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Abstract 
 

The speed and accuracy of microprocessors has extensively changed the way control systems are 

designed.  Process controllers can be “taught” to adjust themselves without any operator intervention.  

These self-tuning or adaptive controllers are programmed to provide a stable system response under 

various disturbance conditions. 

 

This paper presents a fluid level system to be modeled and controlled utilizing an adaptive PID 

controller to improve the output response to a step input.  The digital controller will provide the 

required output with variations in a single plant parameter.  A fully adaptive controller will then be 

implemented using PC Matlab to allow for any of the plant parameters to vary and still maintain a 

suitable output. This concept is used in our Senior Design Project Course as well as in Master Program 

in Engineering Technology. 

 

The popularity of the PID controller and the increased use of microprocessors has led to a digital 

version of the algorithm for use in computer control applications.  The first part of this paper will look 

at the output response of the specified plant to a step input.  Some of the plant parameters will be 

adjusted to obtain the best results.  The next part will show how the system response is improved by 

adding a PID controller.  A digital PID
1
 controller will be used so that the controller parameters can be 

adjusted on-line to account for variations in one of the plant values.  Pole placement technique will be 

used in the design. One of the plant parameters that can be externally adjusted will be varied.  It will be 

shown that the system response will remain the same over the entire range of adjustment.  The last part 

will show how an adaptive controller will allow any of the plant parameters to vary without greatly 

changing the system response.  The least-squares algorithm
2
 will be used to update the controller values 

during every sampling period. 

 

 

I. INTRODUCTION 

 

The most widely used industrial process controller is the PID controller
3
.  It is a combination of 

three distinct components and is used in closed loop feedback systems.  In most cases, the input 

is the error signal, which is the difference between the system set point value and the system 

output.  The controller output signal is Proportional to:  the error, the Integral of the error, and the 

Derivative of the error.  The PID has the following form
3
: 
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where K is the proportional gain, Ti is the integral time, and Td is the derivative time.  There are 

times when the derivative portion of the PID controller is not needed for satisfactory system 

control. A PI controller is capable to provide satisfactory control for first order systems.  

However, higher order systems are controlled via PID controller.  The system to be controlled in 

this paper is third order so PID control will be used. 

 

The popularity of the PID controller and the increased use of microprocessors has led to a digital 

version of the algorithm for use in computer control applications.  The first part of this paper will 

look at the output response of the specified plant to a step input.  Some of the plant parameters 

will be adjusted to obtain the best results.  The next part will show how the system response is 

improved by adding a PID controller.  A digital PID controller will be used so that the controller 

parameters can be adjusted on-line to account for variations in one of the plant values.  Pole 

placement technique will be used in the design. 

 

One of the plant parameters that can be externally adjusted will be varied.  It will be shown that 

the system response will remain the same over the entire range of adjustment.  The last part will 

show how an adaptive controller will allow any of the plant parameters to vary without greatly 

changing the system response.  The least-squares algorithm
2
 will be used to update the controller 

values during every sampling period. 

 

II.  SYSTEM DESCRIPTION 

 

The system is intended to maintain a specified fluid level in a tank is shown in Figure (1).  The 

tank has an outlet that is controlled by a valve.  This valve can be adjusted at any time while the 

system is operational and can be set at any position.  No matter what the outlet flow requirements 

might be, it is important that the tank maintain a certain level.  The level can be set from 0 to a 

maximum height of 0.5 meters by adjusting the input voltage.  
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FIGURE 1. Fluid level tank system 

 

A.  System Block Diagram 

 

The transfer function block diagram for the system is shown in figure (2).  The input signal is 

multiplied by 20 to produce the system input voltage Vp.  Summing junction INSERT compares 

the input voltage to the voltage provided by a depth measuring device at the bottom of the tank.  

The difference is the error voltage and is amplified by A1.  This linear amp has an adjustable gain 

that will be calculated.  The next summing junction INSERT compares the signal from A1 with 

the signal produced by an angular measurement device attached to a motor shaft.  The motor 

shaft is connected to a gearbox that will open and close a valve.  This valve allows fluid to fill 

the tank.  As the tank fills to the desired level, the error voltage decreases.  Eventually, the 

angular displacement pot will output a voltage greater than the A1 voltage causing the armature 

fed DC motor to reverse and close the valve.  The linear amplifier feeding the motor also has an 

adjustable gain that will be calculated.  The gearbox ratio is 20:1 so it has a gain of 0.05.  The 

flow rate of the valve is proportional to INSERT and has a gain of 0.1.  The capacitance C of the 

tank is equal to its cross-sectional area which is 0.25m
2
. 
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FIGURE 2. System Block Diagram 

 

B.  Tank Transfer Function 

 

The transfer function for the tank is determined with the outlet valve fully closed and fully open.  

It will be shown that the tank without an outlet will be modeled as an integrator acting on the 

input flow rate.  The output will be the height of the fluid in the tank with the inverse of the tank 

area as the gain.  The minimum tank outlet resistance will be calculated using the following 

formula and the maximum circular outlet diameter of 8cm. 

Area of outlet:  A mo = =π (
.

) .
0 08

2
0 00502 2                                                                              (2)  

Flow out:  Q gh
m

so = =0 0050 2 0 0157

3

. .                                                                               (3) 

where g = 9.81m/s
2 
and h = 0.5m tank level. 

Equation (3) is for turbulent flow.  The hydraulic resistance for the outlet under laminar flow is 

shown below. 

Hydraulic resistance:  R
h

Qo

= = =
0 05

0 0157
32 05

.

.
.                                                                    (4) 

It is assumed that the flow through the outlet is laminar, therefore the hydraulic resistance will be 

constant for any specified outlet opening.  The resistance calculated in (4) is for a fully open 

valve.  As the valve is closed, the resistance will increase and reach infinity when the valve is 

fully closed.  In an actual system, R would have to be determined by measuring the discharge 

flow rate at a specific fluid level.  Since the outlet is controlled by a valve, the area Ao  can be 

adjusted to achieve any desired resistance value. 
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The tank system will be linear based on the laminar flow assumption.  An incremental change in 

the amount of volume in the tank will cause an incremental change in the height since the walls 

of the tank are rigid.  Over a small period of time, the following differential equation results: 

C dh Q Q dti o( ) ( )= −                                                                                                              (5) 

 

Where Qi is the flow into the tank.  Combining equations (4) and (5) results in: 

RC
dh

dt
h RQi+ =                                                                                                                   (6) 

The transfer function of the tank will be: 

H s

Q s

R

RCsi

( )

( )
=

+ 1
                                                                                                                  (7) 

In the case where the outlet valve is completely closed, Qo  will be zero.  Then equation (5) 

becomes: 

C dh Q dt orC
dh

dt
Qi i( ) ( )= =                                                                                                 (8) 

The transfer function below shows that the tank acts as an integrator with the gain equal to the 

inverse of the tank capacitance. 

H s

Q s Csi

( )

( )
=

1
                                                                                                                          (9) 

 

The closed-loop transfer function for the block diagram of figure (2) is: 

 

T(s) = 
2

10
4

5
40

20 2

1 2

3 2

2

2

1 2

A A

S
R

S A
R

S
A

R
A A+ + + + + +( ) ( )

                                       (10) 

 

III. Response Specifications 

 

The system response will be required to meet certain design criteria.  The tank height is 0.55 m 

so the maximum overshoot will be 10%.  Otherwise the fluid level will exceed the tank 

limitations when the setpoint Nc is set to 0.5.  The settling time will be set at 4 seconds.  For a 

third order system, the following is the characteristic equation. 

( )( ) ( ) ( )S A S BS C S A B S AB C S AC+ + + = + + + + + =2 3 2 0                                          (11) 

    where: A is a pole on the real axis, B andC
n n

= =2 1 2ζω ω  

ζ  is the damping ration and ωn  is the undamped natural frequency of the system.  The percent 

overshoot is calculated by the following: 

PO e= =
− −

100 10%
1 2ζπ ζ/

                                                                                                     (12) 

which leads to ζ ≈  0.6.  The settling time will be the time when the response is within 2% of its 

final value.  It is calculated by: 

e tn st

s

n

− ≤ ⇒ = =ζϖ

ζϖ
0 02

4
4.                                                                                                 (13) P
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Using ζ ϖ, n  = 1.67.  Then B = 2 and C = 2.78.  The system block diagram shown in fig (2) is 

reduced to the single block shown in fig (3).  The coefficients from equation (11) are then 

equated to the coefficients shown for the single block for like powers of s. 

A B
R

+ = +10
4

                                                                                                                      (14) 

AB C A
R

A AB C
R

+ = + ⇒ = + −5
40

0 2
40

2 2 . ( )                                                                      (15) 

AC
A

R
A A A

AC

A R
= + ⇒ = −20 20

20

12

2 1 1

2

                                                                             (16) 

The value for the outlet resistance R in the equations above, will vary with the tank outlet valve 

opening.  The largest outlet opening will be R = 32.  As the valve is closed, the resistance will 

increase to infinity.  Using the values determined for B and C, the value for A will vary from 

8.125 to 8 as the valve closes.  A pole on the real axis will occur at -A and complex conjugate 

poles will occur at: 

− ± − = − ±ζϖ ϖ ζn nj j2 1 1000 1333. .                                                                                   (17) 

The dominant poles of a system should be at least five times closer to the imaginary axis than any 

other poles.  The real part of the complex poles is approximately eight times closer to the 

imaginary axis than the pole at -A.  The complex poles will therefore be the dominant poles and 

the pole at -A will have little effect on the system response.  The percent overshoot and the 

settling time should be very close to what was specified. 

 

System Response 

 

Equations (15) and (16) determine the values for the two amplifier gains.  Both gains are 

dependent on R.  As the outlet valve is turned, the gains will have to be adjusted to maintain the 

system specifications.  The input was 0.5 and the two amplifier gains were adjusted for each 

different R value according to Table I.  As the value of R increased, the response approached the 

set point value. 

The fluid in the tank never reaches the specified level when the outlet resistance equals 32.  This 

is due to the steady-state error.  For a unity feedback system that has no poles at the origin, the 

steady-state error for a step input is: 

e

s
A

s

G sss
s o

=
+→

lim
( )

( )1
                                                                                                                  (18) 

For a step input with 0.5 height, the steady state error becomes: 

e
A A

A

R

A Rss =

+

=

+

05

1
2

20

05

1
10

1 2

2

1

. .
                                                                                                      (19) 

It is clear from the above equation that as the outlet resistance increases, the steady-state error 

will approach zero. 
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R A1 A2 Final Max ess 

32 2.86 3.55 0.451 0.492 0.049 

64 2.91 3.66 0.475 0.518 0.025 

1000 2.96 3.75 0.498 0.544 0.002 

 

 

TABLE I. Amplifier Gains and Output Response 

 

The Final column in Table I is the fluid level after 8 seconds when the system has reached a 

steady-state condition.  The difference between this level and the desired level is shown in the ess 

column.  The Max column is the overshoot level. 

The only way to decrease the steady-state error when R = 32, is to increase the value of A1.  

When A1 = 4.2, the steady-state error is 0.035.  But the overshoot is 0.552.  As A1 becomes 

greater that 4.2, the overshoot increases to a level that goes beyond the tank limit.  Also, if A1 = 

4.2, A2 = 3.55 and the valve is closed so that R = 1000, the overshoot would be 0.598.  The 

system could not tolerate that much overshoot.  This condition could only be prevented if the 

amplifier gains were adjusted as the valve was closed. 

 

III. DIGITAL PID DESIGN 

 

Adding a PID controller to the system would eliminate the steady-state error problem.  However, 

since the system specifications must remain the same regardless of the outlet valve position, there 

is a need for a self-adjusting controller, also known as auto-tuning. The hold device is required in 

a digital system implementation to hold the system data between sampling intervals.  The output 

of the hold will remain constant until the next sampled data is available.  This occurs every T 

seconds.  A zero-order hold is the simplest hold device and will be used in this system.  A higher 

order hold would use more sampled inputs to produce an output that better approximates the 

continuous signal. 

Since the controller is self adjusting, the amplifier gains will not have to be changed whenever R 

changes.  The gains will therefore be arbitrarily preset at A1 = 10 and A2 = 5.  Discrete systems 

analysis makes use of the z-plane which is related to the s-plane by the following: 

z e sT=                                                                                                                                       (20) 

where T is the sampling time period. 

 

A.  Conversion to Z-transforms 

 

Before the Laplace transform equation can be changed into a z-domain expression, it must be 

expanded into standard terms.  Presented here is the partial fraction expansion method. 

Tables of Laplace to z-transforms are then used to convert the standard functions.  The poles for 

this transfer equation will be on the real axis at 0, -5, -5, and -4/R.  The residues of G(s) at these 

poles are A, B, C, and D.  The pole at the origin will cause the steady-state error to be zero. 

 

The PID controller equation shown in equ (1) is represented by the following z-transform: P
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Hc z
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z z r

o
( )

( )( )
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+ +

− +

2

1 2

11
                                                                                                        (21) 

 

After conversion, the transfer equation for the controller and plant is: 

Y z

N z

Q z s z s z s

z z z z r Q z s z s z sc

o

o

( )

( )

( . )( )

( . . )( )( ) ( . )( )
=

− + +

− + − + + − + +

0362

1214 0 368 1 0 362

2

1 2

2

1

2

1 2

                      (22) 

 

B.  Pole Placement Design 

 

Using pole placement technique, it will be assumed that for this fourth order system the 

characteristic equation will have the following form: 

P z z e z P z Pa T( ) ( ) ( )= − + +− ω 2 2

1 2                                                                                       (23) 

Where: 

P e TT

1

22 1= − −−ζω ω ζcos( )                                                                                               (24) 

P e T

2

2= − ζω                                                                                                                             (25) 

The two dominant poles are determined by P1 and P2.  The system is designed for a 10 percent 

overshoot and a settling time of 4 seconds so, 

ω ζ= =167 0 6. , .                                                                                                                     (26) 

as was calculated in Part II.  The dominant pole locations are determined as follows: 

− ± −P P P1 1

2

24

2
                                                                                                                 (27) 

Substituting equations (24) and (25) into equation (27) will result in a pair of complex conjugate 

 poles at: 

s j1 2

21, = − ± −ζω ω ζ                                                                                                         (28) 

 

The dominant poles should be at least 5 times closer to the imaginary axis than any other poles 

but a better output response was achieved when the dominant poles were 10 times closer to the j 

axis. 

ζ ≤
a

10
 so let a = 6                                                                                                                   (29)  

Substituting the design specifications into the desired characteristic equation (23) and 

multiplying through leads to: 

P z z z z( ) ( . ) ( . . )= − − + =0 368 1793 0818 02 2                                                                           (30) 

z z z z4 3 22 529 2 273 0844 0110 0− + − + =. . . .                                                                            (31) 

Let Q=(-9.65R
2
 + 1.432R)/(5R-4)

2 

The characteristic equation for the system controller and plant is shown along with the resulting 

coefficients for each different power of z. 

( . . )( ( ) )

( ( . ) ( . ) . )

z z z r z r

Q s z s s z s s z so o

2 2

1 1

3

1

2

2 1 2

1214 0 368 1

0362 0 362 0 362 0

− + + − − +

+ − + − − =
                                                    (32) 
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0]368.0)362.0)([(]368.0582.1)362.0)([(

]214.2582.1)362.0)([(]214.2)[(

12112

1

11

2

1

34

=−−+−+−

+−+−+−++

rsQzrssQz

rssQzrsQzz

o

oo
                            (33) 

Equating the coefficients for the same powers of z in equations (32) and (34), the controller 

parameters can be calculated for any specific value of R. 

 

C.  Output Response Example 

 

Knowing the desired coefficients and the value of R, the controller variables s0, s1, s2, and r1 can 

be calculated.  As a example, letting R = 32 and equating coefficients, the following values were 

calculated: 

Q=-0.4042, s0=-0.0862, s1=0.1754, s2=0.1280, r1=-0.3498 

Then the transform function would be: 

Y z

N z

z z z

z z z zc

( )

( )

. . . .

. . . .
=

− + −

− + − +

00348 00835 0 0774 00187

2529 2 273 0844 0110

3 2

4 3 2                                                                   (34)            

For a unit step input:  N z
z

zc ( ) =
−1

                                                                                        (35) 

Y z
z z z z

z z z z z
( )

. . . .

. . . . .
=

− + −

− + − + −

0 0348 00835 00774 0 0187

3529 4 802 3117 0 954 0110

4 3 2

5 4 3 2                                                        (36) 

 

A MATLAB program
4
 was written to calculate the controller parameters and perform the 

division.  The program will calculate the output Y(z) for any resistance value and also for any 

tank set-point level. 

The numerator of the transfer equation is not affected by changes in the resistance R.  Since the 

denominator must have the selected coefficients, the output response will not vary with 

deviations in R.  Therefore, as the outlet resistance changes, the controller parameters are 

updated accordingly to keep the overall system transfer function constant.  This guarantees a 

constant output response.   

Up to this point, the tank output resistance was the only allowed plant variable.  It should be clear 

that other parameters of the plant could experience variations over time or through external 

outside disturbances.  These variations will affect the plant parameters and change the way the 

system responds.  To allow for deviations in the plant and still maintain the required output, a 

fully adaptive control system must be designed. 

 

IV.  ADAPTIVE CONTROL 

 

There are many occasions when the plant parameters are either unknown or they can change over 

time.  In either case, an adaptive controller will be able to provide control of the system output.  

Figure (3) shows how the system will be designed to incorporate an on-line parameter estimator.  

The estimator is responsible for estimating the plant parameters during every sampling period.  It 

uses past inputs and outputs of the plant as well as previous estimates.  The appropriate controller 

parameters are then derived from the estimated values. 

 P
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FIGURE 3. Adaptive Control Block Diagram 

A.  DARMA Model 

 

There are various mathematical modeling techniques that use curve fitting algorithms to 

determine the parameters of a process model that best fit the available input/output data.  Models 

that will completely describe the response of a system are called deterministic dynamical 

systems
2
, and systems that have a random component in the output response are called 

stochastic
2
.  The choice of a model is an important step in the prediction of a process.  Some 

models are better suited to certain applications.  The Deterministic Autoregressive Moving-

Average or DARMA model
2
 is one type of Model-Based Predictive Control and will be used to 

model the linear system in Part I. 

 

The plant transfer function can be expressed as: 

H z
Y z

U z

b z b

z a z ap ( )
( )

( )
= =

+

+ +

1 2

2

1 2

                                                                                         (37) 

 

where U(z) is the output of the controller and the input to the plant.  Equation (47) can be written 

as: 

( ) ( ) ( ) ( )1 1

1

2

2

1

1

2

2+ + = +− − − −a z a z Y z b z b z U z                                                                     (38) 

Since z
-n
 is a time delay of magnitude n, this leads to the following DARMA model. 

y t a y t a y t b u t b u t( ) ( ) ( ) ( ) ( )= − − − − + − + −1 2 1 21 2 1 2                                                      (39) 

It shows that the present output is a combination of the past two outputs and the past two inputs 

to the plant.  A higher order system would use a corresponding number of past inputs and 

outputs.  The y terms on the left in equation (38) are the autoagressive component and the u 

terms are the moving-average component.  The model can be expressed in the following form: 

y t t to

T( ) ( );= − ≥θ φ 1 0                                                                                                          (40) 

where, 

P
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φ

θ α α

( ) [ ( ), ( ), ( ), ( )]

[ , , , ]

t y t y t u t u t

b bo

T

− = − − − − − −

=

1 1 2 1 2

1 2 1 2

                                                                    (41) 

The output of the controller is defined by: 

U z
s z s z s

z z r
E z

o
( )

( )( )
( )=

+ +

− +

2

1 2

11
                                                                                                   (42) 

or  

[ ( ) ] ( ) [ ] ( )1 11

1

1

2

1

1

2

2+ − − = + +− − − −r z r z U z s s z s z E zo                                                            (43) 

Then: 

u t r u t r u t s e t s e t s e to( ) ( ) ( ) ( ) ( ) ( ) ( )= − − + − + + − + −1 1 2 1 21 1 1 2                                           (44) 

 

The controller output is a combination of the past two controller outputs plus the current error 

signal and the past two error values.  The controller parameters will be a function of the plant 

parameters. 

 

B.  Least Squares Estimation Algorithm 

 

The response of the modeled plant depends on the values associated with the model parameters 

a1, a2, b1, and b2.  These parameter values may be unknown or time varying.  In either case, the 

values will have to be estimated.  This process, called parameter estimation, is a key component 

of adaptive control. 

A popular class of on-line parameter estimation algorithms is of the form: 
) )
θ θ( ) ( ( ), ( ), )t f t D t t= −1                                                                                                         (45) 

The current parameter estimate is a function of the last computed estimate.  It is also a function 

of D(t) which is the past and present input/output data available at time t.  The left side of the 

algorithm is an algebraic function which is specific to a certain type of estimation algorithm.  A 

widely used form of equation (42) is: 

 

)()()1()1()( tedttMtt −−+−= φθθ
))

                                                                                       (46) 

where: 

   
)
θ ( )t  is the parameter estimate 

   M t( )−1 is the algorithm gain, φ )( dt − is input-output regression vector, and  

    e t( ) is the modeling error 

 

Equation (43) can have many different forms depending upon the desired objectives of the 

algorithm. 

 

The least-squares estimation algorithm will be presented here and has the following form: 

)]1()1()([
)1()2()1(1

)1(20(
)1()( −−−

−−−+

−−
+−= ttty

ttPt

TtP
tt T

T
θφ

φφ

φ
θθ

)))
                        (47) 

P t P t
P t t t P t

t P t t

T

T( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
− = − −

− − − −

+ − − −
1 2

2 1 1 2

1 1 2 1

φ φ

φ φ
                                             (48) 
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     for t ≥ 1,
)
θ  is given and P(-1) = any positive definite matrix 

 

This algorithm will use the two previous system outputs and plant inputs to estimate the plant 

parameters a1, a2, b1, and b2.  The controller parameters are functions of these values so as they 

are estimated, the controller is being tuned.  The system characteristic equation and thus the 

response of the system will remain the same as was shown earlier. 

 

The MATLAB software
4
 was used to determine the output through 80 sampling times.  The 

output is shown in figure (4) for the input set-point = 0.5 and R = 32. 

 

 
FIGURE 4.  Response with Adaptive Control 

 

V. CONCLUSION 

 

Model-based  control is sensitive to modeling and parameter errors. We developed a solution to 

this problem by augmenting the standard controller with an adaptation mechanism. The 

proposed design incorporates an on-line identifier to eliminate parameter errors and individual 

joint controllers to compensate for unmodeled dynamics. Our approach is particularly appealing 

because it retains the basic structure of model-based control systems. 
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