
Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright  2005, American Society for Engineering Education

Discrete Event Simulation Using Excel/VBA

David Elizandro and Jessica Matson

Tennessee Technological University

Abstract

The spectrum of discrete event simulation modeling courses in industrial engineering programs

varies from an emphasis on learning concepts of discrete event simulation to modeling simple

systems using a commercially viable simulation language. Often, when the emphasis is on

learning a commercial language, much of the course becomes training at the expense of

concepts. As a result the student has a basic understanding of the language and modeling but

limited understanding of discrete event simulation concepts. In either case, modeling complex

systems is problematic because students will lack sufficient knowledge of simulation concepts to

understand nuances of the language or sufficient experience with constructs to be proficient with

a commercial language. However, it is relatively easy to learn details of a simulation language

for students who understand discrete event simulation and modeling concepts.

Excel/VBA is a ubiquitous software package with easy to use input and output features. Also,

the statistical features of Excel overcome major limitations of modeling discrete event systems in

a traditional procedural language. This paper examines a one-semester course in discrete event

simulation that utilizes Excel and VBA to overcome limitations of traditional approaches for

teaching simulation.

Introduction

Discrete event simulation is a tool that enables the user to compress time and study system

performance characteristics. However, in order to perform simulation modeling, students must

be able to define critical system component relationships as a function of time. Also, these

relationships must be represented in software. In essence, students must learn concepts of

discrete event simulation, acquire software development skills, and at the same time develop a

global understanding of modeling concepts.

Students learn discrete event simulation concepts and terminology such as transactions,

transaction attributes, and transaction movement in the model. System performance

characteristics such as transient response and steady state cycle time, average queue lengths, time

in the queue, and server utilization are expressed statistically using confidence intervals. Also a

simulation language requires a student to rethink program control because segments of code

operate “simultaneously.” Such a course can easily overwhelm students.

Most discrete event simulation courses in industrial engineering emphasize modeling concepts.

However, the discrete event simulation portion of the course varies from an emphasis on learning

concepts of discrete event simulation to learning a commercially viable simulation language to

model simple systems. Often, when the emphasis is on learning a commercial language, much of

P
age 10.482.1

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright  2005, American Society for Engineering Education

the course becomes training at the expense of concepts. As a result the student has a basic

understanding of the language and modeling but limited understanding of discrete event

simulation concepts. In either case, modeling complex systems is problematic because students

will lack sufficient knowledge of simulation concepts to understand nuances of the language or

sufficient experience with constructs to be proficient with a commercial language.

The tradeoffs in educational approaches have been debated for many years among simulation

education professionals. Kelton
3
 presented the pros and cons of teaching the “classics,” i.e.,

“any general-purpose procedural programming language that is not a simulation language at all”

versus “high-level, icon-based simulation software.” Nance and Sargent
4
 noted that an

“unsettling consequence” of modern simulation languages is that “users may have little

understanding of how the model results are being produced” and “developers sometimes lack a

sufficient understanding of the internal logic [of simulation programming languages] to enable

the recognition of erroneous results produced by incorrect models.” However, experience has

shown that it is relatively easy to learn details of a simulation language for students who

understand discrete event simulation and modeling concepts.

The following sections present a one-semester course in discrete event simulation in the

Bachelor of Science in Industrial Engineering degree program at Tennessee Technological

University that focuses on modeling and concepts of discrete event simulation. The course is

based on previous work of Elizandro
1
 and Starr

2
. In the Spring 2005 semester Excel/VBA tools

will be incorporated into the course to facilitate learning discrete event simulation concepts and

modeling concepts, and to serve as a first simulation language. Excel/VBA is a ubiquitous

software package with easy to use input and output features. Also, the statistical features of

Excel overcome major limitations of modeling discrete event systems in a traditional procedural

language.

Simulation Course Environment

At Tennessee Tech, the discrete event simulation course is an industrial and systems engineering

“tools” course scheduled in the spring semester of the junior year. Fall semester prerequisites for

the simulation course have been Operations Research and Engineering Statistics. As of the

Spring 2005 semester an Information Systems course will be a prerequisite for the course. The

Operations Research and Engineering Statistics courses are typical foundation courses found in

most ABET accredited industrial engineering programs, and a number of industrial engineering

programs have recently added an Information Systems course to their undergraduate curriculum.

The Information Systems course was added to the senior year of the industrial engineering

curriculum at Tennessee Tech University in the Fall 2002 semester. In the Information Systems

course, students use Microsoft Excel, Access, and VBA to solve industrial engineering problems.

Upon completion of the course, students have experience with constructs of the VBA language,

ActiveX controls, and importing and exporting data between VBA and Excel. In the 2004-05

academic year, as a result of assessment data from senior exit interviews and capstone design

juries, the course was moved to the fall semester of the junior year so that students could have

these tools available for courses in the spring of the junior year as well as the senior year. The

clear advantage to moving the course was that these tools could be used in subsequent courses.

P
age 10.482.2

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright  2005, American Society for Engineering Education

The tradeoff is that the selection of laboratory assignments for the course becomes more

restrictive because of the student’s limited domain knowledge of industrial engineering topics.

As reflected in this paper, the role and scope of Excel/VBA tools in the industrial engineering

curriculum at Tennessee Tech continues to evolve.

In previous years, the programming experience of students in the simulation course was a three-

credit freshman course in FORTRAN, C, or C++ with little reinforcement during the sophomore

year. As a result, students had usually forgotten almost all of their programming skills. The

primary language used in the simulation course has been Simnet. It is a process oriented

simulation language with Source, Queue, and Facility blocks and FORTRAN constructs, for

complex model logic
6
. Simnet is easy to learn, therefore, a minimum amount of course time is

allocated to learning a simulation language. Because Simnet has been used as a teaching tool,

advanced features of the language have not been covered. Constructs of Arena have been

introduced during the last two weeks of the course.

An advanced course in simulation based on Siman/Arena has been offered as a technical

elective. In this course, most of the advanced features of Siman are covered and there are several

major projects. However, similar to the required simulation course, a significant portion of the

course focuses on how concepts of discrete event simulation are implemented in Siman.

Students who complete the simulation elective have had competitive submissions in the

simulation competition sponsored by the Institute of Industrial Engineers.

Simulation Course Organization

As stated previously, the required simulation course is focused on concepts of discrete event

simulation and modeling rather than language. In the first 25% of the course, students learn

modeling terminology and the mathematics of simple queuing models. Using the Starr paper
2
,

the steady state response of a network of basic queuing systems is also examined. Thereafter, a

Simnet program of the network has been used to evaluate transient and steady state system

response.

In the next 25% of the course, Simnet programs and “pencil and paper” have been used to teach

clock management, sequencing of “parallel” activities, processing random events, and data

collection. The total of these concepts form the basic simulator logic. A Simnet program trace

of a simple queuing model program has been the basis for learning the logic. To demonstrate the

simulator logic, students are also required to perform a “pencil and paper” simulation of a simple

queuing system model for a brief period of time.

The next 40% of the course has focused on basic features of the Simnet language and concepts of

modeling using Simnet. Students complete four modeling assignments using Simnet. The

assignment submission includes the program and a summary report that details the model

development and an analysis of the system performance characteristics. Also to demonstrate

understanding of relationships between system components modeled, students submit pseudo

code for each primary event and its related secondary events.

 P
age 10.482.3

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright  2005, American Society for Engineering Education

The last 10% of the course has been an introduction to Arena with the fifth programming

assignment a simple Arena program. Source material for the course has included Taha’s
5

operations research textbook, Starr’s paper on Jackson Networks
2
, the Simnet language manual

6
,

and handouts on related topics.

Using definitions from Bloom’s Taxonomy, the focus of the course is on the acquisition and

synthesis of the concepts of modeling and discrete event simulation. Three exams and a final are

used to assess the students’ knowledge of these concepts. The course grade, which is a measure

of that ability, is a weighted average of scores on examinations and laboratory assignments.

Historically, a major problem in the course has been that the students’ marginal programming

competency limited their ability to grasp concepts and therefore their ability to synthesize the

material.

Now that the Information Systems course is a prerequisite for the simulation course, students

enroll in the course with knowledge of the constructs of the VBA language, ActiveX controls,

and importing and exporting data between VBA and Excel. The course is being redesigned so

that students can use their VBA skills to learn and reinforce discrete event simulation concepts

and to model simple production systems.

Programming languages in the simulation course now include Excel/VBA, Simnet, and Arena.

However, the role of each of these languages in the simulation course and the industrial

engineering curriculum continues to evolve. Both Simnet and Arena have been used in the

capstone projects. A recent graduate, who is also a contributor to this paper, chose Excel/VBA

over Simnet and Siman/Arena to develop conveyor system modeling tools for his capstone

project.

The focus and therefore the sequence of topics in the simulation course is the same as before.

However, with the Information Systems course as a prerequisite, the presentation material for the

simulation course has changed dramatically. The following section presents an overview of

changes being made to the course.

Discrete Event Simulation Concepts

Tools similar to the Simnet language are being developed using VBA Classes. For example, a

generalized Excel/VBA simulation program representing a network of queuing systems is now

used to evaluate transient and steady state response of the network. The program is also used to

examine the effects of various sampling rates and sampling intervals on estimates of the system’s

steady state response. Figure 1 is a view of the user interface for the simulation program and

Figure 2 is an example of a performance metric for each queuing system in the network, and

Figure 3 shows the Jackson network program output.

The Simnet program trace of a simple queuing model and “pencil and paper” simulation to

present the basic simulator logic has also been replaced by a VBA program. The basic simulator

logic described in the previous section is shown in Figure 4.

Table 1 presents VBA code of the simulator logic. Using the VBA debugger, students are able

to view execution of the logic. The StepOver option of the debugger enables students to mask

P
age 10.482.4

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright  2005, American Society for Engineering Education

event processing and data collection techniques in order to focus on the basic logic. Thereafter,

details of event processing and data collection may be examined. The “pencil and paper”

material on random number generators and random variables has been replaced with the

statistical functions of Excel/VBA.

Definitions of discrete event simulation events used to develop models in VBA are:

Primary Event: Events that are scheduled at a specific time. The list of primary events is

time ordered on the Primary Events List.

Secondary Event: Events that are not scheduled and therefore must reside on a

Secondary Events List. Secondary events occur as a result of a primary event or another

secondary event.

A customer scheduled for service completion is an example of a primary event. A customer

waiting for service in a queue is a typical secondary event. The pseudo code for each primary

event and related secondary event is now implemented in VBA. As shown in Table 1, an arrival

event is specified in the basic simulator logic. Pseudo code and VBA for the arrival event are

shown in Tables 2 and 3, respectively. In a similar fashion, students develop their models in

VBA, add their events to the basic simulator logic, and validate the related event procedures.

“Trans” is an instance of a user-defined class, Transaction, defined in Table 4 and referenced in

the Table 3 arrival procedure. In the arrival procedure, a transaction attribute is used to represent

the transaction’s current node in the network. Not only does the VBA class collection enable the

user to maintain ordered primary and secondary events lists, it can also be used to maintain a list

of model resources. The Primary Events List (PEL), SetOfSources, SetOfQueues, and

SetOfFacilities referenced in Table 3 are instances of the VBA class collection. For example, the

PEL is a time-ordered list of primary events.

When using a procedural language, students must understand how transactions move in the

model. This concept is masked from users in most simulation languages. Figure 5 provides an

overview of lists and transaction movements in a discrete event simulation model. In VBA,

collections are used to represent the Primary and Secondary Events lists. Primary events initiate

the movement and specify the destination of the transaction. For example path (a) represents

scheduling a transaction for arrival in the model and path (c) could represent an arrival

immediately scheduled for service completion.

Conclusions

A “tools” course in Information Systems emphasizing constructs of the VBA language, ActiveX

controls, Excel, Access, and importing and exporting data between these systems to solve

industrial engineering problems is now a prerequisite to the simulation course in the industrial

engineering curriculum at Tennessee Tech University. This background has permitted

modification of the simulation course to reflect the new tools that students bring to the course.

The simulation course is being redesigned so that students can use their VBA skills to learn and

reinforce discrete event simulation concepts and to model simple production systems.

P
age 10.482.5

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright  2005, American Society for Engineering Education

Programming languages in the course are now Excel/VBA, Simnet, and Arena. Tools similar to

the Simnet language are being developed using VBA classes.

Since the changes have occurred during the current academic year, assessment data are not yet

available to determine the impact on learning. Over the next two years, annual end-of-year

surveys, senior exit interviews, and capstone design project juries will be used to determine the

effects of the change. Anecdotally, preliminary results of these changes are positive; however,

the role of each of these languages in the simulation course as well as the industrial engineering

curriculum continues to evolve.

References

1. D. Elizandro, “Another View of Simulation and Engineering Education,” Proceedings of the 1995 SCS Western

Simulation Multiconference on Simulation in Engineering Education, Vol. 27, Number 1, pp. 57-61.

2. Patrick J. Starr, “An Integrated Introduction to Simulation Using Deterministic Models, Queuing Results and

Jackson Networks,” Proceedings of the 1992 SCS Western Simulation Multiconference on Simulation in

Engineering Education, Vol. 24, No. 2, pp. 235-239.

3. Kelton, W. D., “Teaching the Classics of Simulation to Beginners – Panel Contribution,” Presentation for

Simulation Education Track, 2003 Winter Simulation Conference, New Orleans.

4. Nance, R. E. and R. G. Sargent, “Perspectives on the Evolution of Simulation,” Operations Research, Jan.-Feb.

2002, Vol. 50, No. 1, pp. 161-174.

5. H.A. Taha, Introduction to Operations Research, 7
th
 Edition, Prentice-Hall, 2004.

6. H.A. Taha, Simnet Users Manual

Acknowledgements

The authors are please to recognize the contributions of Mr. Jacob Manahan and Mr. Clinton Thomas for their

assistance with design and development of the software.

DAVID ELIZANDRO

David Elizandro is Professor of Industrial Engineering at Tennessee Tech University and a licensed P.E. He earned

a B.S. in chemical engineering, M.B.A., and Ph.D. in industrial engineering from the University of Arkansas. He

previously served as Dean of Mathematics, Science, and Engineering at University of the Incarnate Word, IME

Department Chair at Tennessee Tech, and Head of Computer Science at Texas A&M University-Commerce.

JESSICA MATSON

Jessica Matson is Professor and Chairperson of the Industrial and Systems Engineering Department at Tennessee

Technological University. She received her B.S. from Mississippi State University and her M.S. and Ph.D. from the

Georgia Institute of Technology, all in industrial engineering. She has previously served on the faculty of

Mississippi State University and the University of Alabama and is a licensed P.E. (Mississippi).

P
age 10.482.6

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright  2005, American Society for Engineering Education

Figure 1: User Interface for Jackson Network Program

Figure 2: Jackson Network Program Output.

P
age 10.482.7

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright  2005, American Society for Engineering Education

Figure 3: Jackson Network Program Output

Figure 4: Basic Simulator Logic

Initialize the Model

Update Clock to

Time for Next Event

Collect Model Data

Perform Primary and

Related Events

 Queuing Model Output
Node c i µ i λ i L si L qi W si W qi

1 2 1.5 2.4642859 0.9642857 1.6428572 0.6428571
2 3 0.7957895 0.3610315 0.0957684 0.4536772 0.1203438
3 4 0.9789474 0.5050665 0.0155927 0.5159281 0.0159281
4 10 1.1873684 0.2391716 0.0016979 0.20143 0.00143
5 8 1.1633685 0.5816861 1.866E-06 0.5000016 1.604E-06
6 3 1.5789474 1.1111112 0.5847953 0.7037037 0.3703704

P
age 10.482.8

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright  2005, American Society for Engineering Education

Table 1: VBA of Basic Simulator Logic

Sub simulation(
 Call Initial ‘ initialize the model
 While (CurrentTime < RunTime)
 Set NextEvent = PEL.Item(1)
 PEL.Remove 1
 PreviousTime = CurrentTime
 CurrentTime = NextEvent.TimeStamp ‘ update the clock
 DeltaTime = CurrentTime - PreviousTime
 Call CollectData ‘ collect data
 EventType = NextEvent.EventType
 Select Case EventType ‘ perform event
 Case "A"
 Call arrival
 Case "SC"
 Call ServiceCompletion
 Case Else
 End Select
 Wend
 Call ShutDown ‘ shut down the model
End Sub

Table 2: Arrival Pseudo Code

 ‘ find appropriate Server
Event Type = Service Completion
If Server = idle
Then
 Mark Node Server Busy
 Schedule Service Completion
 Insert into Primary Events List
Else
 Join Server Queue
End If
If Source = Origin
Then
 Schedule next arrival
End If

P
age 10.482.9

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright  2005, American Society for Engineering Education

Table 3: Arrival Procedure in VBA

Sub arrival()
 Dim _
 duddy As Integer, _
 NodeID As Integer, _
 Trans As Transaction
 ' transaction at the node
 ' ready to be processed
 ' NodeID is in attribute #1
 AttrIndex = 1
 NodeID = NextEvent.AttrValue(AttrIndex)
 NextEvent.EventType = "SC"
 If SetOfFacilities.Item(NodeID).NServers > _
 SetOfFacilities.Item(NodeID).NBusyServers _
 Then ' server available
 SetOfFacilities.Item(NodeID).NumberIn = _
 SetOfFacilities.Item(NodeID).NumberIn + 1
 SetOfFacilities.Item(NodeID).NBusyServers = _
 SetOfFacilities.Item(NodeID).NBusyServers + 1
 NextEvent.TimeStamp = CurrentTime + _
 SetOfFacilities.Item(NodeID).ServiceTime
 Call InsertInPEL
 Else ' server(s) busy
 SetOfQueues.Item(NodeID).QueueTrans = NextEvent
 End If
 If NodeID = 1 _
 Then ' system arrival
 duddy = Source.NextTrans(Trans) ' schedule next system arrival
 Set NextEvent = Trans
 NextEvent.EventType = "A"
 NextEvent.Attr(AttrIndex) = 1
 NextEvent.TimeStamp = CurrentTime + _
 SetOfSources.Item(1).InterArrivalTime
 Call InsertInPEL
 End If
End Sub

P
age 10.482.10

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright  2005, American Society for Engineering Education

Table 4: User Defined Transaction Class

Public TimeStamp As Single
Public EventType As String
Public TransID As Long
Public SourceID As String
Private A(1 To 10) As Variant
Public Property Let Attr(ByVal Index As Single, _
 ByVal Value As Variant)
 A(Index) = Value ‘ Assign attribute value
End Property
Public Property Get AttrValue(ByVal Index As Integer) As Variant
 AttrValue = A(Index) ‘ retrieve attribute value
End Property

Figure 5: Transaction Flow in a Discrete Event Simulation Model

P
age 10.482.11

