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Abstract

This paper chronicles the author’s experiences in designing and implementing a capstone
computer engineering design course to incorporate state of the art technology. Often, these
design courses are forced to one of two extremes - one, using simpler technologies to facili-
tate student fabrication and testing, since modern devices in ’student friendly’ packages are
becoming less and less available, or two, using complex, state-of-the-art devices but at a
high level of abstraction to make them accessible to students. In redesigning our embedded
systems design course, we wanted to ensure that our students worked with the state of the
art (i.e. current microprocessors, standard interfaces and current technology 1/O devices,
real-time operating systems, application and device driver software development, and hard-
ware description languages), but that they still did actual hardware design and fabrication.
We wanted students to have independence in the selection of projects, but had to ensure a
uniform level of support. Finally, we had to ensure that this presented our students with a
reasonably achievable design effort, and that they would have a good opportunity for success.
This somewhat daunting set of goals was in fact achieved through a strategy that incorporated
team design, parallel establishment of specialized ’expert teams’, partnership with industry,
and the establishment of a hardware/software infrastructure that helped students succeed at
these new and unfamiliar tasks. The paper describes the faculty effort required in prepara-
tion for and during this course, the particulars of the implementation, and how the course has
evolved over several years. The methods, mechanisms, and lessons learned that are described
here may be helpful to others contemplating a similar course, or those anticipating a revision
to an existing computer engineering design course.

1 Introduction

Typically, computer engineering design courses are forced to use outdated and/or simpler technolo-
gies in order to facilitate student fabrication and testing, since modern devices in ’student friendly’
packages are not readily available. We made a radical shift in methodology when redesigning our
embedded systems design course. This was done to expose our students to a realistic design en-
vironment. In particular, we wanted to ensure that our students worked with more modern tools
and concepts while ensuring that they still did actual hardware design and fabrication. These
tools and concepts include more complex state of the art microprocessors, standard interfaces
and current technology I/O devices, real-time operating systems, application and device driver
software development, and hardware description languages. However, we also had to ensure that
this presented our students with a reasonably achievable design effort and that they would have a
good opportunity for success. This somewhat daunting set of goals was in fact achieved through a
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strategy that incorporated team design, parallel establishment of specialized expert teams, part-
nership with industry, and the establishment of an infrastructure that helped students succeed at
these new and unfamiliar tasks. Obviously, there is significant faculty effort required during the
preparation for and in teaching this course, but these efforts can be reasonably accomplished. The
methods, mechanisms, and lessons learned that are described here may be helpful to others con-
templating a similar course, or to those anticipating a revision to an existing computer engineering
capstone design course.

2 Course Structure and Overview

The over-arching goal of the course is to expose students to a realistic embedded system design
experience, while giving them an opportunity to bring their accumulated knowledge to bear on
a specific design of their choosing. The course philosophy centers on the idea that the student
should work through a challenging project, but that student success with their project is a vital
part of the overall experience. This course serves as a capstone design experience for students, so
they have generally completed most of the curriculum by the time that they enroll in this course.
The prerequisites effectively limit the course to students who are in the computer engineering
program (as opposed to the electrical engineering program).

The design projects are accomplished by self-selected teams of three students. The teams are
required to prepare a written contract detailing the members’ responsibilities (rotation of respon-
sibilities is required), weekly meeting arrangements, and how disputes will be resolved. The team
maintains a lab notebook throughout the course, and meets weekly with the course instructor
and/or teaching assistant.

The course is structured to contain both a lecture component ( three 50 minute periods per week)
and an intense laboratory/project component (one 3 hour period per week). The lecture compo-
nent initially focuses on giving the students the required background to successfully implement
a design using the course’s hardware and software platforms. The focus then shifts to a sam-
pling of more pragmatic design issues that most students have not experienced in the curriculum,
including:

e Component selection, including capacitor characteristics and usage, circuit board power
distribution, and basic power supply design.

e Interfacing to sensors, including a review of digital and analog signal conditioning techniques,
and the characteristics and use of a variety of sensors.

e Interfacing to the telephone system, including an overview of the telephone system operation
and the use of non-linear quantization.

e Low-power design techniques at various levels of abstraction.

e Interfacing techniques for inductive loads, basic motor operation, and heatsink applications
and calculations.

e Advanced bus systems, typically covering the PCI bus and the evolution to current serial
buses and switched fabric concepts.

Similarly, the laboratory component follows a phased approach. The initial lab meetings are
structured, with all students completing the same exercises, including:

e Windows CE introduction and operating system image creation
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e Windows CE applications using Microsoft Foundation Classes (MFC)
e Windows CE stream interface device driver development and usage

e FPGA-based hardware design tools and FPGA device programming methods

After the structured laboratory exercises, the laboratory time is used for weekly progress meetings
with each design team and the instructor and/or teaching assistant. During this phase, the student
design teams work independently on their projects.

The project teams are required to complete a number of formal deliverables as part of their project.
The deliverables mirror a realistic design process, and are actually derived from the processes in
place at a major design house. They serve both as an assessment tool, and to keep students’
project effort more balanced over the course of the semester. The deliverables include;

1. Initial proposal - a single page narrative and block diagram of the students intended project.
This is due very early, and largely serves to ensure that the project scope is reasonable. This
proposal is discussed with the team, and recommendations made for changes if needed. In
general, very few teams choose projects that are too easy - far more common is that they
initially choose something that is probably well beyond what they should reasonably expect
to accomplish in a semester.

2. Detailed proposal, work schedule, and cost/time estimate - the detailed proposal consists of
an executive summary, a description of the problem to be solved, a functional block diagram
and a description of the project features. Students also make a short presentation of their
project to the class at this point. At this point, the teams are often directed to make
certain hardware/software trade-offs. The point of this is to ensure that they have sufficient
complexity in their hardware design.

3. Requirements definition - this explicitly defines the detailed functional capabilities of the
device/system being built. Teams also submit an updated schedule and cost/time estimate.

4. Schematic diagram, test plan, bill of materials (BOM) - the test plan specifies in detail how
the team will demonstrate conclusively that their project is in fact functional.

5. Timing analysis - teams complete an analysis of the timing margins for PC-Card bus activity
at the prototyping board interface with their circuitry. Teams also submit an updated
schedule and cost/time estimate.

6. Initial hardware test - teams are required to demonstrate the functionality of their hardware.
They may use multiple versions of software and FPGA designs to do so. The hardware test
occurs approximately 2 weeks before the final project demonstration. The primary purpose
of this deliverable is to encourage teams to get their hardware working early enough to be
able to complete the remainder of the project successfully. This requirement was added based
on prior experience with teams often underestimating both the number of issues that will
arise when they integrate their hardware components and the time that will be expended in
correcting these. Since it has been in place, the results seen in the final project demonstration
have improved significantly.

7. Final project demonstration - the team demonstrates the functionality of their completed
project to the instructor.

8. Final project report, including a self-analysis of their project execution and lessons learned
in the course.

In addition to being a member of a project design team, each student is also a member of an
expert team. The exact function of the expert teams varies by semester, but the idea is that the
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Figure 1: Photograph of the StrongARM board set (front view).

students on a given expert team will become experts on some particular area of interest, prepare a
presentation, and then be available to assist other students in that area. In the past, this has been
commonly used to create pockets of expertise in specific areas of interest, such as device drivers,
MFC graphical elements, and the like. In addition to providing multiple sources of expertise
within the class, this also mimics common industry practice where individual engineers often have
an assigned (or developed) specialization in addition to their more general project work.

3 Hardware Environment

The hardware design platform used is based on the Intel StrongARM microprocessor, specifically
the Assabet and Nepponset evaluation board set. This hardware provides the capabilities of
a personal-digital assistant (PDA), with a touch-screen graphical display, keyboard and mouse
interface, network connectivity, and numerous peripheral devices. The original evaluation board
set was reconfigured and mounted on an aluminum frame to facilitate student use of the board
and to protect it from handling stresses, as shown in Figures 1 and 2.

The evaluation board is in fact a complete embedded system, intended to be used by engineers
to evaluate the processor and peripheral devices without having to create any prototype hard-
ware. Given that many modern semiconductor packages are unsuitable for hand assembly, the
evaluation board also serves as a generic prototype, without the expense and time of producing
a unique prototype product. This is a very useful and practical design method for embedded
system engineers in industry. However, it is a problem for education in that the evaluation board
often leaves no room for further development by students. On the other hand, the evaluation
board does make more modern and capable computer hardware accessible to education. In many
typical microprocessor design courses, students will start with bare microcontrollers or minimally
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Figure 2: Photograph of the StrongARM board set (side view).

functional evaluation boards so that they are able to design further functionality into their system.
The drawback to this method is that students are limited to relatively simple interfaces (both the
user interface and the electrical interface), and to using parts that can be hand-assembled. Also,
if students freely choose their own processor, obtaining and managing development tool licensing
and support is often problematic at best. Our goal was to include state of the art hardware (such
as the StrongARM microprocessor) and provide robust tool support, but still retain for students
the essential elements of low-level design and fabrication.

To achieve this goal, it was decided that the prototyping target would be the PCMCIA (PC-Card)
interface. The PC-Card interface is equivalent to a conventional microprocessor’s parallel system
bus in most respects. Thus students are exposed to a similar environment as they would be when
designing for a direct interface to a microprocessor. In general, students end up designing what
could be described as an intelligent peripheral device. Functionality can be shifted between the
StrongARM software and the prototyping card hardware as necessary to ensure a reasonable level
of hardware complexity. For example, when interfacing to a stepper motor, the prototyping board
hardware could be as simple as a register that drives the motor controller inputs, with all high-
level functionality implemented in software. To increase the complexity of the PC-Card hardware
design, we have often required students to implement high-level control functions in hardware. In
this example, control of the stepper motor would be accomplished by writing the number of steps
to be taken to the PC-Card hardware, then the hardware would report completion back to the
StrongARM board. This flexibility is a valuable tool in balancing the complexity of the hardware
and software.

To make the PC-Card interface accessible to students, a prototyping card was developed to plug
into the PC-Card card interface on the StrongARM board, as shown in Figure 3.

The prototyping card contains power control circuitry that allows powering the card either directly
from the StrongARM evaluation board, or from an external power supply. The power delivery to
the prototyping card is controlled by the StrongARM microprocessor in both cases, as required
by the PC-Card specification. An Altera Cyclone field-programmable gate array (FPGA) on the
prototyping card is available for students to use in implementing digital logic. Students typically
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Figure 3: Photograph of the PC-Card prototyping board.

design their systems so that the majority of the PC-Card interface, state machines, and other glue
logic is contained in the FPGA. The prototyping card itself is divided into two detachable sections.
One section is a four-layer printed circuit board that contains the power supplies, FPGA and
configuration circuit, PC-Card buffers and transceivers, and all other interface logic. This section is
reused each semester. The second section is a low-cost two-layer board that is used by the students
to add their custom hardware, and can be disposed of after the semester. This gives students the
freedom to solder on and otherwise alter the prototyping board as they need to. A through-hole
prototyping area is used to add additional hardware devices and to construct the interface to the
outside world. Several sets of common surface mount pads are available in the prototyping area to
allow easy use of surface mount devices. Some typical devices that students add include analog-to-
digital and digital-to-analog converters, motor drivers, communications interfaces, and additional
discrete logic. Students often design and build custom circuit boards as well. This enables them to
effectively use a large number of surface mount devices and to minimize the hand-wiring involved.

For hardware development, various schematic capture programs and the Altera Quartus FPGA
design tools are used. Most student FPGA logic design is done in Verilog, as they have been
exposed to it in previous course work.

4 Software Environment

The software environment is driven by the use of the Microsoft Windows CE operating system.
One of the first lab assignments students are given is to build a Windows CE operating system
executable image and download it to the flash memory on the StrongARM evaluation board.
They are introduced to Windows CE in several classroom lectures, covering its basic structure,
operation, and the development tool flow. In the lab, they learn how to create a basic Windows
CE image. No significant attempt at operating system customization is made beyond the basics of
incorporating registry settings and additional files into the operating system image. This somewhat
cursory approach is quite acceptable since the focus of the class is embedded system design and
not operating systems.

Students are required to create a stream interface device driver using Embedded Visual C++ in
order to access the PC-Card prototyping board address spaces from a Windows CE application.
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Again, the concepts of dynamic link libraries (DLLs) and device driver loading are introduced
in lecture. This is followed by a structured laboratory exercise that walks students through the
creation of a skeleton stream interface driver starting from a basic DLL.

All application development is done using Embedded Visual C+4. Students are required to use
the device driver that they wrote for all communication between their application(s) and their
hardware. Many students have minimal exposure to C/C++ programming, however, they quickly
adapt to the use of the Microsoft Foundation Classes (MFC) for their graphical interface. The
basics of MFC application development and the use of the remote debugging features of Embedded
Visual C++ are explored in another structured laboratory exercise.

5 Faculty Involvement

To make a course like this work requires faculty involvement in two ways. First, the initial
establishment of a course like this is quite involved. It requires the procurement of hardware
and software tools and the time to become intimately familiar with them. Once the course is in
place, there must be a continuing effort to maintain the hardware and software, and to deal with
obsolescence and upgrades. The lecture component should be continuously modernized to remain
relevant. Fortunately, this is quite a bit less work than the initial effort. The key here is the
continuity of support by faculty - this is not a responsibility that can be passed from person to
person and still have a reasonable expectation that the course will not be degraded.

The course is taught with a teaching assistant, but the primary role of the teaching assistant is
to manage the progress of design teams. Of course, they also serve as a technical expert as their
experience permits. Realistically, the project teams encounter so many varied design issues that
the faculty member needs to remain constantly involved.

6 Conclusions

This course has proven to be quite popular with students, routinely receiving very positive feedback
on student evaluations. A more satisfying result has been positive feedback from students (and
interviewers) about how they were able to use the course experience in job interviews. Although the
course requires a strong faculty commitment, it provides an excellent capstone design experience
for our students.

The web page for this course [1] is publicly available for information and reference. Copies of
the current course syllabus and pictures of prior semester projects are among the items available.
Interested parties are also invited to contact the author via e-mail.
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