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Abstract 
 

Too often mathematics content instruction for classroom teachers tends to be abstract and 
devoid of practical applications. However, simple devices and computer software, 
especially Computer Aided Engineering (CAE) software can help integrate physics and 
engineering applications into a mathematics class without loss of focus. In this paper we 
report our experiences in developing and delivering an experimental mathematics course 
to secondary in-service mathematics teachers where software and devices reinforce 
important concepts. The course structure balanced rigor with utility in secondary 
instructional environments.  
 
1. Introduction 
Recent state and federal accountability requirements have renewed interest in student 
achievement in mathematics[1]. In addition, many states monitor local school productivity 
against predetermined benchmarks of effectiveness and have attached well-publicized 
rewards and sanctions including school accreditation classifications and ranking 
systems[2, 3]. State sanctions based on assessment scores can affect graduation, student 
diplomas, school accreditation, school funding, teacher rewards and promotion, 
paperwork requirements, regulations, work expectations, improvement plans, and even 
real estate values. However, modest and initial gains in the results of high-stakes 
accountability assessments may accompany trends toward instruction that is more for 
procedural rather than for conceptual knowledge and increasingly traditional rather than 
reform-oriented [4].    
 
Pressure on local districts to recruit and retain qualified teachers comes at the same time 
as critical and well-documented shortages of mathematics teachers. Traditional 
mathematics teacher education programs that require mathematics content courses 
generally taught in mathematics departments supplemented by professional education 
courses have failed to prepare teachers in sufficient quality and quantity to meet current 
demands[5]. Recent graduates enter the mathematics teaching profession already in 
desperate need of intensive professional development[6]. Moreover, state and district 
efforts to recruit and retain teachers too often fail to benefit high-poverty, high-minority, 
and low achieving schools where inexperienced and out-of-field teachers are more likely 
[7]. Consequently, efforts toward professional development of the current teacher 
workforce hold the greatest promise for improved achievement. 
 
Fortunately, NCLB facilitates partnerships between K-12 districts and higher education 
institutions to provide teachers with professional development opportunities including 
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those that improve their content knowledge, focus on research-based practices, and align 
with state standards[8]. The core knowledge required to teach mathematics for deep 
understanding is fundamentally different from what many teachers, have had 
opportunities to learn[6]. In addition to content knowledge and knowledge of pedagogy, 
the knowledge base for effective teaching of mathematics includes pedagogically 
functional knowledge. Mathematics content development experiences should encourage 
teachers to connect concepts across a variety of mathematical content areas, connect the 
mathematics they learn with the mathematics they will teach, and reflect on teaching 
while engaged in learning[5]. Teachers tend to teach mathematics in ways that are 
consistent with how they learned mathematics[9-11]. Consequently, teachers need 
opportunities to reconstruct their understanding of mathematics content and expand their 
views of what understanding mathematics involves through curriculum and instructional 
approaches that are similar to those which they will later use in their classrooms[6]. 
Substantial improvements in teachers’ conceptual understanding and dramatic shifts 
toward reform-oriented instructional approaches have resulted from opportunities to learn 
mathematics content in these kinds of pedagogy implicit settings[6, 12]. Content instruction 
in pedagogy implicit settings significantly increases mathematics teacher self-efficacy 
and outcomes-expectancy beliefs[13]. 
 
While considerable evidence supports integrated approaches to teaching mathematics, 
science, and technology in schools[14-18], less has been written about training teachers for 
integrated instruction. Still, teacher development programs that integrate content are 
beginning to emerge. Hamm[19] proposed methods courses to improve scientific literacy 
by integrating science, mathematics, and technology in instruction that combines subject 
matter and pedagogical knowledge. Evans[20] and Thomas, Cooper, and Ponticell[21] 
describe staff development programs for in-service mathematics teachers that use 
inquiry-based, science and mathematics classroom instruction. Instruction that integrates 
science and mathematics process skills is common, but consistent integration of content 
material requires changes to current teacher development practices[22]. Increases in 
teachers’ mathematics and science self-efficacy beliefs have resulted from completing 
integrated mathematics and science methods courses[23]. Integrated investigations provide 
teachers with opportunities to engage in the creative aspects of mathematics discovery 
and exploration. Appropriate problems should be immediately attractive, require data to 
be generated and analyzed using technology, appeal to students from junior high school 
to graduate school, involve fundamental mathematical concepts, have satisfying 
solutions, and suggest several other problems for further investigation[24]. Not 
incidentally, Venville, Wallace, Rennie, and Malon[25] recognized the importance of 
integrating content from science, mathematics, and technology learning areas, but noted 
the absence of recent research on how students learn science and mathematics concepts in 
integrated settings. 
 
2.  Objectives and Outcomes 
The experimental course offered at the University of Maryland Eastern Shore (UMES) in 
the summer of 2004 was developed to provide professional development for local 
secondary teachers. The course involves mathematical analysis of simple physical 
systems using computer aided engineering (CAE) tools (Working Model) and 
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spreadsheet (EXCEL). The course introduces fundamentals of engineering mechanics and 
design, hand held GPS, and robotics with hands-on exposure to Lego-Mindstorm’s 
Robotic Invention System. The course activities provided hands-on, project-based, 
experiences to enhance and integrate understanding of physics, mathematics, and 
engineering fundamentals and in doing so, encouraged participating in-service teachers to 
re-examine their own teaching. 
 
Course participants were expected to: 

• Reinforce understanding of essential mathematics content; 
• Improve appreciation of Newton’s Laws of Motion and applications in 

engineering mechanics. 
• Develop skills and insights to use computer aided engineering tools and 

spreadsheet programs to analyze and design simple physical systems. 
• Enhance ability to develop hands-on, experiential learning projects that promote 

integrated learning of mathematics, science and engineering fundamentals 
suitable for use in middle and high schools. 

 
3.  Highlights 
The course was designed to reinforce concepts related to Newton’s Laws of Motion and 
fundamentals of Statics and Dynamics components of the Engineering Mechanics 
sequence. The Working Model 2D[26] was used to simulate simple spring mass system in 
statical equilibrium as well as simple kinematic devices set in motion using a virtual 
motor (the popular four bar mechanism). Teacher participants also worked in teams to 
build simple devices such as a weighing machine based on the design principle of 
moment balance along the same lines as a Bismar or a Steelyard scale (popularly 
renamed “Moment Machine”)[27]. These devices provided a realistic framework to 
introduce statical equilibrium conditions, solutions to simultaneous systems of equations, 
and Sine Law, Cosine law, and other trigonometry concepts. Other mathematics content 
experiences including iterative solutions of nonlinear equations, basic differentiation and 
its’ relation to slope of a curve, and Newton Raphson method for solving nonlinear 
equations lend themselves to spreadsheet applications. 
 
Particle equilibrium problems in “Statics” involve solving simultaneous equations for 3-
dimensional problems arising out of force equilibrium in three Cartesian directions. 
Initially, teacher participants were introduced to simple problems that resulted in linear 
equations in 2 and 3 unknowns that could be solved easily with requisite knowledge of 
trigonometry and geometry. Subsequent experiences involved solving the following 
problem involving spring, rope and an applied force as shown in Figure 1a and 1b 
below[28]. 
 
The problem seeks a solution for angle θ assuming the rope and spring are of length x = 
2ft. and a force of F = 10 lb. is applied at the joint of rope and spring as illustrated in 
Figure 1a. Since rope is not stretched, its’ length does not change. The spring length 
changes (s ft.) in accordance with the spring constant (k = 15lb/ft.). From the free body 
diagram of point A in Figure 1b and using appropriate trigonometry and algebra in the 
resulting triangle ABC in Figure 1a, the following equations are formulated: 
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           Figure 1a: 2-D Statics Problem (non-linear)  Figure 1b : F.B.D. of pt. A 
 
Spring force Fs (from triangle ABC):  1)-θcos4-5(k2=ks=Fs  
Angle φ in terms of angle θ (from triangle ABC): 

                                            )
θcos-2

θsin
arctan(=)

θ2cos-4
θsin2

arctan(=φ                                   

Tension in rope (T) from Equation statical equilibrium in x –direction: 
                                                       

 0= θTcos -φcosF⇒0=F sx∑                                           (1) 

Equation (1) can be manipulated easily to obtain )
cosθ
cosφ

(F =T s  

 
Statical equilibrium in y direction:  0=  10 -φsinF+θTsin⇒0=F sy∑                     (2) 
 
With appropriate substitution Equation (2) can be expressed as a nonlinear equation of a 
single variable θ.   
 
This provided a framework for discussing solutions of nonlinear equations using Newton 
Raphson. Values of θ from 0 to 90 degrees were entered into the first spreadsheet column 
followed by Fs (spring force), φ (phi), T (tension in rope) and finally Equation 2 in the 
last column. The transition from positive to negative values in the last column indicates 
the location of roots. The interval could be resolved more finely to obtain a solution for θ, 
the spring force, and the tension in the rope. The first iteration in search for solutions 
used θ values ranging from 0 to 90 degrees at 10 degree intervals. The zero crossing in 
the last column (Equation 2) lies between 30 and 40 degrees indicating the solution lies 
between 30 degrees and 40 degrees. TABLE-1 displays the an EXCEL spreadsheet in 
which rows were inserted first at intervals of 2 degrees between 30 degrees and 40 
degrees and then at 0.5 degrees between 34 and 36 degrees (since the zero crossing was 
between 34 and 36 degrees). Clearly, 35 degrees is a reasonably accurate solution since 
the expression in the final column is very close to zero at 35 degrees. The spring force 
(Fs) and rope tension (T) at 35 degrees is 9.383 lbs. and 10.303 lbs. respectively. 
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Teachers participating were quick to point out that iterative approaches would allow still 
finer estimates and that the method is similar to the bisection method of solving nonlinear 
equations.  
 

Th θ=(pi/180)th 

     Fs = 
k*2(sqrt(5-
4cosθ)-1) φ=arctan(2sinθ/4-2cosθ) T=Fs(cosφ/cosθ) Tsinθ+ Fssinφ -10 

0 0 0 0 0 -10 
10 0.174527778 0.898039928 0.169405345 0.898839248 -9.692516607 
20 0.349055556 3.422954531 0.312022446 3.466733401 -7.763548424 
30 0.523583333 7.179036441 0.415275878 7.584992352 -3.311277743 
32 0.558488889 8.039393146 0.431146934 8.612258259 -2.076551423 
34 0.593394444 8.928517922 0.445519869 9.718354794 -0.718165983 
34.5 0.602120833 9.154942351 0.448885559 10.00802236 -0.358645209 
35 0.610847222 9.382933363 0.452162068 10.30319714 0.009029076 
35.5 0.619573611 9.612446698 0.455350341 10.6040151 0.384957986 
36 0.6283 9.843438723 0.458451334 10.91061885 0.769248431 
38 0.663205556 10.78134297 0.47000195 12.19798974 2.392385458 
40 0.698111111 11.73957786 0.48023466 13.59123974 4.15960208 
50 0.872638889 16.75354135 0.513847456 22.69729249 15.62165212 
60 1.047166667 21.96059769 0.523598775 38.03483637 33.91884601 
70 1.221694444 27.17172022 0.515630071 69.10871754 68.33801616 
80 1.396222222 32.24725349 0.494536393 163.4168927 166.238363 
90 1.57075 37.08079624 0.463656874 715912.2244 715918.807 

TABLE -1 Subsequent Iterations to Obtain the Solution 
 
Working Model 2D/Interactive Physics allowed participants to simulate realistic 
situations arising in engineering mechanics problems (Statics as well as Dynamics). The 
screenshot shown in Figure 2 displays an instance of the animated solution of the 
problem after the spring-mass-rope system stabilized. The force of 10 lbs. was realized 
by 10 lb weight hung from the joint of the 2 ft rope and 2 ft. spring simulated in the 
software. The rope tension and spring force can also be measured and displayed in the 
software. Clearly the results confirm the EXCEL solution. The spring force and rope 
tension as displayed in the screenshot are 9.377 lbs and 10.296 lbs. The screenshot also 
shows that the length of the spring stretches to 31.502 in. but the length of the rope 
remains fixed at 24 in.  
 
The “Moment Machine” construction and design, a popular exercise in one of the 
ongoing middle school outreach programs at UMES[29], was appropriately included in 
this course. While the emphasis with the middle school students has generally been the 
demonstration of the moment balance principle and its’ application in designing the 
“moment machine”, analysis using EXCEL and the open-ended nature of the design 
problem with multiple solutions were highlighted for our teacher participants. Based on 
the principle of levers and moment balance, this unequal arm balance is similar to a 
Steelyard or Bismar scale. The object to be weighed (Wu) and the counterweight (Wc) are 
located on the shorter side to the left of the pivot and the adjustable or sliding weight 
(Wa) is located to the right of the pivot on the longer side – the arm with appropriate 
calibration marks.  
 

P
age 10.173.5



                                                                                                                       Session #1470 

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2005, American Society for Engineering Education 

 

 
FIGURE 2: Working Model 2D /Interactive Physics solution 

 
Assuming that Lc, Lu, La and Lb are the distances of the counterweight (Wc), unknown 
weight to be measured (Wu), sliding weight (Wa) and the center of the balance beam 
(center of gravity from which its’ weight Wb acts) from the pivot, the moment balance 
equation for the unequal arm balance ( see Figure 3) can be written as: 
 

WcLc + WuLu - WaLa – WbLb = 0                                            (3) 
 
There are several variables in Equation 3, and several solutions exist. The participants’ 
first task was to get an intuitive feel for the “Moment Machine” by designing an 
arrangement that would weigh items from 0 to 500 grams. The locations for the 
counterweight, unknown weight and pivot were chosen with due regard to the length of 
the beam and other considerations relevant to the design problem. Reasonable choices 
were “eyed” and subsequently measured.  Pivot location at 23.4 cm from the left hand 
corner and 76.4 cm from the right hand corner (100 cm beam length) and Lc = 17.9 cm 
and  Lu = 6.5 cm were chosen. These choices resulted from splitting the beam into 
unequal arms by locating the pivot at roughly 1/3rd the length of the beam, locating the 
counterweight close to the left hand corner, and locating the container for the unknown 
weight close to the pivot but without touching the vertical rod in the frame as shown in 
Figure 3.  
 
First the “0” is located and marked on the beam by sliding the adjustable weight close to 
the pivot, without any weight in the cup, thereafter the adjustable weight is slid to the 
extreme right of the beam with a 500 gram weight in the cup. Calibration marks are made 
at 25g intervals with appropriate calibration weights in the cup and adjustments in the 
sliding weight location. In all cases balance is achieved when the beam is horizontal. 
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Some trial and error of the counterweight and adjustable weight magnitudes were 
necessary to achieve the desired results. Subsequent to this exercise participants were 
challenged to design an arrangement to weigh 0 to 800 grams with the same apparatus. 
EXCEL spreadsheet was utilized to choose an appropriate arrangement for the variables 
in Equation 3 so as to allow a feasible solution. 
       

 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3: Schematic of the Moment Machine 
 
The solution proceeded by the decision to keep the locations for the weights and pivots 
the same as before, thereby reducing the number of variables. An electronic scale was 
utilized to weigh the plastic cup (container for Wu = 9.44 g), counterweight (65.69g), 
adjustable weight (38.39g), and the beam (52.15g).  The 2g locknuts were utilized to 
adjust the counterweight and the adjustable weight and for all arrangements La. The 
distance of the adjustable siding weight to the right of the pivot was calculated using 
Equation 3 in the EXCEL spreadsheet. A portion of the EXCEL spreadsheet developed 
by one of the teams is shown in Table 3. 
 
While all solution pairs shown are mathematically feasible, only the solution pairs 
highlighted satisfy the constraints in the problem. The weight of the beam acts at its’ 
center 50 cm from the corners and 26.6 cm to the right of the pivot. The weights of 9.44g 
and 809.44g correspond to no weight in the cup and 800g in the cup respectively. The 
solutions are for 2g increments in counterweight and adjustable weight. With preliminary 
choices in locations, the length of the beam to the right of the pivot is 76.4 cm. This 
limits the distance of the adjustable weight from 5-7 cm to the right of the pivot for “0” 
and roughly 76.4 – 3/5 = 73.4/71.4 cm to the right of the pivot for the 800g unknown. 
These choices when physically applied to the beam balance yielded satisfactory results; 
calibration marks were made at 25 g intervals with known calibration weights. This phase 
of the course was concluded by introducing the teachers to the West Point Bridge Design 
Software. The bridge design concepts complemented previous discussions related to 

Counterweight 

Object to be 
weighed Sliding weight 

Pivot 

Balance Beam 
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“Statics”.  Finally, the participant teams prepared lesson plans and materials for use in K-
12 classes using the concepts introduced thus far.  
 

Wc Lc Wu Lu Wb Lb Wa La = (WcLc + WuLu - WbLb)/Wa 

93.69 17.9 9.44 6.5 52.15 26.6 66.39 5.290269619 
93.69 17.9 809.44 6.5 52.15 26.6 66.39 83.61531857 
95.69 17.9 9.44 6.5 52.15 26.6 68.39 5.659029098 
95.69 17.9 809.44 6.5 52.15 26.6 68.39 81.69353707 
97.69 17.9 9.44 6.5 52.15 26.6 70.39 6.006833357 
97.69 17.9 809.44 6.5 52.15 26.6 70.39 79.88096321 
99.69 17.9 9.44 6.5 52.15 26.6 72.39 6.335419257 
99.69 17.9 809.44 6.5 52.15 26.6 72.39 78.16854538 

101.69 17.9 9.44 6.5 52.15 26.6 74.39 6.646336873 
101.69 17.9 809.44 6.5 52.15 26.6 74.39 76.5482054 
103.69 17.9 9.44 6.5 52.15 26.6 76.39 6.940973949 
103.69 17.9 809.44 6.5 52.15 26.6 76.39 75.01271109 
105.69 17.9 9.44 6.5 52.15 26.6 78.39 7.220576604 
105.69 17.9 809.44 6.5 52.15 26.6 78.39 73.55556831 
107.69 17.9 9.44 6.5 52.15 26.6 80.39 7.486266949 
107.69 17.9 809.44 6.5 52.15 26.6 80.39 72.17092922 
109.69 17.9 9.44 6.5 52.15 26.6 82.39 7.739058138 
109.69 17.9 809.44 6.5 52.15 26.6 82.39 70.85351378 
111.69 17.9 9.44 6.5 52.15 26.6 84.39 7.979867283 
111.69 17.9 809.44 6.5 52.15 26.6 84.39 69.59854248 

                                                Table 2 - Moment Machine Analysis 
 
 

 
Figure 3: Middle School Students working on “Moment Machine” 

 
Discussion pertaining to “Dynamics” followed the “Statics” portion of the course.  Four 
bar linkages provided the background for the discussion. Following Norton [30], teacher 
participants worked in teams to design on paper a four bar linkage system that would 
have a rocking angle of 45 degree. The four bar linkage consists of a ground or fixed link, 
a crank which is supposed to rotate at a constant rpm using a motor or engine, a 
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connecting rod, and follower which is supposed to provide the desired motion (typically, 
a back and forth rocking motion of varying rocking angle according to design 
specification). Many devices including those found in amusement parks, exercise 
machines, and camera shutter mechanisms are based on an appropriately designed four 
bar linkage. It was left to participants as a matter of discovery that for the crank of the 
four-bar mechanism to rotate 360 degrees it is necessary to satisfy Grashof condition 
(S+L < P+ Q; the sum of the shortest and longest link must be less than the sum of the 
other two links). Teachers could easily design the lengths of each of the links on paper 
using appropriate geometrical construction for desired rocking angle of 45 degree. A few 
iterations were necessary to ensure that the lengths obtained do indeed satisfy the Grashof 
condition. Pieces of cardboard and thumbtacks were used to put together a working 
mechanism. Also the Working Model 2D/Interactive Physics software was used to 
construct and animate a four bar mechanism producing the appropriate rocking angle. A 
screenshot of a simulated four bar mechanism while it is undergoing motion in the 
Working Model 2D/Interactive Physics environment is shown in Figure 4a. The light 
blue links are those corresponding to the various positions of the links as the crank 
undergoes 360 degree motion (tracked every 16 frames in the software). The dark blue 
links show the initial configuration of the fourbar linkage. The various links and their 
corresponding names are indicated in the Figures 4a and 4b. The angle µ between the 
connecting rod and the follower is important from the kinetic consideration as it 
determines the efficacy of force transmission from the connecting rod and the follower 
(F3 to 4 in Figure 4b) and is termed the “ transmission angle” of the four bar linkage. The 
component F3 to 4 sin(µ) is responsible for the motion of the follower. Therefore, a good 
four bar linkage design tries to keep the angle µ as high as possible (at least 45 degrees) 
throughout the rotation of the crank. 

 
After completing the first phase of the four bar mechanism design purely from kinematic 
considerations, two more solutions involving different link lengths that would satisfied 
the Grashof condition as well as the rocking angle of 45 degree were sought and 
obtained. Participants, then, used EXCEL and fundamental trigonometry to analyze the 
three different solutions and identify the best solution using kinetic considerations. 
Using the Law of Cosines (see Figure 4b): 
 

           Z2 = r1
2 + r2

2 -2r1r2cos(θ) = r3
2 + r4

2-2r3r4cos(µ)                                           (4) 
               cos (µ) =  (r1

2 + r2
2 -2r1r2cos(θ) - r3

2 - r4
2) / -2r3r4 

 
From Equation 4, it is possible to solve for all values of transmission angle (µ) as the 
crank rotates by substituting values of (θ) at suitable intervals from 0 to 360 degree. It 
was convenient to use EXCEL for the purpose. Using known values of the link lengths 
for the three kinematically feasible solutions obtained before, it was possible to compare 
the resulting transmission angle to pick the best solution from kinetic consideration. This 
phase of the course also concluded with the teachers developing a lesson materials based 
on the four bar mechanism design exercise for use in their classrooms. 
 P
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Figure 4a: Four bar linkage animation in Working Model 2D 

 
 

 
                                     Figure 4 b. Four bar Linkage – Transmission Angle 
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A course component focusing on vectors, vector dot products, and vector cross products 
was included. Fundamentals of latitude and longitude, the spheroidal and ellipsoidal earth 
models, as well as Geographical Positioning Systems (GPS) were reviewed. If the earth is 
assumed to be a sphere of radius r and if A and B are two points on the surface of the 
earth with latitude and longitude of (a1, a2) and (b1, b2), then the position vectors OA and 
OB from the center of the earth O to points A and B on the surface can be represented as: 
 

OA = rcos(a1)cos(a2)i + rcos(a1)sin(a2)j + rsin(a1)k 
OB = rcos(b1)cos(b2)i + rcos(b1)sin(b2)j + rsin(b1)k 
 

where i, j, and k are unit vectors in the three-dimensional Cartesian coordinate directions. 
The magnitude of vectors OA and OB is radius r of the earth. By definition the dot 
product OA .OB = |OA||OB| cos (θ) can be expanded and simplified: 
 
r2cos(θ)=r2(cos(a1)cos(a2)cos(b1)cos(b2)+cos(a1)sin(a2)cos(b1)sin(b2)+sin(a1)sin(b1)            

     
       θ = arccos(sin(a1)sin(b1) + cos(a1)cos(b1)cos(a2-b2))                                    (5) 

   
An approximate distance can be easily obtained between points A and B by using the 
expression S = rθ, where S is the arc joining points A and B along a great circle (the 
circumference of the circular plane passing through A and B and the center of the earth) 
subtending the angle θ at the center of the earth. A rough approximation for r is 6371 km. 
When the angle θ is expressed in degrees instead of radians, the distance may be obtained 
by multiplying θ by 111km (111~ 6371*180/π , the distance on the surface of the earth 
for each degree latitude.) Following Carlson and Clay[31], the more accurate ellipsoidal 
earth model and the geodetic\geocentric latitudes and longitudes were reviewed. The 
teachers also used hand-held GPS technology to find latitudes and longitudes of points 
placed at known distances and verified the distances using EXCEL. 
 

 
      Figure 5: Tankbot (LEGO)            Figure 6: RCX-Code 
 
With local private support, Nagchaudhuri[32] has helped establish a state of the art 
robotics and control facility at UMES for teaching, research, and K-12 outreach 
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programs. This course introduced the teachers to the construction and programming of 
robotic devices made with the Lego Mindstorm Robotics Invention System kits. The 
teachers used the tankbot [Figure 5] and were challenged to create programs to make a 
square trajectory with 3 ft. long edges traversed in a total of 60 seconds. While 
programming the Lego robots is a valuable learning exercise in itself, the focus of this 
exercise centered on calculation of the correct speed, power and time settings necessary 
to covers the specified course. Figure 5 and Figure 6 show a tankbot and sample RCX-
code to achieve the desired results. Consistent with other course activities, these 
experiences were followed with opportunities for teachers to develop lesson materials.  
 
4. Conclusion 
The K-12 teachers that participated in the course overwhelmingly expressed their 
satisfaction with the course. Appendix–I provides the detail breakdown of how the course 
was implemented with regard to time. The teachers developed excellent lesson plans 
based on the “Moment Machine” and “Four Bar Mechanism” design projects for 
adaptation in K-12 environments. Developing lesson plans for the “Lat/Long/GPS” and 
“Lego robotics” project turned out to be more difficult for them. Most teachers who took 
the course have requested a similar course but entirely devoted to “robotics”. The authors 
are offering such a course this summer.  Discussions with the K-12 teachers revealed that 
cooperative effort is needed at the school level to coordinate Physics, Mathematics and 
Technology instruction to facilitate effective implementation of the lesson plans 
developed in this course. Feedback from the teachers after they implement these lesson 
plans in K-12 settings is crucial for appraising the efficacy of the course.  
                                              
5. Acknowledgment 
The authors would like to acknowledge the efforts of K-12 teachers and their flexibility 
to adapt to a new mode of learning. NASA-MASTAP Grant NRA 02 OEOP-02 provided 
the funding to develop and implement the course. 
 
 
 
Bibliography 
[1] Burger, Don (2002). Using standards-lead policy to align assessment and accountability 

systems. PREL Breifing Paper. Honolulu, HI: Pacific Resources for Education  
and Learning.(ERIC Document Reproduction Service No. ED473564) 

[2] Gullatt, David E. (1999, August). Determining local school effectiveness through state accountability 
directives: A national and state perspective. Paper presented at the Annual Meeting of the National 
Council of Professors of Education Administration, Jackson Hole, WY. 

[3] Claycomb, Carla & Haynes, Mariana (2003). From sanctions to solutions: Meeting the needs of low-
performing schools. State Education Standard, 4(2), 4-9. 

[4]   Seaton, D., and Carr, D., (2004 March) The impact of participation in an ancilliary science and  
mathematic program(SEMAA) on engagement rates of middle school students in regular mathematics 
classrooms.  Contributed presentation at the American Mathematics Society-Mathematics Education 
Reform Forum, Dubuque, IA. 

[5]  Graham K. J. & Fennell F. (2001). Principles and standards for school mathematics and teacher 
education: Preparing and empowering teachers. School Science and Mathematics,101(6), 319-327. 

[6] Peck, d. M. & Connell, M. L. (1991, April) Developing a pedagogically useful content knowledge in 
elementary mathematics. Paper presented at the Annual Meeting of the American Educational 
Research Association, Chicago, IL. 

P
age 10.173.12



                                                                                                                       Session #1470 

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2005, American Society for Engineering Education 

 

[7] Langbort, Carol (1989, March). Making math leaders: the San Francisco mate leadership project. 
Paper presented at the Annual Meeting of the American Association of Colleges for Teacher 
Education, Anaheim, CA. 

[8] Trahan, Christopher (2002). Implications of the no child left behind act of 2001 for teacher education. 
(ERIC Document Reproduction Service No. ED477723) 

[9] Lloyd, Gwendolyn M. (2002). Mathematics teachers beliefs and experiences with innovative 
curriculum materials in G. Leder & E. Pehkonen, (Eds.), Beliefs: A hidden variable in math3ematics 
education? (pp. 1-11). Netherlands: Kluwer Academic Publishers. 

[10] Eisenhart, Margaret and others (1993). Conceptual knowledge falls through the cracks: Complexities 
of learning to teach mathematics for understanding. Journal forResearch in Mathematics Education, 
24(1), 8-40.  

[11] Foss, Donna H. & Kleinsasser, Robert C. (1996). Preservice elementary teachers’ view of pedagogical 
and mathematical content knowledge. Teaching and Teacher Education. 12(4), 429-42. 

[12] Sneed, Lucy Carpenter (1998). Professional development for middle school mathematics teachers  
          to help them respond to NCTM standards. Journal of Teacher Education, 49(4), 287-95. 
[13]  Seaton, Daniel M. (2003, November). Improving mathematics teaching self-efficacy beliefs  

through professional develop. Presentation at the Fall Meeting of the MD-DC-VA Section of the   
Mathematical Association of America, Baltimore, MD. 

[14] Salyer, B, K & Curran, C. (2002, March). What can I use tomorrow? Strategies for accessible math 
and science curriculum for diverse learners in rural schools. No child Left Behind: The vital role of 
rural schools. Annual National Conference Proceedings of the American Council on Rural Special 
Education, Reno, MV. 

[15] Flourney, B. E., Cook-Bax, J. E., Harris, L. (2001). The science-mathematics connection: using  
 technology in an interdisciplinary model. Science Teacher, 68(6), 63-66. 
[16] Ramey, Linda K & Tomlin, James (2001, March). Using the globe program to enhance classroom  

teaching.  Paper presented at the Annual Meeting of the National Association for Research in Science 
Teaching, St. Louis, MO. 

[17] Deed, D. G., Allen, C. S., Callen, B. W.,  & Mark, D. (2000) A new paradigm in integrated math  
and science courses: finding common ground across disciplines. Journal of College Science Teaching, 
30(3) 178-83.  

[18] James, R. K. & Lamb, C. E. (2000). Integrating science, mathematics, and technology in middle  
         school technology-rich environment: a study of implementation and change. School Science and    

Mathematics. 100(1), 27 
[19] Hamm, Mary (1992). Achieving scientific literacy through a curriculum connected with  
 mathematics and technology. School Science and Mathematics, 92(1), 6-9. 
[20] Evans, Norma (2001). Inquiry-based professional development: letting questions direct teachers’  
 learning. Voyages in Mathematics and Science, (26). 
[21] Thomas, J. A.,  Cooper, S. B., & Ponticell, J. A. (2000). Doing math the science way: staff  

development for integrated teaching and learning. in D. J. McIntyre & D. M. Byrd (Eds) Research on  
effective models for teacher education. Teacher education yearbook VIII. Reston, VA: Association of 
Teacher Educators. 

[22] Roebuck, Kay I. &Warden, Melissa A. (1998). Searching for the center on the mathematics- 
 science continuum. School Science and Mathematics, 98(6), 328-333. 
[23] Scottile, James M., Carter, William, & Murphy, Ruth Ann (2002, April). The influence of self- 

efficacy on school culture, science achievement, and math achievement among inservice teachers. 
Paper presented at the Annual Meeting of the American Educational Research Association, New 
Orleans, LA.  

[24] Stevenson, F. W. (1992). Exploratory problems in mathematics. Reston, VA: National Council of  
 Teachers of Mathematics, Inc. 
[25] Venville, G. Wallace, J., Rennie, L., Malone, J. (2000). Bridging the boundaries of  
 compartmentalized knowledge: student learning in an integrated environment. Research in Science  
 and Technological Education, 18(1), 23-35.  
 [26] MSC. Software ( Knowledge Revolution) Working Model 2D User’s Manual  Version 5 
 [27] Dally, J.W. and Rocheleau, D.N., (1998) Introduction to Engineering Design, Book 3  
         ( Postal Scales), College House Enterprises, LLC, Knoxville, Tennessee. 
 [28] Hibbeler, R.C. ( 2003), Engineering Mechanics : Statics Prentice Hall Publishers  

P
age 10.173.13



                                                                                                                       Session #1470 

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2005, American Society for Engineering Education 

 

 [29] Nagchaudhuri, A., and Singh, G.,(2003) Middle School students gets Introduced to Fundamentals  
         of Engineering at the UMES-NOAA Summer Camp, Proceedings of the 2003 ASEE Annual  

Conference, Nashville, June 2003, CD ROM 
 [30] Norton, R.L., Design of Machinery- Introduction to the Synthesis and Analysis of Mechanisms and  
         Machines,  McGraw Hill Publishers 
 [31] Carlson, C.G. and Clay, D.E.,(2002) “ The Earth Model- Calculating Field Sizes and Distances  
         Between Points Using GPS Coordinates” and other supplementary notes. 
         Available Online @ URL http://www.precisionag.org/WestHills/Refrences/PPI/SSMG%2011.pdf 
[32] Nagchaudhuri, A., Srinivas, S., and Kundavaram, R.,(2004) Mechtraonics and Flexible  
       Automation Efforts at the UMESMAL, Proceedings of Japan –USA Symposium on Flexible  
       Automation, July 2004, Denver, Co. 
 
 
 
ABHIJIT NAGCHAUDHURI 
Abhijit Nagchaudhuri is currently an Associate Professor in the Department of Engineering and Aviation 
Sciences at University of Maryland Eastern Shore. Prior to joining UMES he worked in Turabo University 
in San Juan , PR as well as Duke University in Durham North Carolina as Assistant Professor and Research 
Assistant Professor, respectively. Dr. Nagchaudhuri is a member of ASME, SME and ASEE professional 
societies and is actively involved in teaching and research in the fields of  engineering mechanics, robotics, 
systems and control and design of mechanical and mechatronic systems. Dr. Nagchaudhuri received his 
bachelors degree from Jadavpur University in Calcutta, India with a honors in Mechanical Engineering in 
1983, thereafter, he worked in a multinational industry for 4 years before joining Tulane University as a 
graduate student in the fall of 1987. He received his M.S. degree from Tulane University in 1989 and Ph.D. 
degree from Duke University in 1992. 
 
DANIEL M. SEATON 
Daniel Seaton is currently an Assistant Professor in the Department of Mathematics and Computer Science 
at University of Maryland Eastern Shore. 
 

P
age 10.173.14



                                                                                                                       Session #1470 

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2005, American Society for Engineering Education 

 

Appendix -I 
Course Schedule: 

DATE MORNING AFTERNOON 

 
 

DAY –1, June 28, 2004 

Review of mathematics fundamentals: 
-Sine law, Cosine law, Pythagorus theorem, 
Resolving forces and moments into orthogonal 
components 
-Solution of simultaneous equations 
-Iterative solution of nonlinear equations using 
bisection method. 
-Introduction to EXCEL (bisection method) 
-Basics of Geometry/Geometrical construction 
-Hands On (Computer Lab) 

Slope and differentiation, Chain rule 
Newton Raphson Method of solving nonlinear 
equations. 
 
Newton’s Laws of Motion 
Units – SI and FPS 
Introduction to engineering mechanics 
Statics, kinematics and kinetics. 
Introduction to Projects 
Simple machines, Moment Balance 
Working Model and Project-1 (start) 

 

 

DAY-2, June 29, 2004 

 

Complete Project-1, Resolution and Accuracy. 

 
Analysis and Project report 
Develop lesson plan for middle school 
math/physics class. 

Solving basic statics problems using 

simultaneous equations 

Springs, spring constant and spring force, 
Springs in series and Springs in parallel. 
 
Spring problems in statics, nonlinear equations 
and iterative solutions using EXCEL. 
 
Solution using Working Model 2D 
Introduction to Take Home Project 
(Project 2) - Optional 

 
 

DAY-3, June 30, 
2004 

Mobility, Structures and Mechanisms. 

Truss structures, bridges and West Point Bridge 
Design ( Download Information). 
Mechanisms, Inversion of Mechanisms, 
Slider Crank and Fourbar Mechanism 
Grashof  Condition., Non Grashof  fourbar 
mechanisms and their use. 
Start Project 3 – Phase I 

Complete Phase-I ( Project 3) 

Animate using Working Model 
Solve for maximum and minimum transmission 
angle and other values of transmission angle for 
different values of crank angle using EXCEL, 
compare with physical device. 
 
Criteria for efficient four bar mechanism- 
Introduction to Project 3 (Phase –II) 

 
 
 

DAY- 4, July 1, 2004 

Optimize fourbar mechanism for efficiency 
EXCEL analysis and Working Model Analysis 
using protractor on computer screen. 
 
Rebuild , Test and Analyze 
(If time permits) 
Introduction to relatively advanced 
mathematical concepts ( partial derivatives, 
gradient, linear approximation of nonlinear 
equations) for analysis of fourbar mechanisms. 
 

Write a report and develop a lesson plan for 
high school mathematics class using the 
concepts introduced for fourbar mechanism 
design and analysis. 
 
Vectors, Dot and Cross Product of Vectors 
Latitude and Longitude, Introduction to GPS, 
Using spherical and ellipsoidal earthmodel to 
find distance between two points given their 
latitude and longitude. 
 
 

 
DAY –5, July 2, 2004 

Tour of Mechatronics Laboratory. 
 
-Forward and Inverse Kinematics of Robots 
-Multiple solutions and basic trigonometry 
applications for inverse kinematics 
-Righty and Lefty configuration 
-Demonstration and Experiments with LEGO 
Robots suitable for middle and high school. 
 

Complete Project/ Report/Lesson Plan if 

necessary. 

Discussion & Question and Answer. 
 
Wrap Up. 

 
Grading Scheme :  Classwork (50%), Project Report and Lesson Plan (50%) 
                                 Optional Take Home Project (20% - Bonus Points) 
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