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One way of teaching a new physical concept effectively to students is to arrive at that physical 
concept via different approaches. Stress and stain transformations, together with combined 
loading and von Mises failure criterion for ductile materials, are among those subject matters in 
solid mechanics in which students have difficulty to visualize and understand. The objective of 
this paper is to help students to understand and reinforce their comprehension of these 
fundamental concepts of solid mechanics by introducing them to the 3 different approaches 
outlined and discussed here. 
 
An L-shaped high strength aluminum beam, E = 10.4E6 psi, cantilevered at one end and subject 
to a concentrated load P at the free end (Figure 1) is used to teach these 3 fundamental concepts.  
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Figure 1. Schematic Diagram of the Setup
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First the biaxial state of stress at point Q, on the longitudinal axis of the beam, is calculated using  
the classical equations of solid mechanics1, 2. The principal stresses together with the von Mises  
equivalent stress at point Q are then evaluated1, 2 (Approach I). A rectangular strain gage rosette 
is mounted on the beam at point Q such that the axis of the closest gage to the longitudinal axis 
of the beam is at angle α with respect to the longitudinal axis of the beam. Measurement 
GroupTM P-3500 strain indicator unit together with a switch and balance unit measures the strains 
along the axes of the rosette3, 4.  Strain transformation equations are then used to obtain the state 
of strain and principal strains at Q1, 2. Equations of isotropic linear elasticity for biaxial stress 
situation5, 6, 7, 8 are then used to evaluate the principal and von Mises stresses based on measured 
strains (Approach II). Finally a finite element model of the beam is made using Algor finite 
element package to arrive at the von Mises stress at the point of interest, Q (Approach III). The 
results of these 3 approaches are then compared to enforce the theory behind all these important 
concepts. Students get to utilize a lot of theoretical equations along with experimental and 
computational tools to thoroughly understand and verify fundamental concepts of linear 
elasticity. In the remainder of this article a detailed study of these approaches along with 
comparison of the results and potential usage of this simple L-shaped beam in other subject 
matters is presented. 
 
Approach I 
 
In this approach the internal load at point Q is first found by sectioning the beam through Q by a 
plane normal to the axis of the beam. The internal load at Q is: 
 

PV =             ,               PLT =      ,               PSM =   
                                      
Where V is the shear, T is the torsion and M is the bending moment at point Q. P, L, and S, are 
shown in Figure 1. The biaxial state of stress at Q is then found as: 
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Where C1 is a geometrical constant, b is the width of the beam, t is the thickness of the beam and 
I is the moment of inertia of the beam. I and C1 depend on b and t and are given as: 
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Figure 2. State of Stress at Q 
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The principal and von Mises stresses are then found as: 
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Approach II 
 
In this approach the rectangular strain gage rosette mounted at point Q on the beam measures 
normal strains along its 3 axes. The state of strain at Q, along the longitudinal (X-direction) and 
transversal (Y-direction) axes of the beam are then found using the following equations:  
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 Figure 3. Rosette Orientation at Q

α

Where εx and εy are the normal strains along the longitudinal and transversal axes of the beam at 
point Q respectively, and γxy is the shear stress at that point. ε1 , ε2, and ε3 are normal strains 
measured by the rosette at point Q and along the axes which make 10o , 55o , and 100o angles 
with longitudinal axis of the beam respectively. Once the state of strain is found at Q, the 
principal strains, εp(maximum) and εq , are readily calculated as: 
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Finally the isotropic linear elasticity relations between stress and strain render the principal 
stresses for the measured strains as: 
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Where E is Young’s modulus of elasticity, and υ is the Poisson ratio for aluminum alloy. Von 
Mises stress is then calculated using equation (1) above.  
 
Approach III 
 
A finite element model of the L-shaped beam is made using Algor plate elements. 48 plate 
elements were used in this model. The value of von Mises stress for the model at point Q is 
found for a trial mass of m = 1 kg, using Algor post processor Superview. 
Appendix B presents a print out of the result of such a simulation. 
 
Results 
 
A 1 kg trial mass (P = 2.2054 Ibf) was used in the laboratory to do the measurements. For our 
trial beam (see Figure 1), L = 11.5 in., b = 1 in, t = 1/8 in, α = 10o, E = 10.4×106psi, and υ = 0.33. 
The strains measured were ε1 = 973µ, ε2 = 686 µ, and ε3 = 449 µ. Appendix A is a MathCAD file 
of the calculations for approaches I and II. As it is seen in appendix A von Mises stresses for 
approaches I and II are calculated as: 
  

σvon Mises,  approach I = 12470 psi 
 

σvon Mises,  approach II = 11930 psi 
 
Appendix B indicates that the Algor file renders: 
 

σvon Mises,  approach III = 11874 psi 
 
There is a 4.3% discrepancy between approaches I and II, and a 4.7% discrepancy between 
approaches I and III. 
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Implementation 
 
Students are exposed to the theory (approach I) in the regular classroom setting, while 
approaches II and III are implemented in the laboratory component of the course. Students have 
to sign up for both lecture and lab in the same semester. This facilitates testing of some of the 
theoretical concepts that they learn in the lecture in the laboratory while the concept is fresh in 
their mind. 
 
The lab portion of the course, itself, has two parts. In the first half of the semester, students are 
introduced to finite element through commercial packages such as Algor. Each student in the lab 
gets to analyze simple problems such as plane and 3 dimensional trusses, simply supported and 
cantilever beams using the software. Once they become somewhat proficient in the use of the 
software, each student then builds the appropriate model for implementing the approach III of 
this document. In the second half of the semester, students learn about strain gages and work 
with them in the lab. Students, in small groups, conduct different experiments including the one 
in the approach II of this document. Each student then compares the results of these 3 different 
approaches and writes an individual report for the experiment. 
 
Conclusion 
 
One could deduce that the approaches discussed above agree reasonably well in predicting the 
von Mises stress. Approach I assumes that the principle of superposition holds. Due to the 
relatively large torque arm and large load P this assumption is not a quite accurate assumption at 
large loads. It is expected that as the load P decreases the error between approaches 1 and other 
approaches decrease too. It is worth mentioning also that because of the lack of axisymmetry of 
the beam, the cross-section of the beam wraps out of its original plane. However these effects are 
less pronounced when load P is picked as a value less than 1 kg of mass. We also have to 
mention that the strain values measured in approach II were not modified for the gage transverse 
sensitivity effect.  
 
Overall the experiment is a success. Students learn a lot from it and get to test their knowledge 
using theory, experimental methods, and computational techniques. Students who did go through 
this experiment showed a better comprehension of the stress and strain transformation, by 
consistently scoring higher in the hourly tests on the subject, than those who did not have such an 
opportunity in previous years.  
 
The L-shaped beam can be used in vibrations classes to teach students modal analysis and 
vibration absorber concepts. These subjects will be addressed in a later work.  
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Calculating the Torque and Bending Moment
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Calculating the  state of 2-D stress at  Q
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Calculating Principal stresses and von Mises Stress
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Using Approach I

Appendix A: Approach I & II Calculations   (MathCad File) 

Calculation for Approach I

Input Data

L 11.5:= in S 10:= in b 1:= in t 0.125:= in α 10:= deg m 1.:= Kg

P
m 9.81⋅

4.4482
:= P 2.2054= Ibf

Modulus of Elasticity( ) E 10.4 106
⋅:= psi

(Poisson ratio) ν 0.33:=
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Value of von Mises stress Using Approach IIpsiσvon 1.19 104
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Evaluating Principal and von Mises Stresses from Principal Strains
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Evaluating Principal Strains at Q
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Evaluating State of Strain  at Q 
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Calculation for Approach II
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