number of cards, shuffle the cards, draw a new hand, and display the unsorted result to

the user, as shown in Figure 3. Upon the drawing of a hand, the evaluateHand() method is

invoked, where an integer equal to the total number of pips is returned and displayed to the user.

The operation of this method can be verified by manually counting the pips shown on the

displayed card images.

Figure 3. A new hand is drawn.

P
age 10.1478.7

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

The player now has the exciting options of sorting the drawn cards in either rank-major or suit-

major order through use of the “Perform Rank-Major Sort” and “Perform Suit-Major Sort”

JButtons. This allows for the verification of the Comparable interfaces for the Card, Rank,

and Suit classes. The results of pressing these two buttons are shown in Figures 4 and 5.

Figure 4. The hand is displayed in rank-major order.

Figure 5. The hand is displayed in suit-major order.

The third test program demonstrates the power of the object-oriented programming paradigm by

having the students write Beginner's Blackjack, which is a simplified version of the classic card

game. In this version of Blackjack, only two cards are dealt. The scoring of the hand is

according to the rules of Blackjack: the face cards are each worth ten points, and the other cards

are worth the number of pips displayed, save for the ace. In regular Blackjack, the ace can be

worth either one or eleven points; however, in this version, the ace is always worth eleven points

as it is impossible to go over 21 with this simplified format. The two cards drawn from the deck

are displayed on JLabels and the resulting score is also shown on a JLabel. Each time the

“draw a hand” event occurs, the deck is restored and shuffled, after which two cards are drawn

from the deck and placed into the player's hand. Figure 6 illustrates the look of a typical

Beginner's Blackjack program:

P
age 10.1478.8

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

Figure 6. Snapshot of Beginner's Blackjack program.

The object of Beginner's Blackjack is to score a blackjack; when this happens, the display is

modified such that the score has an exclamation point appended to it and is displayed in a

different color. Figure 7 shows how the program displays a blackjack to the user:

Figure 7. Scoring a blackjack.

To implement this game, all that is needed is to write the evaluateHand() method for a

subclass of Hand, and the source code that implements both the graphical user interface and the

“draw a hand” event. The simplicity of this implementation drives home, through a hands-on

example, the concept of reusable code in a way that any student can relate to.

Once students demonstrate that their three test programs that exercise the methods contained in

the contracted classes have been successfully implemented, they are allowed to begin work on

the actual card game. From the test programs they have learned what code can be reused and

what has to be written specifically for the new game, and that they can be confident in the

correctness of the methods in the contracted classes that are about to be reused.

P
age 10.1478.9

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

8. Implementing the actual card game

At this point students can implement an actual (i.e. authentic) card game. There is great latitude

on the part of the instructor as to how this portion of the assignment is conducted in that students

can be instructed to implement a specific game, select from a set of “approved” games, or select

any game, subject to approval. The United States Playing Card Company maintains a card game

rules archive
7
 to which the students can be referred in order to minimize the amount of instructor

effort required to convey the rules of a particular game to students. It is not a good idea to give

carte blanche to the students with the selection process, as there will be some students who will

take advantage of the opportunity to implement games such as “War,” which in some ways is a

more simplistic game than the test programs. A reasonable heuristic to use when determining

acceptable card games for this assignment is that the development of the game should result in

the implementation of an “interesting” hand evaluation algorithm and “meaningful” interaction

with the GUI. One approach used by the author is to base the possible number of points

available on the amount of functionality, in terms of user interaction, present in the game, and to

ban outright games with overly simplistic evaluation algorithms. Programs that implement card

games where there is no interaction with the cards whatsoever are discouraged by weighting

them at the low end of the scale. Games that involve interaction at the level of indicating

whether to draw another card, such as Blackjack, are rated at the middle of the scale. Games that

involve actual selection of cards (e.g. Poker, Euchre, Hearts) in order to play the game are

weighted at the high end of the scale. Extra credit is made available for programs going beyond

“traditional” implementations. The card game rules archive contains description of variations to

traditional games that, in order to implement, result in a greater amount of complexity. A

currently popular example is Texas Hold’em Poker, where such elements as wagering and

artificial intelligence agents representing other players at the table are required. In all cases,

students are required to submit a design document prior to the development of the actual card

game that states what game is to be implemented and documents any proposed additions to the

basic functionality of the game.

9. Results and conclusions

For those readers who are interested, resources for this assignment, including source and stub

code, documentation for the classes, card images, and demonstration applets for the three test

programs are available at the Nifty Assignments web site
8
. Please note that this is not a typical

assignment where one writes essentially disposable code for the instructor. Students participate

in an iterative process where a realistic schedule is imposed for the delivery of test programs

designed to verify the correctness of contracted classes, upon which the specification for an

actual card game can be implemented based upon reusable and reliable code. Card games

provide interesting programming challenges that can be solved through the application of

software engineering principles; accordingly, this assignment captures the essence of the

software engineering process as applied to a legitimate programming problem, but is tempered so

as not to overwhelm. Through this assignment, students receive early exposure to many software

engineering principles, which is important to instructors. However, as reflected in their student

evaluation comments, one of the important factors of this assignment to students is that the final

program actually does something interesting once it is completed. While students will always

P
age 10.1478.10

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

complain to some degree about the workload required for implementing any program, they want

to have meaningful assignments, not busywork, handed out to them – and if the resultant

deliverable is fun to use, so much the better. Providing positive modes of motivation is never

easy for an instructor, so wrapping up various learning outcomes into an attractive package for

the students to open is of benefit to everyone. Variations on the card game assignment have by

used by the author in his first-year programming classes for the past several years, and it remains

one of the favorite and more memorable assignments conducted by his students.

Bibliography

1. F. Brooks, “No Silver Bullet: Essence and Accidents of Software Engineering,” IEEE Computer, vol. 20, no. 4

(April 1987), pp. 10-19.

2. B. Meyer, “Applying ‘Design by Contract’,” IEEE Computer, vol. 25, no. 10 (October 1992), pp. 40-51.

3. Javadoc Tool web site. Available online: http://java.sun.com/j2se/javadoc/

4. B. Goetz, “Java theory and practice: I have to document THAT?”, August 2002. Available online:

http://www-106.ibm.com/developerworks/java/j-jtp0821.html

5. J. Estell, “Teaching Graphical User Interfaces and Event Handling through Games,” Proceedings of the 2004

American Society for Engineering Education Annual Conference. Available online:

http://asee.org/acPapers/2004-862_Final.pdf

6. “About the Cards” web page. Available online: http://www.waste.org/~oxymoron/cards/

7. United States Playing Card Company Card Game Rules Archive. Available online:

http://www.usplayingcard.com

8. J. Estell, “The Card Game Assignment,” Nifty Assignments web site, March 2004. Available online:

http://nifty.stanford.edu/2004/EstellCardGame/index.html

Biographical Information

JOHN K. ESTELL became Chair of the Electrical & Computer Engineering and Computer Science Department at

Ohio Northern University in 2001. He received his BS (1984) degree in computer science and engineering from The

University of Toledo and received both his MS (1987) and PhD (1991) degrees in computer science from the

University of Illinois at Urbana-Champaign. His areas of interest include simplifying the program outcomes

assessment process, interface design and embedded applications. Dr. Estell is a Senior Member of IEEE, and a

member of ACM, ASEE, Tau Beta Pi, Eta Kappa Nu, and Upsilon Pi Epsilon.

P
age 10.1478.11

