
“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

5-STEP DESIGN METHODOLOGY FOR A GENERAL

 PURPOSE CPU USING STANDARD CPLDs/FPGAs

Karim Salman, Michael B. Anderton

Middle Tennessee State University

Abstract

We present a novel hardware Central Processing Unit (CPU) design methodology based

on a 5-step approach. The method starts with a definition of the target CPU internal

components and data and address size. The method is applicable to a higher level of

abstraction and complexity. However, for ease of illustration a basic CPU with a

minimum size instruction set is selected. The instruction set complies with the instruction

set completeness criteria. The instruction format is likewise chosen to be simple and

illustrates the way our methodology is implemented. The CPU is implemented on an

Altera FPGA/CPLD Flex10K device using schematic approach with the Altera

MAX+Plus II software CAD. The design was simulated and tested using Altera UP2

board.

Introduction

CPU design for engineering/engineering technology students varied widely in objectives

and approach1-7. For a long time, block diagrams of simple CPUs have been used in

beginning computer courses, mainly to allow students to visualize how a CPU functions.

To meet this need, many textbook authors1,6,7 have devised simple CPUs at the block

diagram level to illustrate how instructions are executed and data are manipulated.

Obviously, omitting many of the circuit details allows an overall understanding that is

usually sufficient for students with little or no experience with digital circuits. However,

students in accredited Electronics and Computer Engineering and Engineering

Technology programs, have a more thorough background in digital circuit design. They

are able to understand how instructions are decoded, what control signals are required for

datapath operation, and how those control signals are generated. By examining this extra

level of detail, students can better tie the new material to principles they have already

learned. The low end approach is mainly descriptive of either a hypothetical ad hoc

designs that remain to be implemented and tested4,6,8, or description of operation and

design criteria of available well established designs10. On the high end, the approach

usually departs and concentrates on describing complex architectures. This paper

describes an architecture that is amenable to hardware implementation. A 5-step design

methodology is presented. Although the paper adopts an already described architecture6,

P
age 10.8.1

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

the 5-steps described here allow a novice to be able to tackle, design and implement more

challenging and advanced CPU architectures.

The design methodology

We begin by establishing some requirements for the CPU in mind. However, we are

attempting to finally design and implement a simple architecture without sacrificing the

important and basic issues in such design. For example we need first to address the

following issues: word length, memory size, and registers. These can also be restated or

modified without in another design once the methodology is adhered to. Since we are

adopting a previously published design, the first two steps in our methodology would be

to define our basic computer:

1. 16-bit data wordlength and 12-bit memory address. The wordlength size can

address double precision data more readily than 8-bit designs, yet it adds little

overhead in our methodology. The memory size will not be too prohibitive for

hardware implementation. Our choice for the target hardware platform is Altera

Flex10K FPGA/CPLD device11. The memory size can therefore be increased if a

newer device is selected.

2. The hardware components will consist of :

a. A memory unit with 2k words of 16-bits each.

b. Ten registers.

c. Two decoders: a 3x8 operation decoder and a 4x16 timing

decoder.

d. A 16-bit multiplexer based common bus.

e. Control Logic Unit.

f. Arithmetic and Logic Unit (ALU).

In addition to a 4-bit Sequence Counter (SC), there are 9-registers as shown in

Fig. 1:

Fig. 1 Basic computer registers and memory.

• Two address registers, the Program Counter (PC), and the Address

Register (AR). Both are 12-bit wide. The program counter takes charge of

the instruction normal flow whereas the Address Register main duty is to

P
age 10.8.2

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

address the memory. This is an important concept in the design because it

makes the design easy to implement from the hardware point of view, and

allows interrupt handling without adding additional address registers.

• A 16-bit instruction register (IR). The instruction format that dictates this

choice will be addressed later.

• A 16-bit accumulator (AC). The input to this accumulator is connected

directly to the output of the Arithmetic and Logic Unit (ALU). The AC

output permanently feeds and shares one leg of the ALU with the input

register (INPR).

• Two additional 16-bit data registers, a Data Register (DR), and a

Temporary Register (TR). The DR is permanently connected to the

second leg of the ALU. Therefore, the ALU is physically separated from

the main bus. This feature is important to avoid metastabilities in the

sequential design.

• Two 8-bit registers. One is the Input Register (INPR), and the other one is

the Output Register (OUTR). These facilitate communications with

external input and output devices.

• A collection of 7 disjoint flip flops that collectively act as the CPU status

register. The Interrupt Register (R), The Stop Register (S), The Carry

Register (E), the Addressing Mode Register (I), the Interrupt Enable

Register (IEN), the Flag Input Register (FGI), and the Flag Output

Register (FGO). These are individually controlled as will be detailed later.

3. A simple instruction format, as shown below. By dividing the instruction word

into three fields allows the choice of three basic references: Memory, Register,

and Input/Output. The memory instruction format can be subdivided into Direct

and Indirect through the I-bit. The register instruction format makes use of the 12-

least significant bits of the instruction word. Without decoding, these can address

11 register instructions and the Halt instruction. No memory reference is used

here. The input/output addressing mode utilizes only part of the available code in

the 12-least significant bits when the 4-most significant bits are all 1’s. With three

bit
12 14

IR
−

 we are allowed to address 7-memory reference instructions. An

instruction decoder is used to produce 8 control signals
0 1 7
, , ...,D D D . The last

signal determines whether the instruction is memory reference when
7

0D = or

non-memory reference when
7

1D = . However, these can also be in a direct or

indirect mode depending on the status of the
15

IR bit which is the I-bit. The

instruction set, though looks too few, but they are sufficient to satisfy the general

instruction-set-completeness requirements, that requires minimum set of

instructions in each of the following categories:

4. Arithmetic (ADD, INC, CLA), Logical (AND, CMA, CME, CLE), and Shift

instructions (CIR, CIL). The three arithmetic instructions are sufficient to

address all necessary arithmetic operations. For example, subtraction can be

achieved by 2’s arithmetic through 1’s complementing AC (CMA), and

incrementing (INC). Multiplication and Division is achieved through successive

additions and subtractions. Logical operations are likewise achieved through the

Boolean two primitives AND, and any of the two instructions CMA, CME. P
age 10.8.3

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

Arithmetic and logical shift operations are achieved through the two instructions

CIR or CIL and proper choice of the E flip flop. Signed or unsigned arithmetic

operations are delegated to a software task by testing and controlling the most

significant bit of the accumulator.

• Memory Reference Instructions. Moving information to and from memory

and processor registers can be achieved through the instructions AND,

ADD, LDA, and STA.

• Program Control Instructions BUN, BSA, ISZ, SPA, SNA, and SZA, as

well as processor status check instructions SZE, SKI, SKO, ION, and

IOF.

• Input and Output instructions INP and OUT.
0

AR
1

AR
2

AR
3

AR
4

AR
5

AR
6

AR
7

AR
8

AR
9

AR
10

AR
11

AR
15

IR
14

IR
13

IR
12

IR

11
B

10
B 9B 8B 7B 6

B
5

B
4

B
3

B
2

B
1

B
0

B

11
B

10
B

9
B

8
B

7B 6B

7
1D =

7 1D =

15
IR

14
IR

13
IR

12
IR

15
IR

14
IR

13
IR

12
IR

Fig. 2 Instruction format.

5. Control Unit Design. This step represents the bulk and the heart of the CPU

design. In order to be able to address the complex structure and timing constraints

associated with the control unit a sequential design approach must be attempted.

This is due to the fact that unlike the ALU, which is essentially a combinational

circuit, most of the operations in the control unit are basically sequential because

they deal with data in or out of the registers at the transitions of the CPU clock.

Using the Register Transfer Language can describe more easily the sequential

operations entailed. The normal Fetch, Decode, and Execute phases can also be

addressed quite effectively with this simple language. The use of this language

can transform the assembly code instructions and operations down to the

microprogrammable level in accordance with the transition of the master clock.

 Since each instruction has to pass through the above three phases in Table 1, and

in order to restrict the operations of each instructions within specified time

windows, an instruction sequence counter (SC) is used that will provide a number

of timing pulses
0 1 6
, , ...,T T T , Fig 3, depending on phase and the instruction being

processed.

P
age 10.8.4

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

Table 1 Control Functions and Micro Operations for the Basic Computer.

0

1 1

Fetch :

 : [],

Decode

RT AR PC

RT IR M AR PC PC

R

←

← ← +

2 0 7

7 3

12 14

0 11 15

: , ..., (),

 (), ()

Indirect : []

Interrupt

T D D Decode IR

AR IR I IR

D IT AR M AR

← −

← − ←

←

0 1 2

0

1

1

0

0

()() :

 : ,

 : [] ,

T TT IEN FGI FGO R

RT AR TR PC

RT M AR TR PC

+ ←

← ←

← ←

2

0 4

1 0 0 0 : , , ,

Memory Reference:

 AND : []

RT PC PC IEN R SC

D T Dr M AR

← + ← ← ←

←

0 5

1 4

1 5

0

0

 : ,

 ADD : []

 : , ,

out

D T AC AC DR SC

DT DR M AR

DT AC AC DR E C SC

← ∧ ←

←

← + ← ←

2 4

2 5

3 4

0

 LDA : []

 : ,

 STA : []

D T DR M AR

D T AC DR SC

D T M AR A

←

← ←

←

4 4

5 4

0

0

1

,

 BUN : ,

 BSA : [] ,

C SC

D T PC AR SC

D T M AR PC AR AR

←

← ←

← ← +

5 5

6 4

6 5

0

1

 : ,

 ISZ : []

 :

D T PC AR SC

D T DR M AR

D T DR DR

← ←

←

← +

6 6

7 3

0 1 0 : [] , () (),

Register-Reference:

 ()

D T M AR DR if DR then PC PC SC

D IT r common to all register reference instructions

← = ← + ←

= −

0 1 2 11

0

 () (, , , ...,)

 CLA

i
IR i B i

r SC

= =

= ←

11

10

9

8

0

0

 :

 CLE :

 CMA :

 CME :

rB AC

rB E

rB AC AC

rB E E

←

←

←

←

7

6

15 0

0 15

 CIR : , () , ()

 CIL : , () , ()

 INC

rB AC shrAC AC E E AC

rB AC shlAC AC E E AC

← ← ←

← ← ←

5

4

3

1

15 0 1

15 1

 :

 SPA : (()) ()

 SNA : (())

rB AC AC

rB If AC then PC PC

rB If AC

← +

= ← +

=

2

1

1

0 1

0 1

 ()

 SZA : () ()

 SZE : () ()

 HLT

then PC PC

rB If AC then PC PC

rB If E then PC PC

← +

= ← +

= ← +

0

7 3

0 :

Input-Output:

 ()

rB S

D IT p common to all input output instructions

=

= −

11

6 7 8 9 10 11

0

0 7 0

 () (, , , , ,)

 INP : () ,

 OUT

iIR i B i

p SC

pB AC INPR FGI

= =

= ←

− ← ←

10

9

8

0 7 0

1 1

1

 : (),

 SKI : () ()

 SKO : ()

pB OUTR AC FGO

pB If FGI then PC PC

pB If FGO

← − ←

= ← +

=

7

6

1

1

0

 ()

 ION :

 IOF :

then PC PC

pB IEN

pB IEN

← +

←

←

P
age 10.8.5

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

Fig. 3 T timing signals.

Each instruction will be translated into the microprogrammable level through the

register transfer language. Table 1 describes all the operations needed for each

instruction for the whole processor. Hence this table can be considered as the blue

print for this processor. Once this table is formed the rest of the design is simply

logical equation formation and implementation. Associated with this table is the

internal CPU architecture. As depicted in Fig. 4, the bus system has a separate

control unit.

Fig. 4 Basic computer registers connected to a common bus.

 P
age 10.8.6

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

 Out of three approaches for the bus design, namely Open Collector, Tri State, or

Multiplexer, the latter is adopted. Any of the others can be equally selected for the

design without undue degradation. At any time only one device can assume

control of the bus system. Hence an encoder system with three select signals will

ensure that any device can control the bus during any clock cycle, Fig. 5. For

example when
2 1 0

111S S S = the memory is being read and therefore the memory

will assume control of the bus.

1x

2x

3x

4x

5x

6x

7x

0S

1S

2S

Fig. 5 Encoder for bus selection.

 The data in the bus will be transferred to the destination register at the correct

clock transition when the particular load signal is active. Several steps are also

required to facilitate easy hardware implementation. For example, seven registers

share the Load control signal (LD) feature, five registers share the Increment

control signal (INR) feature, and six registers share the Clear control signal

(CLR) feature. Hence it will be beneficial if all the three control signals are

embedded in one 16-bit register model. Enabling / disabling these signals can

represent any of the eight registers. Fig. 6 depicts the implementation of 1-bit of

this register using Altera MAX+PLUS II FPGA/CPLD CAD9 schematic

approach.

Fig. 6 1-bit of a 16-bit register with load, increment, and clear signals.

 P
age 10.8.7

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

 As an example, if the IR register was selected by the instruction during the fetch

cycle, then the memory contents in the bus system should be loaded to this

register when the LD of this register is active. Since the fetch cycle is common to

all instructions, then we can see from Table 1 that two timing signals are required

for this phase, 0T and 1T . During 0T the load signal LD of the AR register, i.e.

AR
LD has to be active. The logic equation for this signal is derived by scanning

Table 1 at the fetch cycle and during 0T . This results in the following

equation: 0AR
LD RT= . However,

AR
LD can also be asserted during 2T or even 3T if

we have indirect reference to the memory. Hence the total logic equation

for
AR

LD would be: 0 2 7 3AR
LD RT RT D IT= + + . In the same way the other two

signals can be derived. The
AR

INR is asserted during the execution phase of the

BSA instruction, thus: 5 4AR
INR D T= and the

AR
CLR signal is asserted during

interrupt only: 0AR
CLR RT= . Similarly, we can scan for the AC:

0 5 1 5 2 5 7 3 11 7 3 9 7 6 5 11() ()
AC

LD D T DT D T D IT IR D IT IR IR IR IR IR= + + + + + + + +���� but

7 3 5AC
IN D IT IR= ���� and 7 3 11AC

CLR D IT IR= ���� . The memory read signal can be derived

by scanning Table 1 for the following RTL: (any register) []M AR← to obtain:

Read = 1 7 3 0 1 2 6 4()RT D IT D D D D T+ + + + + . The Boolean equation for the memory

write signal is obtained in a similar way but scanning for []M AR ← (any register)

instead. On the other hand, the bus control logic is derived from Tables 1 and

Table 2.

Table 2 Encoder for Bus Selection Circuit.

Inputs Outputs

x1 x2 x3 x4 x5 x6 x7 S2 S1 S0

Register selected

for bus
0 0 0 0 0 0 0 0 0 0 None

1 0 0 0 0 0 0 0 0 1 AR

0 1 0 0 0 0 0 0 1 0 PC

0 0 1 0 0 0 0 0 1 1 DR

0 0 0 1 0 0 0 1 0 0 AC

0 0 0 0 1 0 0 1 0 1 IR

0 0 0 0 0 1 0 1 1 0 TR

0 0 0 0 0 0 1 1 1 1 Memory

One of the following control signals 1 2 7, ,...,x x x are assigned to each device that

may control the bus. For example the memory would require 7x to be asserted in

order to carry out a read operation. The logic equation for this would be:

7 1 7 3 0 1 2 6 4()x RT D IT D D D D T= + + + + + .The others are similarly derived. The

ALU is designed by embedding Full Adders with logic between the DR and the

AC, as shown in Fig. 7.

 P
age 10.8.8

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

Fig. 7 AC Adder and logic, 1-bit.

As the design was progressing higher hierarchies were developed. For example,

Fig. 8 depicts the control logic for the PC Register. This logic was then

modularized into a symbol, Fig. 9. This module was then placed with all the other

control modules associated with the other registers and timing signals, Fig. 10,

and modularized again into a master Control Module as shown in Fig. 11. This

hierarchal approach continues into Fig. 12 to include the Control Module,

Register Module, memory unit, S flip-flop, and the bus multiplexer, and then

finalized in Fig. 13, the top level module representing a complete CPU.

P
age 10.8.9

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

Fig. 8 Control logic for the PC Register.

Fig. 9 Control Module for the PC Register.

P
age 10.8.10

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

Fig. 10 Flip-flops, timing signals, and a module for each register’s control signals.

Fig. 11 Control Module.

P
age 10.8.11

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

Fig. 12 Control Module, Register Module, memory unit, S flip-flop, and the bus

multiplexer.

Fig. 13 Complete CPU Module.

 P
age 10.8.12

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

 The design was tested in two ways. First, it was simulated, Fig. 14, using

MAX+Plus II9 software with a small program listed in Table 3. After a successful

simulation, the design was downloaded onto the Altera UP2 board, Fig. 15, and

tested with the same program listed in Table 3. The LED’s and 7-segment

displays on the UP2 were utilized to observe the testing.

Fig. 14 Simulation of program in Table 3.

Fig. 15 Altera UP2 board

P
age 10.8.13

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

As depicted in Fig. 14, the program starts when System_Start is pulsed, which

sets the S flip-flop. The PC Register is transferred to the AR Register when

0
1T = . When

1
1T = the instruction in memory pointed to by AR is loaded into the

IR Register to be decoded, and the PC Register was incremented to 001h in

preparation for the next time
0

1T = . The PC Register started at 000h, when

loaded into AR pointed to the first location in memory. At that location is the

opcode 2004h; load AC with the operand, 0053h, located at address 004h. The

next instruction adds a second operand from memory at location 005h to the first

operand already in AC. With the next instruction the result, 003Ch, is then stored

in memory at location 006h. The write signal we can be clearly seen while IR

contains 3006h, AR point to 006h, and AC contains the sum 003Ch. The last

instruction is HALT, 7001h, which clears the S flip-flop and halts the CPU.

Table 3 Assembly Language program to add two numbers

Location Label Instruction Opcode Comments

 Org 0 /origin of program is location

0

000 LDA A 2004 /Load operand from location

A

001 ADD B 1005 /Add operand from location

B

002 STA C 3006 /Store sum in location C

003 HLT 7001 /Halt computer

004 A, DEC 83 0053 /Decimal operand

005 B, DEC -23 FFE9 / Decimal operand

006 C, DEC 0 0000 /Sum stored in location C

 END /End of symbolic program

Conclusions

We have presented a new 5-step methodology for hardware CPU design. The computer

was first defined with internal registers, bus and memory size. The instruction set was

selected with minimum number of instructions and simple instruction addressing formats

but complies with instruction set completeness requirements. In order to move to the

lower microprogrammable level, where signals can be generated, a micro instruction

table was created. The table detailed all the actions taken for each instruction and for the

whole instruction set. This was possible through utilization of the Register Transfer

Language constructs. This language was used since it transforms into hardware details

the register operations inside the CPU that is essentially sequential in nature. The table

also explains the usual three phases encountered by each instruction. The fourth step in

the methodology was reduced to a simple and repetitive process of scanning the micro

instruction table for each register and instruction actions. A general model for the

registers was designed such that all the possible operations were confined to the

assertion/de-assertion of three control signals, the load signal LD, the increment signal

P
age 10.8.14

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

INC and the clear signal CLR. Examples of logic equations formation were illustrated.

The control unit was formed from the aggregate of all the logic equations for all the

registers and their control signals. The complexity of the hardware was further reduced to

a hierarchical design using the industry standard Altera MAX+Plus II9 software design

environment. The design was downloaded to an FPGA/CPLD platform. The platform

was a prototyping board UP2 developed by Altera Inc. The design was tested through

simulation runs of a representative program. The CPU hardware was also tested

successfully for the same program on the UP2 board with 7-segment displays and LEDs

representing inputs and outputs. The entire design utilized about 13% of the available

Logic Cells (LC) count that amount to about 70,000 gates. The rest of the LCs were

available to use to enhance the design with more logic designs or peripherals without

having to add additional external logic. The design can be considered a very successful

embedded microprocessor soft core design or System on a Chip (SoC). Of course much

denser FPGAs are now available where more powerful soft microprocessors can be

implemented. The 5-step methodology introduced can be used for more complex designs.

The main emphasis again is on the creation of the micro instruction table. Hence, there

are no restrictions as to the size or number of registers used, or the size of the memory.

References:

1. Andrew S. Tanenbaum, “Structured Computer Organization”, Prentice Hall, 1999, ISBN 0-13-

095990-1

2. William Stallings, “Computer Organization and Architecture”, Prentice Hall, 2000, ISBN 0-13-

081294-3

3. IRV Englander, “The Architecture of Computer Hardware and Systems Software”, Wiley, 2003,

ISBN 0-471-07325-3

4. Sajjan Shiva, “Computer Design and Architecture”, Marcel Dekker, 2000, ISBN 0-8247-0368-5

5. Alen Clements, “The Principles of Computer Hardware”, Oxford, 2000, ISBN 0-19-856454-6.

6. M. Morris Mano, “Computer System Architecture”; Prentice Hall, 1993; ISBN 0-13-175563-3.

7. James O. Hamblen and Michael Furman; “Rapid Prototyping of Digital Systems’; Kluwer

Academic Publishers; 2001; ISBN 0-7923-7439-8.

8. Rex N. Fisher, “Design and Implementation of a Simple 8-Bit CPU”, 2000.

http://www.rexfisher.com/P8/P8_TOC.htm

9. MAX+Plus II Programmable Logic Development System and Software.

http://www.altera.com/literature/ds/dsmii.pdf

10. V. Korneev, and K. Kiselev, “Modern Microprocessors”, Charles River Media, 2004, ISBN 1-

58450-368-8.

11. Altera University Program UP2 Education Kit. http://www.altera.com/literature/univ/upds.pdf.

K. SALMAN is a Professor in the department of ETIS at Middle Tennessee State University. He holds

Ph.D. in electrical engineering from Brunel University, UK, and a member of IEEE.. His main line of

research is in embedded microprocessors and ciphering.

 P
age 10.8.15

“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright 2005, American Society for Engineering Education”

MICHAEL B. ANDERTON is a Graduate Assistant at Middle Tennessee State University where he

received his B.S. in Engineering Technology. His undergraduate senior project involved work with the

Residue Number System. His graduate research interest includes System-on-chip (SoC) technology.

P
age 10.8.16

